US3601923A - Amusement device employing dilatant suspension filler - Google Patents

Amusement device employing dilatant suspension filler Download PDF

Info

Publication number
US3601923A
US3601923A US765307A US3601923DA US3601923A US 3601923 A US3601923 A US 3601923A US 765307 A US765307 A US 765307A US 3601923D A US3601923D A US 3601923DA US 3601923 A US3601923 A US 3601923A
Authority
US
United States
Prior art keywords
combination
suspension
dilatant
container
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US765307A
Inventor
Bruce L Rosenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3601923A publication Critical patent/US3601923A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H37/00Jokes; Confetti, streamers, or other dance favours ; Cracker bonbons or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S297/00Chairs and seats
    • Y10S297/01Foam

Definitions

  • This invention relates to psychorheological devices comprised of a dilatant suspension enclosed in an impervious elastically deformable container whose primary object is to amuse young and old alike and to enhance human tactile and kinesthetic perception and sensitivity to materials.
  • Another object of the invention is to provide a deviceof the character described which possesses unique kinesthetic properties by virtue of the interaction between the elastically deformable container and the dilatant suspension contained therein. Because of these unique properties, which are sensed immediately when the container is jabbed, squeezed, pulled, dropped or otherwise manipulated, the principles of the invention are especially adapted for incorporation in toys and amusement devices in a variety of forms and configurations.
  • Another object of the invention is to provide a device of the character described which can be readily, easily and economically manufactured of innocuous nontoxic, pasleterious materials.
  • FIG. 1 is perspective view of one form of the invention namely a bag:
  • FIG. 3 is a view similar to Fig. 2 illustrating the behavior of the device in the next stage as the squeezing is continued;
  • FIG. 4 is a view similar to Fig.3 illustrating thebehavior of the device as the squeezing continues and the rate of deformation of the container relatesto the characteristic flow rate of the dilatant suspension;
  • FIG. 5 is a view similar to Fig. 4 illustrating the behavior of the device as it approaches the final squeezing stage
  • FIG. 6 is a sectional view through thebag illustrating the behavior thereof when applied to a sharp edge or corner;
  • FIG. 7 is an elevational view of the bag illustrating the behavior thereof when tension or a pull is exerted on one end thereof;
  • FIG. 8 is a sectional view of the bag illustrating-the behavior thereof when tension or a pull is exerted on opposite ends thereof;
  • FIG. 9 is a view similar to Fig. 8 illustrating the behavior of the device when the pulls at the ends thereof are continued;
  • FIG. 10 is a view similar to F1019 illustrating the behavior of the device as it approaches the completion of the end pulling operation
  • FIG. 11 is a view similar to Fig. 10 illustrating the behavior of the device when one end is released;
  • FIG. 12 is a view of a clownfs head made in accordance with. the principles of the invention.
  • FIG. 13 is a view similar to Fig. 12 illustrating'the behavior of the device when a pull is exerted on various parts;
  • FIG. 14 is a view illustrating a doll made in accordance with the principles of the invention, the extension of the arm being shown in phantom;
  • FIG. 15 is a view illustrating a snake made in accordance with the principles of the invention, the extension of which is shown in phantom lines.
  • the container is made of natural latex or synthetic rubber whose thickness ranges from about 0.006 inch to about 0.009 inch to provide an elongation of 400-800 percent, preferably 600 percent. Conventional toy ballons, surgical gloves, and the like can be employed.
  • the dilatant filler comprises a liquid suspension of a starch selected from the class consisting of cornstarch or tapioca starch whose granules are near spherical and whose particle size is substantially uniform and within the range of about 0.0001 inch to 0.0004inch or 25-10 microns.
  • a starch selected from the class consisting of cornstarch or tapioca starch whose granules are near spherical and whose particle size is substantially uniform and within the range of about 0.0001 inch to 0.0004inch or 25-10 microns.
  • the specific gravity of the starch particles should approximate that of the liquid.
  • the starch should be suspended. in a saturated salt solution which also acts as a preservative to prevent spoilage.
  • the liquid portion must be large enough to lubricate the particles when the suspension is in its initial or resting state but small enough to cause particle-to-particle contact and friction on imposition of a sudden stress or deformation.
  • EXAMPLE 1 Three hundred fifty-eight gms. of a saturated saline solution is heated to about 100 F. 420 gms. of cornstarch is added with agitation. When the suspension becomes homogenous and is still warm, it is poured into the container until it occupies about 2 percent of the volume of the container. The con tainer is then compressed until the suspension reaches the neck of the container at which time the container is closed off by knotting or sealing the same. In its final condition, the container is substantially free of air.
  • EXAMPLE 2 The same procedure as Example I is followed except 460 gms. of tapioca starch is used instead of cornstarch.
  • the compressive impact is delivered to the device in the form of a sudden blow orpoke the sensation encountered is that of an initial slight indentation or transformation of the container followed by a sudden encounter of a solid, dense almost impenetrable mass.
  • the device is in fact an excellent impact absorber.
  • FIG. 6 illustrates what happens when the device is cropped on a sharp solid object 30 supported on a sturdy surface 32.
  • the initial impact causes an indentation 34 to form in the device and initial densification of the dilatant particles between the indented and the opposite portion 36 of the elastic container 12 because there is a greater rate of flow around the object 30 and therefore a greater shear rate.
  • the particles of the dense portion flow outwardly away from the impact locus in the manner shown in FIG. 4.
  • the device so-to speak drapes itself around the pointed object 30.
  • the rate at which the dilatant suspension flows linearly through an orifice having an area of 2 cm. can be called characteristic flow rate or CFR. Since the flow actually is laminar, the effective area of the orifice is about 0.57 cm. It is believed that the foregoing phenomena of densification and liquefaction are related to the characteristic flow rate. Thus if the force applied suddenly to the container acts to cause the dilatant suspension to exceed its characteristic flow rate in any portion thereof, densification or hardening occurs at that portion. On the other hand, if the compressive force is applied slowly and continuously to the container at a rate causing the flow in any portion of the volume to be less than the CFR of the dilatant suspension, the device will deform smoothly without encountering lumps or densified portions.
  • CFR characteristic flow rate
  • FIGS. 7-11 The behavior of the device and the sensations felt when a pull or tension is applied thereto is illustrated in FIGS. 7-11.
  • indentations are formed as at 38 and '40 as shown in FIG. 7.
  • indentations 42 and 44 are formed when the device is first grasped by the other hand at its other end as shown in FIG. 8.
  • the container may be formed as a doll having a body portion 60, a head and face portion 62, arms 64 and legs 66 and filled with the dilatant starch suspension in the manner previously described.
  • the body may be formed as a doll having a body portion 60, a head and face portion 62, arms 64 and legs 66 and filled with the dilatant starch suspension in the manner previously described.
  • the elastic container 10 is made up in the form of a snake or reptile, as shown in FIG. 15, having a head portion 68 and a body portion 70, a child can amuse himself and acquire tactile sensitivity in many ways. Thus he can elongate all or portions of the snake rapidly and form a plurality of lumps as in FIG. 9 which ultimately will become absorbed and when released and dropped on a surface will twist and wiggle until it returns fully to its original shape and form.
  • the elastic container is made up in form of a clowns head as shown in FIGS. 12 and 13, containing, for example, a peaked cap 72, cars 74 and facial features including a bulbous nose 76
  • the child can be amused and acquire tactile sensitivity by manipulating the features in various ways.
  • the cap 72, or ear 74, or nose 76 can be pulled out as shown in FIG. 13. If pulled out suddenly at a rate in excess of the CFR of the dilatant starch suspension in the head, the elongated features will be formed with lumps which will eventually dissipateflf pulled out slowly at the CFR rate of the dilatant suspension, the elongation will be smooth.
  • the unenclosed suspension tends to abruptly fracture and separate before the advance of the compressing surface whereas in the case of the enclosed suspension the wall of the container tends to distribute the force of the compressing object over a greater area (due to sheer between container wall and suspension) add the centrally acting volumetric constraint tends to hold the momentary aggregate together resulting in a more gradual crushing of the momentary aggregate rather than an abrupt fracture and separation.
  • An amusement device to enhance human tactile and kinesthetic perception and sensitivity comprising a liquid and water vapor-impervious elastically deformable closed member and a dilatant suspension whose apparent viscosity increase instantaneously with increasing rate of shear contained in said member, the member being free of entrapped air, whereby manipulating the device will create unusual distortions, recovery and flow properties.
  • dilatant suspension consists essentially of cornstarch or tapioca starch particles dispersed in an aqueous medium.
  • dilatant suspension contains 58-54 percent by weight of the starch providing near-spherical particles whose particle size is substantially uniform and within the range of about 2.5- microns and manifests a characteristic flow rate of 1-10 cm./sec.
  • liquid portion is large enough to lubricate the particles when the suspension is at rest but small enough to cause particle-to-particle contact and friction on imposition of a sudden stress to the member at the locus of the imposed stress.

