US3592359A - Spring-valve member in pressurized two fluid dispenser - Google Patents

Spring-valve member in pressurized two fluid dispenser Download PDF

Info

Publication number
US3592359A
US3592359A US828203A US3592359DA US3592359A US 3592359 A US3592359 A US 3592359A US 828203 A US828203 A US 828203A US 3592359D A US3592359D A US 3592359DA US 3592359 A US3592359 A US 3592359A
Authority
US
United States
Prior art keywords
valve stem
valve
annular
valve member
tubular portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US828203A
Inventor
Leonard L Marraffino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3592359A publication Critical patent/US3592359A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/66Contents and propellant separated first separated, but finally mixed, e.g. in a dispensing head

Definitions

  • the lost action or over movement of a part of the valve member enables the storage of sufficient energy to insure return of the valve stem to full closed position by the valve member.
  • This invention utilizes a rigid metal exterior container of the standard type with an interior nonmetallic plastic holder which is responsive in volume to the primary pressurized fluid in the container.
  • the preferred holder is of the plastic bag type which becomes progressively further compressed as its contents are discharged.
  • Other types such as piston followers and the like known in the art can be employed.
  • the valve stem is slidably mounted for movement from a top sealed position to a bottom open position, this movement being of the substantially normal distance of three thirtyseconds of an inch.
  • the valve stem has an undercut portion for receiving and seating a valve member which has at its lower portion a flexing flange which accommodates the discernible stem movement and which seals a port in the valve stem.
  • A' valve head interconnects the holder with the container and has a hole in its sidewall providing open fluid communication of the container with a lower chamber sealed by the flexing flange and a rim at the upper part of the valve member which in turn seals in face-to-face engagement with the valve head.
  • a second sealing means is provided above the rim for sealing a second port in the valve stem through which the primary fluid passes when the stem is opened.
  • This invention is particularly suitable for the dispensing of fluids of very low viscosity such as an antiperspirant contained in the holder and a propellant gas in the container.
  • the dispensing of such low viscosity fluids is accomplished by the opening of very fine passages. Sufficient quantity is dispensed for the need and also effective control is provided over the quantity dispensed. Minute pinholes in the valve stem along with small clearances between bearing surfaces provide for the desired flow and mixing, the mixing taking place in the valve stem. Full opening might be accomplished with a movement of the valve stem less than the normal three thirtyseconds of an inch due to manufacturing tolerances.
  • valve member is an injection molded cylindrical unit with flanges of polyurethane.
  • Valve members so constructed have long shelf life and do not fatigue over many cycles of use. When packaging certain fluids, these considerations are of utmost importance because of their potentially dangerous nature.
  • DESCRIPTION OF THE DRAWINGS 'FIG. 1 is a central vertical section through a pressurized dispenser
  • FIG. 2 is a view showing the position of ports in open condition
  • FIG. 3 is a perspective view of the two fluid valve stem of FIG. 1 showing the pinhole-type minute ports;
  • Hg. 4 is a perspective view of the resilient valve member
  • FIG. 5 is a view similar to FIG. 1 with an upper valve member similar to the lower valve member but in inverted position;
  • FIG. 6 is a view showing the position of ports in open condi- .tion of FIG. 3;
  • FIG. 7 is a perspective-view of the two fluid valve stems of FIG. 5.
  • FIG. 8 is a central vertical section through a pressurized dispenser for a single fluid.
  • the rigid metal container has a metal cap 16 in the dome 17 of which is mounted the top portion 18 of a plastic valve head 19.
  • a nonmetallic, preferably plastic holder 20 is connected to the lower'end of the valve head 19 by its extension 21 which telescopes into the valve head and sandwiches or clamps the flexing flange 22 of the valve member 23 (FIG. 4) against the annular ledge 24 of the valve head 19.
  • the plastic holder 20 at its upper end has an annular head 25 which snaps into an annular recess 26 in the valve head.
  • the valve member 23 is preferably made of polyurethane and is sealingly seatedand surrounds the lower annular undercut section 27 (FIG. 3) of the stem 28.
  • the flexing flange 22 extends outwardly from the lower terminal end and, as mentioned, its outer periphery is clamped in sealing condition between the holder and 20 and the head 19.
  • the inner surface 30 of the flexing flange seals the bottom minute port 31 of the valve stem 28.
  • the valve member 23 has a tubular portion 32 which surrounds the valve stem 28, the lower portion of which has an annular outergroove 33 immediately above the flexing flange 22 to facilitate flexing action thereof. Close to the top of the valve member 23 there is an annular rim 34 which provides an upwardly facing sealing surface 35 for face-to-face sealing engagement with the inwardly extending annular ring 36 of the valve head 19. a
  • Hole 37 extends through the sidewall 38 of the head 19 to provide free and constant fluid communication of the primary fluid in the container 15 with the lower chamber 40 formed in the head 19 by the flexing flange 22 and rim 34 seals.
  • Means are provided for sealing the upper'minute-port S1 in the valve stem 28.
  • FIG. 1 it will be seen that this is accomplished by a resilient nonmetallic washer 52 while in the modification shown in FIG. 5, it is accomplishedby the abovediscussed valve member 23 mounted in inverted position.
  • the washer 52 is seated in an upper annular groove 53 (FIG. 3) at the top part of the stem with its outer periphery sealingly clamped between the top portion 18 of the valve head 19 and the metal dome 17.
  • FIG. 2 shows the position of the elements when the valve stem 28 is moved downward to open position, a distance of three thirty-seconds of an inch.
  • Secondary fluid from collapsible bag holder 20 passes by the flexing flange 22, the bottom port 31, up through central passage of the stem 28 and into mixing conduit 61 of the stem. No metal is contacted during this flow of the possibly corrosive secondary fluid.
  • the primary fluid present in lower chamber 40 flows around the rim 34, through the clearance space of bearing 62 into the upper chamber 64, around annular ledge 65, and transversally through port 51 to producea swirling mixing action with the secondary fluid in the elongated passage 60 and in the enlarged mixing conduit 61 of the stem.
  • valve member extension or nose 63 is rounded to facilitate the distortion thereof on compression since the rim 34 seats on ledge and does not allow significant movement of this portion of the-valve member 83. Some distortion takes place, but a face-to-face seal is established and maintained -by the rim 84 with the ledge 70 to prevent fluid from passing to the upper chamber 71.
  • the flow of secondary fluid is the same as in FIG. 1. However theflow of primary fluid differs in that it passes beneath the downwardly facing valve member extension or nose 63 and into the top port 51 and does not pass into the upper chamber 71.
  • the valve stem 85 differs in that it has an upper annular undercut section 86 for sealing reception of the substantially similar inverted or up-side-down valve member 83.
  • FIG. 8 shows another use of the valve member 23 in a single-fluid container where in the action of the valve member 90 is similar to that of FIG. 1, the valve head 8 being of different and closed design since no combination of fluids is required.
  • the manufacturing economies which are designed into the parts. It will be noted that the lower end of the valve stem is a cone 100 which facilitates application and seating of the tubular valve member. The parts clamp together to integrate the unit as well as to form seals.
  • a valve member for a pressurized fluid container having a valve stem slidably mounted therein, said valve stem having a port, comprising a longitudinal tubular portion mounted on and sealingly surrounding the valve stem and said port;
  • annular flexing flange extending transversely at one end of the tubular portion and adapted to be secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when said valve stem is moved;
  • annular sealing rim close to the other end of the tubular portion having a longitudinally facing sealing surface for producing a seal
  • valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the port.
  • a pressurized dispenser having a rigid external container for a pressurized primary fluid and an internal holder for a secondary fluid responsive in volume to the pressure of the primary fluid, comprising a vertically slidable valve stem having a top port for primary fluid and a bottom port for secondary fluid;
  • valve member having a longitudinal tubular portion mounted on and sealingly surrounding the valve stem;
  • annular flexing flange extending transversely at one end of the tubular portion and secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when sad valve stem is moved;
  • annular sealing rim close to the other end of the tubular portion having a longitudinally outwardly facing sealing surface for producing a seal
  • valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the ports.
  • a pressurized dispenser having rigid container for a pressurized fluid and an internal holder for a secondary fluid responsive in volume to the pressurev of the primary fluid, comprising a valve head attached at its upper end to the container and at its lower end to said holder, said valve head having an axial passage therethrough with an interior annular ledge intermediate its ends providing a downwardly facing sealing ring;
  • valve stem slidably mounted in said valve head and having a minute top port for primary fluid and a minute bottom port for secondary fluid and having a lower annular un dercut section extending upwardly from the bottom port and an upper annular groove at said top port;
  • a resilient sealing washer mounted in said groove sealing said top port with its outer annular periphery clamped between said valve head and the container;
  • a resilient valve member having a tubular portion seated in said undercut section with a bottom terminal annular flexing flange having its outer annular periphery clamped between the top of the holder and the valve head, the tubular portion immediately above the flexing flange having an annular outer groove to facilitate flexing when said valve stem is moved, an annular rim close to the upper end of the tubular portion having an upwardly facing sealing surface for sealing engagement with the ring of said valve head to define a primary fluid lower chamber with the flexing flange and a primary fluid upper chamber with said sealing washer,
  • valve head having a hole providing free fluid communication between said container and said lower chamber whereby upon-a discernible downward movement of the valve stem the annular rim opens the lower chamber to the upper chamber and primary fluid flows past the distorted washer, through the top port, and into the valve stem and the secondary fluid flows past the distorted flexing flange, through the bottom port, and into the valve stem,
  • valve member being integrally formed of resilient material of a compliance such that distortion to a degree to produce a discernible movement of the valve stem is possible and sufficient energy is stored to insure full return and closure of the ports.
  • valve member and said sealing washer each include a nose extending from the annular rim and loosely positioned in a bearing in the valve head.