Abstract

An amusement device or toy comprised of an impervious elastic container in a desired configuration and a dilatant suspension enclosed therein whereby jabbing, squeezing or pulling the same creates unusual distortions, recovery and flow properties which are not only fascinating but also enhance human tactile and kinesthetic perception of materials.

Description

United States Patent [72] inventor Bruce L. Rosenberg 23 N. Chelsea Ave., Atlantic City, NJ. 08401 [21] Appl. No. 765,307
[22] Filed Oct. 7, 1968 [45] Patented Aug. 31, 1971 [54] AMUSEMENT DEVICE EMPLOYING DILATANT SUSPENSION FILLER 10 Claims, 15 Drawing Figs. 52 U.S.Cl 46/1511 [51] Int. Cl A63h 3/00 [50] Field of Search 46/151;
[5 6] References Cited UNITED STATES PATENTS 1,346,176 7/1920 Chambers 1,802,867 4/1931 Biddle 106/130 X 1,826,002 10/1931 Jennings. 106/130 X 3,347,545 10/1967 Nichols 272/11 (N) 3.419.134 12/1968 Fitts 206/46 X FOREIGN PATENTS 511,092 1/1953 Italy 46/151 Primary Examiner- Louis G. Mancene Assistant Examiner-D. L. Weinhold AttorneyMcClure, Weiser, Millman' ABSTRACT: An amusement device or toy comprised of an impervious elastic container in a desired configuration and a dilatant suspension enclosed therein whereby jabbing, squeez ing or pulling the same creates unusual distortions, recovery and flow properties which are not only fascinating but also enhance human tactile and kinesthetic perception of materials.
PATENTEUAUG31 I97. SHEET 2 OF 2 3.601.823
ATTO/PA/X AMUSEMENT DEVICE EMPLOYING DILATANT SUSPENSION FILLER This invention relates to psychorheological devices comprised of a dilatant suspension enclosed in an impervious elastically deformable container whose primary object is to amuse young and old alike and to enhance human tactile and kinesthetic perception and sensitivity to materials.
Another object of the invention is to provide a deviceof the character described which possesses unique kinesthetic properties by virtue of the interaction between the elastically deformable container and the dilatant suspension contained therein. Because of these unique properties, which are sensed immediately when the container is jabbed, squeezed, pulled, dropped or otherwise manipulated, the principles of the invention are especially adapted for incorporation in toys and amusement devices in a variety of forms and configurations.
Another object of the invention is to provide a device of the character described which can be readily, easily and economically manufactured of innocuous nontoxic, mondeleterious materials.
These and other objects of the invention will become more apparent as the following description proceeds in conjunction with the accompanying drawings, wherein:
FIG. 1 is perspective view of one form of the invention namely a bag:
FIG. 2 is a sectional view through the bag illustrating the behavior of the device when it is initially compressed or squeezed;
FIG. 3 is a view similar to Fig. 2 illustrating the behavior of the device in the next stage as the squeezing is continued;
FIG. 4 is a view similar to Fig.3 illustrating thebehavior of the device as the squeezing continues and the rate of deformation of the container relatesto the characteristic flow rate of the dilatant suspension;
FIG. 5 is a view similar to Fig. 4 illustrating the behavior of the device as it approaches the final squeezing stage;
FIG. 6 is a sectional view through thebag illustrating the behavior thereof when applied to a sharp edge or corner;
FIG. 7 is an elevational view of the bag illustrating the behavior thereof when tension or a pull is exerted on one end thereof; I
FIG. 8 is a sectional view of the bag illustrating-the behavior thereof when tension or a pull is exerted on opposite ends thereof;
FIG. 9 is a view similar to Fig. 8 illustrating the behavior of the device when the pulls at the ends thereof are continued;
FIG. 10 is a view similar to F1019 illustrating the behavior of the device as it approaches the completion of the end pulling operation;
FIG. 11 is a view similar to Fig. 10 illustrating the behavior of the device when one end is released;
FIG. 12 is a view of a clownfs head made in accordance with. the principles of the invention;
FIG. 13 is a view similar to Fig. 12 illustrating'the behavior of the device when a pull is exerted on various parts;
FIG. 14 is a view illustrating a doll made in accordance with the principles of the invention, the extension of the arm being shown in phantom; and
FIG. 15 is a view illustrating a snake made in accordance with the principles of the invention, the extension of which is shown in phantom lines.
Specific reference is now made to the drawings in which similar reference characters are used for corresponding elements throughout.
In its simplest form the invention comprises a liquidand water vapor-impervious elastically deformable container 10 which, in its relaxed state, is substantially filled with a dilatant suspension 12 in such a manner as to exclude entrapped air. The container is closed oi? in any suitable manner as by knotting 14, see FIG. 1, or heat sealing as suggested in FIG. 8.
A dilatant fluid is an inverted plastic whose apparent viscosity increases instantaneously with increasing rate of shear. See Chemical Engineers Handbook, Perry .I. H, ed. McGraw Hill Book Co., Inc., 1950, section 17 entitled "Mixing of Material."
The container is made of natural latex or synthetic rubber whose thickness ranges from about 0.006 inch to about 0.009 inch to provide an elongation of 400-800 percent, preferably 600 percent. Conventional toy ballons, surgical gloves, and the like can be employed.
The dilatant filler comprises a liquid suspension of a starch selected from the class consisting of cornstarch or tapioca starch whose granules are near spherical and whose particle size is substantially uniform and within the range of about 0.0001 inch to 0.0004inch or 25-10 microns. To prevent sedimentation or settling out of the starch the specific gravity of the starch particles should approximate that of the liquid. Thus the starch should be suspended. in a saturated salt solution which also acts as a preservative to prevent spoilage. The liquid portion must be large enough to lubricate the particles when the suspension is in its initial or resting state but small enough to cause particle-to-particle contact and friction on imposition of a sudden stress or deformation. Thus the starch suspension should contain 42-46 percent liquid portion by weight or 58-54 percent starch by weight of the total mass of the suspension. Illustrative be nonlirnitative, examples of the making of the dilatant suspension and the filling of the elastically deformable container are as follows:
EXAMPLE 1 Three hundred fifty-eight gms. of a saturated saline solution is heated to about 100 F. 420 gms. of cornstarch is added with agitation. When the suspension becomes homogenous and is still warm, it is poured into the container until it occupies about 2 percent of the volume of the container. The con tainer is then compressed until the suspension reaches the neck of the container at which time the container is closed off by knotting or sealing the same. In its final condition, the container is substantially free of air.
EXAMPLE 2 The same procedure as Example I is followed except 460 gms. of tapioca starch is used instead of cornstarch.
EXAMPLE 3 Thesame procedure as Example I is followed except that 358 gms. of water and 440 gms. of cornstarch are used. I
The intriguing paradoxical properties of the present device result from the interaction between the highly elastic deformable container 10 and the dilatant, substantially air-free, suspension 12 therein. Thus if the device is squeezed between the fingers as seen in Fig. 2, the compressive force initially indents or distorts opposing portions of the container as at 16 and 18, causing the particles to flow away from the impact points outwardly towards the ends of the container as shown by the arrows 20. If the compressive force is so sudden that portion 22 of the dilatant suspension between thefiners or the locus of the applied force densifies as seen in FIG. 3, it feels like a dense putty. However as the compressive force is continued with constant pressure, the dense portion 22 liquifies as seen at 14 in Fig. 4 and the particles of said portion flow outwardly away from the points of applied. force towards the ends of the container as represented by the arrows 26. In the near final stage shown in FIG. 5 the dilatant suspension apparently densifies again forming a small lump 28 of particles trapped between the fingers. Continued pressure eventually dissolves this lump and the opposite portions 16 and 18 of the elastic container meet. Thus the psychorheological effects encountered when the device is squeezed are, in sequence, the
sensations of initial deformation, then that of a firm solid, followed by that of a slow melting away of the solid, then the feel of a lump or nodule and finally the feel of the lump melting away.
If the compressive impact is delivered to the device in the form of a sudden blow orpoke the sensation encountered is that of an initial slight indentation or transformation of the container followed by a sudden encounter of a solid, dense almost impenetrable mass. Thus the device is in fact an excellent impact absorber. An example of this almost indestructible impact absorption property is seen in FIG. 6 which illustrates what happens when the device is cropped on a sharp solid object 30 supported on a sturdy surface 32. The initial impact causes an indentation 34 to form in the device and initial densification of the dilatant particles between the indented and the opposite portion 36 of the elastic container 12 because there is a greater rate of flow around the object 30 and therefore a greater shear rate. Then the particles of the dense portion flow outwardly away from the impact locus in the manner shown in FIG. 4. As a result, the device so-to speak drapes itself around the pointed object 30.
If the device is handled gingerly with the tips of the fingers or rolled rapidly between the palms, there seem to be solid lumps contained therein, whereas on slower handling the lumps vanish by liquefaction.
The rate at which the dilatant suspension flows linearly through an orifice having an area of 2 cm. can be called characteristic flow rate or CFR. Since the flow actually is laminar, the effective area of the orifice is about 0.57 cm. It is believed that the foregoing phenomena of densification and liquefaction are related to the characteristic flow rate. Thus if the force applied suddenly to the container acts to cause the dilatant suspension to exceed its characteristic flow rate in any portion thereof, densification or hardening occurs at that portion. On the other hand, if the compressive force is applied slowly and continuously to the container at a rate causing the flow in any portion of the volume to be less than the CFR of the dilatant suspension, the device will deform smoothly without encountering lumps or densified portions. It has been found that for enjoying the tactile and kinesthetic properties of the device and increasing tactile sensitivity the CF R should be in the order of magnitude of 1-10 cm./sec. Above cm./sec. the dilatant suspension behaves more like water and below I cmJsec. the deformation and flow is too slow to be of interest. The preferred CFR is about 3-6 cm./sec.
The behavior of the device and the sensations felt when a pull or tension is applied thereto is illustrated in FIGS. 7-11. When the fingers of one hand first grasp the device indentations are formed as at 38 and '40 as shown in FIG. 7. Similarly indentations 42 and 44 are formed when the device is first grasped by the other hand at its other end as shown in FIG. 8.
not snap back to its original diameter slowly as it would if it were filled with water or even a more viscous Newtonian fluid. Rather it returns to its original diameter slowly at the CFR rate of the suspension during which the container may twist or bend as at 48, see FIG. 11, and appear alive. It is important that very little air be trapped in the container since it breaks down the adhesion between the walls of the elastic container 10 and the enclosed dilatant suspension 12 which is likely to fracture rather than elongate in a smooth fashion.
On the other hand when the pull is exerted on the opposite ends of the container suddenly and at a rate in excess of the CFR of the dilatant suspension, as shown in FIG. 9, spaced densified areas or lumps 50 will appear and as the elongation is continued, the compressive force of the container on the lumps will cause them to smooth out or liquefy, so-to-speak during which time the particles will flow outwardly of the densified areas towards the ends of the container as shown illustratively by the arrows 52 and towards the center of the container as shown illustratively by the arrows 54. When the elongated container is attaining a lump-free condition, as shown in the arrows 56. When one end of the container is released, the
particles continue moving towards the center of the container as shown illustratively by the arrows 58, and the released end 48 twists and turns and acts as if it were alive before the container attains its original shape.
The principles of the invention may be applied to containers of varied configurations. Thusas shown in FIG. 14, the container may be formed as a doll having a body portion 60, a head and face portion 62, arms 64 and legs 66 and filled with the dilatant starch suspension in the manner previously described. Thus if a child should grasp and squeeze the body suddenly, for example, lumps will first appear which will dissipate on continued squeezing and when released, the body will slowing return to its original shape, twisting as it returns,
to simulate live action. Similarly if the arm, for example, is slowly elongated as, shown in phantom lines, it will return slowly on release and the end of finger and wrist portion 67 will twist as did the portion 48 shown in FIG. 11.
If the elastic container 10 is made up in the form of a snake or reptile, as shown in FIG. 15, having a head portion 68 and a body portion 70, a child can amuse himself and acquire tactile sensitivity in many ways. Thus he can elongate all or portions of the snake rapidly and form a plurality of lumps as in FIG. 9 which ultimately will become absorbed and when released and dropped on a surface will twist and wiggle until it returns fully to its original shape and form.
If the elastic container is made up in form of a clowns head as shown in FIGS. 12 and 13, containing, for example, a peaked cap 72, cars 74 and facial features including a bulbous nose 76, the child can be amused and acquire tactile sensitivity by manipulating the features in various ways. Thus the cap 72, or ear 74, or nose 76 can be pulled out as shown in FIG. 13. If pulled out suddenly at a rate in excess of the CFR of the dilatant starch suspension in the head, the elongated features will be formed with lumps which will eventually dissipateflf pulled out slowly at the CFR rate of the dilatant suspension, the elongation will be smooth. In either case, a release of fea tures will cause them to twist and wiggle and act alive before returning fully to their original shape and form. Similar effects can be obtained by'squeezing various features. The behavior and physical characteristics of the device results from the interaction of the impervious elastically deformable container and the dilatant suspension contained therein.
Thus, on severe and rapid compression, the unenclosed suspension tends to abruptly fracture and separate before the advance of the compressing surface whereas in the case of the enclosed suspension the wall of the container tends to distribute the force of the compressing object over a greater area (due to sheer between container wall and suspension) add the centrally acting volumetric constraint tends to hold the momentary aggregate together resulting in a more gradual crushing of the momentary aggregate rather than an abrupt fracture and separation.
On rapid elongation, the unenclosed suspension fractures in a glassy fashion cleanly and abruptly with little effort whereas when the suspension is enclosed, two effects are produced. The initial pull solidifies the suspension and, with continued pull, the compressive forces normal to the elongation axis cause andinward crushing of the momentary aggregate. As crushing proceeds, the container simultaneously contracts radially (compresses towards the center axis) and elongates. Portions of the system that have not crushed appear as hard nodules or lumps. On sustained elongation or extension the crushed and solid (lumpy) material liquifies. Potential energy is now stored in the elastic walls of the extended container. When the container is released, the walls of the conminimal energy configuration defined by the volumetric constraint of the container (surface tension), the combination of gravity and the surface upon which it is'resting and any other forces which might be acting on the system.-
I claim:
1. An amusement device to enhance human tactile and kinesthetic perception and sensitivity comprising a liquid and water vapor-impervious elastically deformable closed member and a dilatant suspension whose apparent viscosity increase instantaneously with increasing rate of shear contained in said member, the member being free of entrapped air, whereby manipulating the device will create unusual distortions, recovery and flow properties.
2. The combination of claim 1 wherein said dilatant suspension consists essentially of cornstarch or tapioca starch particles dispersed in an aqueous medium.
3. The combination of claim 2 wherein the dilatant suspension contains 58-54 percent by weight of the starch providing near-spherical particles whose particle size is substantially uniform and within the range of about 2.5- microns and manifests a characteristic flow rate of 1-10 cm./sec.
4. The combination of claim 3 wherein the member is made of rubber and of such thickness as to provide 400-800 percent elongation.
5. The combination of claim 1 wherein the member is made of rubber and of such thickness as to provide 400-800 percent elongation, the dilatant suspension comprising cornstarch or tapioca starch dispersed in an aqueous medium.
6. The combination of claim 5 wherein the aqueous medium is a saturated saline solution.
7. The combination of claim 1 wherein the member is in the form of a doll.
8. The combination of claim form of a human head.
9. The combination of claim 1 wherein the member is in the form of a reptile.
10. The combination of claim 2 wherein the liquid portion is large enough to lubricate the particles when the suspension is at rest but small enough to cause particle-to-particle contact and friction on imposition of a sudden stress to the member at the locus of the imposed stress.
1 wherein the member is in the