Abstract

A nonresilient container for a pressurized primary fluid and an internal collapsible resilient holder for a secondary fluid, the fluids being placed in fluid mixing communication in a slidable valve stem by a resilient valve member which is of a compliance and construction such that a normal valve stem movement is available even though only a minor movement under certain tolerances may be required for opening minute pinhole sized ports and accomplishing the discharge of very low viscosity fluids. The lost action or over movement of a part of the valve member enables the storage of sufficient energy to insure return of the valve stem to full closed position by the valve member.

Description

United States Patent [72] Inventor Leonard L. Marraffino 884 NE 42nd St. Oakland Park, Fort Lauderdale, Fla. 33308 [21] Appl. No. 828,203 [22] Filed May 27, 1969 [45] Patented July 13, 1971 [$4] SPRING-VALVE MEMBER IN PRESSURIZED TWO FLUID DISPENSER 5 Claims, 8 Drawing Figs.
[52] U.S. Cl 222/94, 222/145, 222/402.24 [51] Int. Cl 865d 83/14 [50] Field of Search 222/94, 145,399, 402.24
[56] References Cited UNITED STATES PATENTS 3,318,484 5/1967 Modderno 222/145 X 3,338,479 8/1967 Marrafi'mo 222/145 X 3,405,846 lO/I968 Klun ZZZ/402.24 X 3.455.489 7/l969 Meshberg... 222/94 3.491.921 1/1970 Gorman ZZZ/402.24
Primary Examiner- Donald F. Norton Allorney- Wynne and Finken ABSTRACT: A nonresilient container for a pressurized primary fluid and an internal collapsible resilient holder for a secondary fluid, the fluids being placed in fluid mixing communication in a slidable valve stem by a resilient valve member which is of a compliance and construction such that a normal valve stem movement is available even though only a minor movement under certain tolerances may be required for opening minute pinhole sized ports and accomplishing the discharge of very low viscosity fluids. The lost action or over movement of a part of the valve member enables the storage of sufficient energy to insure return of the valve stem to full closed position by the valve member.
PATENTEU JUL1 312m SHEET 1 BF 2 INVENTOR LEONARD L. IARRAFFINO uuuma m 1 ATTORNEYS 3,592,359 SHEET 2 OF 2 PATENIEU JUL1 3 I97! INVENTOR LEONARD L. MARRAFFINO ATTORNEYS SPRING-VALVE MEMBER IN PRESSURIZED TWO FLUID DISPENSER The handling of very low viscosity fluids in pressurized containers presents unique valving problems. Further problems are presented by certain fluids since they destroy metal and therefore must be contained in and passed through nonmetallic parts.
This invention utilizes a rigid metal exterior container of the standard type with an interior nonmetallic plastic holder which is responsive in volume to the primary pressurized fluid in the container. The preferred holder is of the plastic bag type which becomes progressively further compressed as its contents are discharged. Other types such as piston followers and the like known in the art can be employed.
The valve stem is slidably mounted for movement from a top sealed position to a bottom open position, this movement being of the substantially normal distance of three thirtyseconds of an inch. The valve stem has an undercut portion for receiving and seating a valve member which has at its lower portion a flexing flange which accommodates the discernible stem movement and which seals a port in the valve stem. A' valve head interconnects the holder with the container and has a hole in its sidewall providing open fluid communication of the container with a lower chamber sealed by the flexing flange and a rim at the upper part of the valve member which in turn seals in face-to-face engagement with the valve head. A second sealing means is provided above the rim for sealing a second port in the valve stem through which the primary fluid passes when the stem is opened.
This invention is particularly suitable for the dispensing of fluids of very low viscosity such as an antiperspirant contained in the holder and a propellant gas in the container. The dispensing of such low viscosity fluids is accomplished by the opening of very fine passages. Sufficient quantity is dispensed for the need and also effective control is provided over the quantity dispensed. Minute pinholes in the valve stem along with small clearances between bearing surfaces provide for the desired flow and mixing, the mixing taking place in the valve stem. Full opening might be accomplished with a movement of the valve stem less than the normal three thirtyseconds of an inch due to manufacturing tolerances. However, a discernible movement is desired so that the user can be certain the proper ratio of ingredients is insured and further so that sufficient energy is stored in the resilient valve member to overcome inertia and friction, wedging, and the like on starting the valve stem back to its closed position. Preferably the valve member is an injection molded cylindrical unit with flanges of polyurethane. Valve members so constructed have long shelf life and do not fatigue over many cycles of use. When packaging certain fluids, these considerations are of utmost importance because of their potentially dangerous nature.
Other features and advantages of the invention will appear during the course of the following description.
DESCRIPTION OF THE DRAWINGS 'FIG. 1 is a central vertical section through a pressurized dispenser;
FIG. 2 is a view showing the position of ports in open condition;
FIG. 3 is a perspective view of the two fluid valve stem of FIG. 1 showing the pinhole-type minute ports;
Hg. 4 is a perspective view of the resilient valve member;
FIG. 5 is a view similar to FIG. 1 with an upper valve member similar to the lower valve member but in inverted position;
'FIG. 6 is a view showing the position of ports in open condi- .tion of FIG. 3;
FIG. 7 is a perspective-view of the two fluid valve stems of FIG. 5; and
FIG. 8 is a central vertical section through a pressurized dispenser for a single fluid.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1-4, the rigid metal container has a metal cap 16 in the dome 17 of which is mounted the top portion 18 of a plastic valve head 19. A nonmetallic, preferably plastic holder 20 is connected to the lower'end of the valve head 19 by its extension 21 which telescopes into the valve head and sandwiches or clamps the flexing flange 22 of the valve member 23 (FIG. 4) against the annular ledge 24 of the valve head 19. The plastic holder 20 at its upper end has an annular head 25 which snaps into an annular recess 26 in the valve head.
The valve member 23 is preferably made of polyurethane and is sealingly seatedand surrounds the lower annular undercut section 27 (FIG. 3) of the stem 28. The flexing flange 22 extends outwardly from the lower terminal end and, as mentioned, its outer periphery is clamped in sealing condition between the holder and 20 and the head 19. The inner surface 30 of the flexing flange seals the bottom minute port 31 of the valve stem 28. The valve member 23 has a tubular portion 32 which surrounds the valve stem 28, the lower portion of which has an annular outergroove 33 immediately above the flexing flange 22 to facilitate flexing action thereof. Close to the top of the valve member 23 there is an annular rim 34 which provides an upwardly facing sealing surface 35 for face-to-face sealing engagement with the inwardly extending annular ring 36 of the valve head 19. a
Hole 37 extends through the sidewall 38 of the head 19 to provide free and constant fluid communication of the primary fluid in the container 15 with the lower chamber 40 formed in the head 19 by the flexing flange 22 and rim 34 seals.
Means are provided for sealing the upper'minute-port S1 in the valve stem 28. In FIG. 1 it will be seen that this is accomplished by a resilient nonmetallic washer 52 while in the modification shown in FIG. 5, it is accomplishedby the abovediscussed valve member 23 mounted in inverted position. In FIG. I the washer 52 is seated in an upper annular groove 53 (FIG. 3) at the top part of the stem with its outer periphery sealingly clamped between the top portion 18 of the valve head 19 and the metal dome 17.
FIG. 2 shows the position of the elements when the valve stem 28 is moved downward to open position, a distance of three thirty-seconds of an inch. Secondary fluid from collapsible bag holder 20 passes by the flexing flange 22, the bottom port 31, up through central passage of the stem 28 and into mixing conduit 61 of the stem. No metal is contacted during this flow of the possibly corrosive secondary fluid. At the same time the primary fluid present in lower chamber 40 flows around the rim 34, through the clearance space of bearing 62 into the upper chamber 64, around annular ledge 65, and transversally through port 51 to producea swirling mixing action with the secondary fluid in the elongated passage 60 and in the enlarged mixing conduit 61 of the stem.
It will be noted in FIG. 2, that the rim 34 moves away from the head 19 ad that significant flexing action takes place in the flexing flange 22.
Referring to the modification of FIGS. 5-7, it will be seen that similar parts are present but that the top port 51 is sealed valve member extension or nose 63 is rounded to facilitate the distortion thereof on compression since the rim 34 seats on ledge and does not allow significant movement of this portion of the-valve member 83. Some distortion takes place, but a face-to-face seal is established and maintained -by the rim 84 with the ledge 70 to prevent fluid from passing to the upper chamber 71. The flow of secondary fluid is the same as in FIG. 1. However theflow of primary fluid differs in that it passes beneath the downwardly facing valve member extension or nose 63 and into the top port 51 and does not pass into the upper chamber 71. The valve stem 85 differs in that it has an upper annular undercut section 86 for sealing reception of the substantially similar inverted or up-side-down valve member 83.