Claims (10)

1. An amusement device to enhance human tactile and kinesthetic perception and sensitivity comprising a liquid and water vaporimpervious elastically deformable closed member and a dilatant suspension whose apparent viscosity increase instantaneously with increasing rate of shear contained in said member, the member being free of entrapped air, whereby manipulating the device will create unusual distortions, recovery and flow properties.
2. The combination of claim 1 wherein said dilatant suspension consists essentially of cornstarch or tapioca starch particles dispersed in an aqueous medium.
3. The combination of claim 2 wherein the dilatant suspension contains 58-54 percent by weight of the starch providing near-spherical particles whose particle size is substantially uniform and within the range of about 2.5-10 microns and manifests a characteristic flow rate of 1-10 cm./sec.
4. The combination of claim 3 wherein the member is made of rubber and of such thickness as to provide 400-800 percent elongation.
5. The combination of claim 1 wherein the member is made of rubber and of such thickness as to provide 400-800 percent elongation, the dilatant suspension comprising cornstarch or tapioca starch dispersed in an aqueous medium.
6. The combination of claim 5 wherein the aqueous medium is a saturated saline solution.
7. The combination of claim 1 wherein the member is in the form of a doll.
8. The combination of claim 1 wherein the member is in the form of a human head.
9. The combination of claim 1 wherein the member is in the form of a reptile.
10. The combination of claim 2 wherein the liquid portion is large enough to lubricate the particles when the suspension is at rest but small enough to cause particle-to-particle contact and friction on imposition of a sudden stress to the member at the locus of the imposed stress.
US765307A 1968-10-07 1968-10-07 Amusement device employing dilatant suspension filler Expired - Lifetime US3601923A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76530768A 1968-10-07 1968-10-07

Publications (1)

Publication Number Publication Date
US3601923A true US3601923A (en) 1971-08-31

Family

ID=25073196

Family Applications (1)

Application Number Title Priority Date Filing Date
US765307A Expired - Lifetime US3601923A (en) 1968-10-07 1968-10-07 Amusement device employing dilatant suspension filler

Country Status (1)