FIG. 8 shows another use of the valve member 23 in a single-fluid container where in the action of the valve member 90 is similar to that of FIG. 1, the valve head 8 being of different and closed design since no combination of fluids is required.
One of the significant advantages of the instant invention is the manufacturing economies which are designed into the parts. It will be noted that the lower end of the valve stem is a cone 100 which facilitates application and seating of the tubular valve member. The parts clamp together to integrate the unit as well as to form seals.
I claim:
I. A valve member for a pressurized fluid container having a valve stem slidably mounted therein, said valve stem having a port, comprising a longitudinal tubular portion mounted on and sealingly surrounding the valve stem and said port;
an annular flexing flange extending transversely at one end of the tubular portion and adapted to be secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when said valve stem is moved; and
an annular sealing rim close to the other end of the tubular portion having a longitudinally facing sealing surface for producing a seal;
said valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the port.
2. A pressurized dispenser having a rigid external container for a pressurized primary fluid and an internal holder for a secondary fluid responsive in volume to the pressure of the primary fluid, comprising a vertically slidable valve stem having a top port for primary fluid and a bottom port for secondary fluid;
means for sealing the top port when the valve stem is in up position; and
a valve member having a longitudinal tubular portion mounted on and sealingly surrounding the valve stem;
an annular flexing flange extending transversely at one end of the tubular portion and secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when sad valve stem is moved; and
an annular sealing rim close to the other end of the tubular portion having a longitudinally outwardly facing sealing surface for producing a seal;
said valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the ports.
3. A pressurized dispenser having rigid container for a pressurized fluid and an internal holder for a secondary fluid responsive in volume to the pressurev of the primary fluid, comprising a valve head attached at its upper end to the container and at its lower end to said holder, said valve head having an axial passage therethrough with an interior annular ledge intermediate its ends providing a downwardly facing sealing ring;
a valve stem slidably mounted in said valve head and having a minute top port for primary fluid and a minute bottom port for secondary fluid and having a lower annular un dercut section extending upwardly from the bottom port and an upper annular groove at said top port;
a resilient sealing washer mounted in said groove sealing said top port with its outer annular periphery clamped between said valve head and the container; and
a resilient valve member having a tubular portion seated in said undercut section with a bottom terminal annular flexing flange having its outer annular periphery clamped between the top of the holder and the valve head, the tubular portion immediately above the flexing flange having an annular outer groove to facilitate flexing when said valve stem is moved, an annular rim close to the upper end of the tubular portion having an upwardly facing sealing surface for sealing engagement with the ring of said valve head to define a primary fluid lower chamber with the flexing flange and a primary fluid upper chamber with said sealing washer,
said valve head having a hole providing free fluid communication between said container and said lower chamber whereby upon-a discernible downward movement of the valve stem the annular rim opens the lower chamber to the upper chamber and primary fluid flows past the distorted washer, through the top port, and into the valve stem and the secondary fluid flows past the distorted flexing flange, through the bottom port, and into the valve stem,
said valve member being integrally formed of resilient material of a compliance such that distortion to a degree to produce a discernible movement of the valve stem is possible and sufficient energy is stored to insure full return and closure of the ports.
4. A pressurized dispenser as defined in claim 3 and wherein said sealing washer is similar to said valve member but seated in its own upper undercut section of the valve stem in inverted position, with sad top port being closed by an annular rim of the sealing washer.
5. A pressurized dispenser as defined in claim 4 and wherein said valve member and said sealing washer each include a nose extending from the annular rim and loosely positioned in a bearing in the valve head.

Claims (5)

1. A valve member for a pressurized fluid container having a valve stem slidably mounted therein, said valve stem having a port, comprising a longitudinal tubular portion mounted on and sealingly surrounding the valve stem and said port; an annular flexing flange extending transversely at one end of the tubular portion and adapted to be secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when said valve stem is moved; and an annular sealing rim close to the other end of the tubular portion having a longitudinally facing sealing surface for producing a seal; said valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the port.
2. A pressurized dispenser having a rigid external container for a pressurized primary fluid and an internal holder for a secondary fluid responsive in volume to the pressure of the primary fluid, comprising a vertically slidable valve stem having a top port for primary fluid and a bottom port for secondary fluid; means for sealing the top port when the valve stem is in up position; and a valve member having a longitudinal tubular portion mounted on and sealingly surrounding the valve stem; an annular flexing flange extending transversely at one end of the tubular portion and secured in fixed sealed position at its outer periphery with relation to said container, said tubular portion having an outer annular groove adjacent said flexing flange to facilitate flexing when sad valve stem is moved; and an annular sealing rim close to the other end of the tubular portion having a longitudinally outwardly facing sealing surface for producing a seal; said valve member being integrally formed of resilient material of a compliance such that a discernible movement of the valve stem distorts the valve member sufficiently to insure full return of the valve stem and closure of the ports.
3. A pressurized dispenser having rigid container for a pressurized fluid and an internal holder for a secondary fluid responsive in volume to the pressure of the primary fluid, comprising a valve head attached at its upper end to the container and at its lower end to said holder, said valve head having an axial passage therethrough with an interior annular ledge intermediate its ends providing a downwardly facing sealing ring; a valve stem slidably mounted in said valve head and having a minute top port for primary fluid and a minute bottom port for secondary fluid and having a lower annular undercut section extending upwardly from the bottom port and an upper annular groove at said top port; a resilient sealing washer mounted in said groove sealing said top port with its outer annular periphery clamped between said valve head and the container; and a resilient valve member having a tubular portion seated in said undercut section with a bottom terminal annular flexing flange having its outer annular periphery clamped between the top of the holder and the valve head, the tubular portion immediately above the flexing flange having an annular outer groove to facilitate flexing when said valve stem is moved, an annular rim close to the upper end of the tubular portion having an upwardly facing sealing surface for sealing engagement with the ring of said valve head to define a primary fluid lower chamber with the flexing flange and a primary fluid upper chamber with said sealing washer, said valve head having a hole providing free fluid communication between said container and said lower chamber whereby upon a discernible downward movement of the valve stem the annular rim opens the lower chamber to the upper chamber and primary fluid flows past the distorted washer, through the top port, and into the valve stem and the secondary fluid flows past the distorted flexing flange, through the bottom port, and into the valve stem, said valve member being integrally formed of resilient material of a compliance such that distortion to a degree to produce a discernible movement of the valve stem is possible and sufficient energy is stored to insure full return and closure of the ports.
4. A pressurized dispenser as defined in claim 3 and wherein said sealing washer is similar to said valve member but seated in its own upper undercut section of the valve stem in inverted position, with sad top port being closed by an annular rim of the sealing washer.
5. A pressurized dispenser as defined in claim 4 and wherein said valve member and said sealing washer each include a nose extending from the annular rim and loosely positioned in a bearing in the valve head.
US828203A 1969-05-27 1969-05-27 Spring-valve member in pressurized two fluid dispenser Expired - Lifetime US3592359A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82820369A 1969-05-27 1969-05-27