Country Link
US (1) US3601923A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833952A (en) * 1973-01-18 1974-09-10 Us Navy Nonlinear energy absorption system
US4040619A (en) * 1976-08-24 1977-08-09 Landi James V Squeeze toy and exercising device
US4169336A (en) * 1976-07-16 1979-10-02 Cpg Products Corporation Stretchable figure exhibiting slow recovery
US4189149A (en) * 1977-09-08 1980-02-19 Katsiaficas Mary D Recreational structure including flexible tubular member
US4631847A (en) * 1980-12-01 1986-12-30 Laurence Colin Encapsulated art
US4898561A (en) * 1987-09-30 1990-02-06 Nottingham John R Self-inflating toy
US4944363A (en) * 1990-02-06 1990-07-31 Cap Toys, Inc. Toy ball
US4952190A (en) * 1989-06-14 1990-08-28 Main Street Toy Company, Inc. Deformable article
US5006089A (en) * 1989-09-22 1991-04-09 C. J. Associates, Ltd. Life-like toy animal
US5026054A (en) * 1990-02-06 1991-06-25 Cap Toys, Inc. Toy
US5066018A (en) * 1990-10-16 1991-11-19 Hinton Dean S Deformable sphere with a suction cup exterior
US5190504A (en) * 1992-06-09 1993-03-02 Scatterday Mark A Deformable grip
US5207728A (en) * 1992-03-30 1993-05-04 Fogarty A Edward Maternity dress for a doll which simulates pregnancy
US5462473A (en) * 1994-07-01 1995-10-31 Sheller; Ken Toy with slow movement recovery
US5518436A (en) * 1994-07-11 1996-05-21 Cap Toys Inc. Toy figure and manifold assembly therefor
US5545128A (en) * 1992-11-20 1996-08-13 Beth Israel Hospital Bone fracture prevention method
US5556358A (en) * 1993-02-22 1996-09-17 Scatterday; Mark A. Deformable grip
US5712011A (en) * 1995-07-27 1998-01-27 Beth Israel Deaconess Medical Center, Inc. Tug-resistant link
US5718655A (en) * 1996-07-11 1998-02-17 Gayla Industries, Inc. Therapeutic resilient hand exerciser and method of manufacture
EP0826396A1 (en) * 1996-09-03 1998-03-04 Günther Plamenig Deformable ball for kneading
US5755648A (en) * 1996-08-26 1998-05-26 Kildani; Paul Hand exerciser with attached object
US5776839A (en) * 1996-10-10 1998-07-07 Milliken Research Corporation Dilatant powder coated fabric and containment articles formed therefrom
US5798411A (en) * 1997-09-19 1998-08-25 The Hygenic Corporation Compressible polyurethane compositions having minimal tack and articles therefrom
US5848946A (en) * 1996-08-14 1998-12-15 Stillinger; Scott H. Filled, deformable bladder amusement device with infinitely changeable pliability and tactility characteristics
US5891000A (en) * 1998-02-14 1999-04-06 Gayla Industries, Inc. Process for manufacturing filled double bladder resilient articles
US5890999A (en) * 1997-03-28 1999-04-06 Kildani; Paul Hand exerciser and method of use thereof
US5992064A (en) * 1995-06-14 1999-11-30 Gubernick; Franklin L. Deformable handheld calendar
US6139395A (en) * 1999-12-02 2000-10-31 Liao; Chu-Yuan Soft toy structure containing therein a fluid material and a method for manufacturing the soft toy
US6162149A (en) * 1998-01-13 2000-12-19 Scatterday; Mark A. Hand exercising device
US6174216B1 (en) 1999-08-03 2001-01-16 Mattel, Inc. Stretchable two-headed toy figure
US6224513B1 (en) * 2000-06-09 2001-05-01 Lee Communications, Inc. Therapeutic squeeze ball
US6527616B1 (en) * 2002-03-25 2003-03-04 Js Vision Ltd. Throwing toy for producing splash effect
US6533637B1 (en) * 2001-09-05 2003-03-18 Chu-Yuan Liao Impact expanding projectile device and its associated method of manufacture
US6582274B1 (en) * 2000-04-26 2003-06-24 Basic Fun, Inc. Noise making toy
US20030235662A1 (en) * 2002-02-11 2003-12-25 Edizone, Lc Color changing balls and toys
US6672932B1 (en) * 2002-01-14 2004-01-06 Treasure Bay, Inc. Actuatable toy containing deformable bladder
US20040094026A1 (en) * 2002-11-19 2004-05-20 Integrity Testing Laboratory Inc. Method of making a protective material and articles made therefrom
US20040116042A1 (en) * 2002-09-03 2004-06-17 Emoff Michael J. Bobble-head doll with deformable head
US20070026763A1 (en) * 2002-01-14 2007-02-01 Panec Don J Actuatable toys containing deformable bladders
US20070105471A1 (en) * 2005-10-17 2007-05-10 Yunzhang Wang Puncture Resistant Composite
US7717893B2 (en) 2004-06-04 2010-05-18 The Procter & Gamble Company Absorbent articles comprising a slow recovery elastomer
US20110005379A1 (en) * 2008-11-10 2011-01-13 Yunzhang Wang Wang Flexible spike and ballistic resistant panel
US20110015529A1 (en) * 2006-03-31 2011-01-20 Mauna Kea Technologies Methylene blue based fibred fluorescence microscopy
US7905872B2 (en) * 2004-06-04 2011-03-15 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate
US8029488B2 (en) 2005-01-26 2011-10-04 The Procter & Gamble Company Disposable pull-on diaper having a low force, slow recovery elastic waist
US20120184807A1 (en) * 2011-01-17 2012-07-19 Coloplast A/S Penile implant with dilatant liquid
US8323257B2 (en) 2007-11-21 2012-12-04 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate and method for making the same
US8419701B2 (en) 2005-01-10 2013-04-16 The Procter & Gamble Company Absorbent articles with stretch zones comprising slow recovery elastic materials
US20130302106A1 (en) * 2010-10-29 2013-11-14 Hilti Aktiengesellschaft Load-indicating washer
US8944964B1 (en) * 2008-08-18 2015-02-03 Michael Saffaie Hand grip exercise arrangement
US9017305B2 (en) 2010-11-12 2015-04-28 The Procter Gamble Company Elastomeric compositions that resist force loss and disintegration
US10513806B2 (en) 2017-08-08 2019-12-24 Milliken & Company Spike resistant package and article
US10513805B2 (en) 2017-08-08 2019-12-24 Milliken & Company Spike resistant package and article
EP4166210A1 (en) * 2021-10-15 2023-04-19 Jun Hao Toys Company Limited Push pop fidget device for stress relief
US11707100B2 (en) 2019-01-16 2023-07-25 Milliken & Company Multi-threat protection composite
US11718068B2 (en) 2019-01-16 2023-08-08 Milliken & Company Multi-threat protection composite
US11819412B2 (en) 2020-02-04 2023-11-21 Coloplast A/S Penile prostheses for treatment of erectile dysfunction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1346176A (en) * 1919-04-22 1920-07-13 Alden R Chambers Hot-water bottle
US1802867A (en) * 1927-05-10 1931-04-28 United Products Corp Aqueous dispersion of matter and the method of making same
US1826002A (en) * 1929-05-09 1931-10-06 Mrs S C Jennings Plastic compound
US3347545A (en) * 1965-07-08 1967-10-17 Johnson & Johnson Eel-like amusement device
US3419134A (en) * 1966-07-08 1968-12-31 Martin E. Fitts Foamable package and method for forming cellular foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1346176A (en) * 1919-04-22 1920-07-13 Alden R Chambers Hot-water bottle
US1802867A (en) * 1927-05-10 1931-04-28 United Products Corp Aqueous dispersion of matter and the method of making same
US1826002A (en) * 1929-05-09 1931-10-06 Mrs S C Jennings Plastic compound
US3347545A (en) * 1965-07-08 1967-10-17 Johnson & Johnson Eel-like amusement device
US3419134A (en) * 1966-07-08 1968-12-31 Martin E. Fitts Foamable package and method for forming cellular foam

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833952A (en) * 1973-01-18 1974-09-10 Us Navy Nonlinear energy absorption system
US4169336A (en) * 1976-07-16 1979-10-02 Cpg Products Corporation Stretchable figure exhibiting slow recovery
US4040619A (en) * 1976-08-24 1977-08-09 Landi James V Squeeze toy and exercising device
US4189149A (en) * 1977-09-08 1980-02-19 Katsiaficas Mary D Recreational structure including flexible tubular member
US4631847A (en) * 1980-12-01 1986-12-30 Laurence Colin Encapsulated art
US4898561A (en) * 1987-09-30 1990-02-06 Nottingham John R Self-inflating toy
US4952190A (en) * 1989-06-14 1990-08-28 Main Street Toy Company, Inc. Deformable article
US5006089A (en) * 1989-09-22 1991-04-09 C. J. Associates, Ltd. Life-like toy animal
US5026054A (en) * 1990-02-06 1991-06-25 Cap Toys, Inc. Toy
US4944363A (en) * 1990-02-06 1990-07-31 Cap Toys, Inc. Toy ball
US5066018A (en) * 1990-10-16 1991-11-19 Hinton Dean S Deformable sphere with a suction cup exterior
US5207728A (en) * 1992-03-30 1993-05-04 Fogarty A Edward Maternity dress for a doll which simulates pregnancy
US5716303A (en) * 1992-06-09 1998-02-10 Scatterday; Mark A. Deformable grip
US5190504A (en) * 1992-06-09 1993-03-02 Scatterday Mark A Deformable grip
WO1993025280A2 (en) * 1992-06-09 1993-12-23 Scatterday Mark A Deformable grip
WO1993025280A3 (en) * 1992-06-09 1994-04-14 Mark A Scatterday Deformable grip
US5350342A (en) * 1992-06-09 1994-09-27 Scatterday Mark A Deformable grip
US6482129B2 (en) 1992-06-09 2002-11-19 Mark A. Scatterday Deformable grip
US6210304B1 (en) * 1992-06-09 2001-04-03 Mark A. Scatterday Deformable grip
US5545128A (en) * 1992-11-20 1996-08-13 Beth Israel Hospital Bone fracture prevention method
US5599290A (en) * 1992-11-20 1997-02-04 Beth Israel Hospital Bone fracture prevention garment and method
US5556358A (en) * 1993-02-22 1996-09-17 Scatterday; Mark A. Deformable grip
US5462473A (en) * 1994-07-01 1995-10-31 Sheller; Ken Toy with slow movement recovery
US5518436A (en) * 1994-07-11 1996-05-21 Cap Toys Inc. Toy figure and manifold assembly therefor
US5992064A (en) * 1995-06-14 1999-11-30 Gubernick; Franklin L. Deformable handheld calendar
US5712011A (en) * 1995-07-27 1998-01-27 Beth Israel Deaconess Medical Center, Inc. Tug-resistant link
US5718655A (en) * 1996-07-11 1998-02-17 Gayla Industries, Inc. Therapeutic resilient hand exerciser and method of manufacture
US5848946A (en) * 1996-08-14 1998-12-15 Stillinger; Scott H. Filled, deformable bladder amusement device with infinitely changeable pliability and tactility characteristics
US5755648A (en) * 1996-08-26 1998-05-26 Kildani; Paul Hand exerciser with attached object
EP0826396A1 (en) * 1996-09-03 1998-03-04 Günther Plamenig Deformable ball for kneading
US5776839A (en) * 1996-10-10 1998-07-07 Milliken Research Corporation Dilatant powder coated fabric and containment articles formed therefrom
US5890999A (en) * 1997-03-28 1999-04-06 Kildani; Paul Hand exerciser and method of use thereof
US6084027A (en) * 1997-09-19 2000-07-04 The Hygenic Corporation Compressible polyurethane compositions having minimal tack and articles therefrom
US5798411A (en) * 1997-09-19 1998-08-25 The Hygenic Corporation Compressible polyurethane compositions having minimal tack and articles therefrom
US6162149A (en) * 1998-01-13 2000-12-19 Scatterday; Mark A. Hand exercising device
US5891000A (en) * 1998-02-14 1999-04-06 Gayla Industries, Inc. Process for manufacturing filled double bladder resilient articles
US6174216B1 (en) 1999-08-03 2001-01-16 Mattel, Inc. Stretchable two-headed toy figure
US6139395A (en) * 1999-12-02 2000-10-31 Liao; Chu-Yuan Soft toy structure containing therein a fluid material and a method for manufacturing the soft toy
US6582274B1 (en) * 2000-04-26 2003-06-24 Basic Fun, Inc. Noise making toy
US6475119B2 (en) * 2000-06-09 2002-11-05 Lee Communications, Inc. Deformable ball
US6224513B1 (en) * 2000-06-09 2001-05-01 Lee Communications, Inc. Therapeutic squeeze ball
US6533637B1 (en) * 2001-09-05 2003-03-18 Chu-Yuan Liao Impact expanding projectile device and its associated method of manufacture
US20040192160A1 (en) * 2002-01-14 2004-09-30 Panec Don J. Actuatable toy containing deformable bladder
US20070026763A1 (en) * 2002-01-14 2007-02-01 Panec Don J Actuatable toys containing deformable bladders
US6672932B1 (en) * 2002-01-14 2004-01-06 Treasure Bay, Inc. Actuatable toy containing deformable bladder
US20050282462A1 (en) * 2002-01-14 2005-12-22 Panec Don J Actuatable toy containing deformable bladder
US6881119B2 (en) * 2002-01-14 2005-04-19 Treasure Bay, Inc. Actuatable toy containing deformable bladder
US20030235662A1 (en) * 2002-02-11 2003-12-25 Edizone, Lc Color changing balls and toys
US6905431B2 (en) * 2002-02-11 2005-06-14 Edizone, Lc Color changing balls and toys
US6527616B1 (en) * 2002-03-25 2003-03-04 Js Vision Ltd. Throwing toy for producing splash effect
US20040116042A1 (en) * 2002-09-03 2004-06-17 Emoff Michael J. Bobble-head doll with deformable head
US20040094026A1 (en) * 2002-11-19 2004-05-20 Integrity Testing Laboratory Inc. Method of making a protective material and articles made therefrom
US7905872B2 (en) * 2004-06-04 2011-03-15 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate
US7717893B2 (en) 2004-06-04 2010-05-18 The Procter & Gamble Company Absorbent articles comprising a slow recovery elastomer
US8419701B2 (en) 2005-01-10 2013-04-16 The Procter & Gamble Company Absorbent articles with stretch zones comprising slow recovery elastic materials
US8029488B2 (en) 2005-01-26 2011-10-04 The Procter & Gamble Company Disposable pull-on diaper having a low force, slow recovery elastic waist
US7825048B2 (en) 2005-10-17 2010-11-02 Milliken & Company Puncture resistant composite
US20070105471A1 (en) * 2005-10-17 2007-05-10 Yunzhang Wang Puncture Resistant Composite
US20110015529A1 (en) * 2006-03-31 2011-01-20 Mauna Kea Technologies Methylene blue based fibred fluorescence microscopy
US8323257B2 (en) 2007-11-21 2012-12-04 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate and method for making the same
US8944964B1 (en) * 2008-08-18 2015-02-03 Michael Saffaie Hand grip exercise arrangement
US20110005379A1 (en) * 2008-11-10 2011-01-13 Yunzhang Wang Wang Flexible spike and ballistic resistant panel
US7958812B2 (en) 2008-11-10 2011-06-14 Milliken & Company Flexible spike and ballistic resistant panel
US20130302106A1 (en) * 2010-10-29 2013-11-14 Hilti Aktiengesellschaft Load-indicating washer
US9316248B2 (en) * 2010-10-29 2016-04-19 Hilti Aktiengesellschaft Load-indicating washer
US9017305B2 (en) 2010-11-12 2015-04-28 The Procter Gamble Company Elastomeric compositions that resist force loss and disintegration
US20120184807A1 (en) * 2011-01-17 2012-07-19 Coloplast A/S Penile implant with dilatant liquid
US8636646B2 (en) * 2011-01-17 2014-01-28 Coloplast A/S Penile implant with dilatant liquid
US10513806B2 (en) 2017-08-08 2019-12-24 Milliken & Company Spike resistant package and article
US10513805B2 (en) 2017-08-08 2019-12-24 Milliken & Company Spike resistant package and article
US11707100B2 (en) 2019-01-16 2023-07-25 Milliken & Company Multi-threat protection composite
US11718068B2 (en) 2019-01-16 2023-08-08 Milliken & Company Multi-threat protection composite
US11819412B2 (en) 2020-02-04 2023-11-21 Coloplast A/S Penile prostheses for treatment of erectile dysfunction
EP4166210A1 (en) * 2021-10-15 2023-04-19 Jun Hao Toys Company Limited Push pop fidget device for stress relief