Publications (1)

Publication Number Publication Date
US3592359A true US3592359A (en) 1971-07-13

Family

ID=25251157

Family Applications (1)

Application Number Title Priority Date Filing Date
US828203A Expired - Lifetime US3592359A (en) 1969-05-27 1969-05-27 Spring-valve member in pressurized two fluid dispenser

Country Status (1)

Country Link
US (1) US3592359A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431119A (en) * 1981-11-19 1984-02-14 Stoody William R Self-cleaning, aerosol valve for separate fluids
FR2545792A1 (en) * 1983-05-13 1984-11-16 Avitex PACKAGING OF AEROSOL BICAMERAL TYPE
DE3420096A1 (en) * 1983-08-03 1985-02-21 Aerosol Inventions and Development S.A. AID S.A., Freiburg/Fribourg Valve for the simultaneous delivery of two liquid substances under pressure and aerosol package fitted with such a valve
EP0137897A1 (en) * 1983-08-16 1985-04-24 Sterwin Ag. Two-component package
EP0757959A1 (en) * 1995-08-08 1997-02-12 Wella Aktiengesellschaft Pressurized gas container for dispensing foam
US5655691A (en) * 1992-02-24 1997-08-12 Homax Products, Inc. Spray texturing device
US5934518A (en) * 1992-02-24 1999-08-10 Homax Products, Inc. Aerosol texture assembly and method
US6152335A (en) * 1993-03-12 2000-11-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US6299024B1 (en) * 2000-07-05 2001-10-09 Robert E. Corba Valve assembly for dispensing container
US20020185501A1 (en) * 2001-05-09 2002-12-12 Jean-Pierre Yquel Device for packaging and dispensing at least two products
US20060079588A1 (en) * 2004-10-08 2006-04-13 Greer Lester R Jr Particulate materials for acoustic texture material
US20060124671A1 (en) * 2004-12-15 2006-06-15 Salemme James L Dispensing multi-component products
US7487893B1 (en) 2004-10-08 2009-02-10 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20110089189A1 (en) * 2005-08-29 2011-04-21 Anthony Pigliacampo Apparatus and methods for multi-fluid dispensing systems
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8344056B1 (en) 2007-04-04 2013-01-01 Homax Products, Inc. Aerosol dispensing systems, methods, and compositions for repairing interior structure surfaces
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
US20160347535A1 (en) * 2014-12-10 2016-12-01 Yoke En Ong A Single Hole Single Action Aerosol Can
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods
US10046885B2 (en) 2016-04-20 2018-08-14 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
USD830116S1 (en) 2017-07-12 2018-10-09 Yeti Coolers, Llc Container mounting apparatus
USD830122S1 (en) 2017-07-12 2018-10-09 Yeti Coolers, Llc Dispenser
USD830123S1 (en) * 2017-07-12 2018-10-09 Yeti Coolers, Llc Dispenser
US10138047B2 (en) 2016-04-20 2018-11-27 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
USD835472S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Combined container mounting apparatus and container
USD835471S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Container
USD835470S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Container
USD835947S1 (en) 2017-07-12 2018-12-18 Yeti Coolers, Llc Container mounting apparatus
USD835946S1 (en) 2017-07-12 2018-12-18 Yeti Coolers, Llc Container
USD839661S1 (en) 2017-07-12 2019-02-05 Yeti Coolers, Llc Container mounting apparatus
USD843180S1 (en) 2017-10-25 2019-03-19 Yeti Coolers, Llc Container mounting apparatus
US10526130B2 (en) 2016-04-20 2020-01-07 Yeti Coolers, Llc Insulating container
US10899503B2 (en) 2016-04-20 2021-01-26 Yeti Coolers, Llc Spigot and spigot guard for an insulating container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318484A (en) * 1965-05-17 1967-05-09 Modern Lab Inc Compartmented pressurized dispensing device
US3338479A (en) * 1966-04-04 1967-08-29 Leonard L Marraffino Mixing head with secondary fluid adapted for connection with discharge means of primary fluid container
US3405846A (en) * 1966-06-24 1968-10-15 Union Carbide Corp Aerosol valve
US3455489A (en) * 1968-02-08 1969-07-15 Philip Meshberg Dispensing two materials simultaneously from different compartments
US3491921A (en) * 1968-06-03 1970-01-27 Sterling Drug Inc Non-clogging aerosol valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318484A (en) * 1965-05-17 1967-05-09 Modern Lab Inc Compartmented pressurized dispensing device
US3338479A (en) * 1966-04-04 1967-08-29 Leonard L Marraffino Mixing head with secondary fluid adapted for connection with discharge means of primary fluid container
US3405846A (en) * 1966-06-24 1968-10-15 Union Carbide Corp Aerosol valve
US3455489A (en) * 1968-02-08 1969-07-15 Philip Meshberg Dispensing two materials simultaneously from different compartments
US3491921A (en) * 1968-06-03 1970-01-27 Sterling Drug Inc Non-clogging aerosol valve