Similar Documents

Publication Publication Date Title
US3601923A (en) Amusement device employing dilatant suspension filler
US5462473A (en) Toy with slow movement recovery
US4169336A (en) Stretchable figure exhibiting slow recovery
US4952190A (en) Deformable article
US5655947A (en) Ultra-soft, ultra-elastic gel airfoils
US3061572A (en) Polyvinyl acetate and a mixture of a compatible and incompatible plasticizer and method of preparation
US494410A (en) Island
MX9600703A (en) Device for distributing a liquid or dense product which comprises a squeezing member.
US3353823A (en) Pneumatic squeeze toy
US6582274B1 (en) Noise making toy
US3097446A (en) Toy figure
US20200016505A1 (en) Play device with activatable characters and method
JP6531185B2 (en) Novel artificial clay composition containing hollow spheres and method for producing the same
US3309082A (en) Strip projecting squeeze toy
US5451176A (en) Quick opening and self-closing container for articles
US4507099A (en) Toy eye construction
GB2267443A (en) Figurine.
US2979858A (en) Toy
US594595A (en) Otto brethauer
JP2003128864A (en) Clay-like material and toy filled with the same
US3882633A (en) Doll
WO2003099405A2 (en) Animal amusement bubble blowing method and solution
US4846757A (en) Form changing rubber-like toy
JPH08182864A (en) Ornament formed by utilizing high-molecular weight polymer water absorptive resin
CN219983867U (en) Toy water ball

Legal Events

Date Code Title Description
PS Patent suit(s) filed