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431119A (en) * 1981-11-19 1984-02-14 Stoody William R Self-cleaning, aerosol valve for separate fluids
FR2545792A1 (en) * 1983-05-13 1984-11-16 Avitex PACKAGING OF AEROSOL BICAMERAL TYPE
EP0126008A1 (en) * 1983-05-13 1984-11-21 Societe Avitex Two-compartment aerosol container
WO1984004513A1 (en) * 1983-05-13 1984-11-22 Avitex Soc Package of the bicameral aerosol type
DE3420096A1 (en) * 1983-08-03 1985-02-21 Aerosol Inventions and Development S.A. AID S.A., Freiburg/Fribourg Valve for the simultaneous delivery of two liquid substances under pressure and aerosol package fitted with such a valve
EP0137897A1 (en) * 1983-08-16 1985-04-24 Sterwin Ag. Two-component package
US4673107A (en) * 1983-08-16 1987-06-16 Sterling Drug, Inc. Two-compartment dosing package
US8584898B2 (en) 1992-02-24 2013-11-19 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US5655691A (en) * 1992-02-24 1997-08-12 Homax Products, Inc. Spray texturing device
US5934518A (en) * 1992-02-24 1999-08-10 Homax Products, Inc. Aerosol texture assembly and method
US9181020B2 (en) 1992-02-24 2015-11-10 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8505786B2 (en) 1992-02-24 2013-08-13 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8887953B2 (en) 1992-02-24 2014-11-18 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8985392B2 (en) 1992-02-24 2015-03-24 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US9079703B2 (en) 1992-02-24 2015-07-14 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9845185B2 (en) 1992-02-24 2017-12-19 Ppg Architectural Finishes, Inc. Systems and methods for applying texture material
US8573451B2 (en) 1992-02-24 2013-11-05 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8844765B2 (en) 1993-03-12 2014-09-30 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US6641005B1 (en) 1993-03-12 2003-11-04 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US7481338B1 (en) 1993-03-12 2009-01-27 Homax Products, Inc.. Aerosol spray texture apparatus for a particulate containing material
US20090188948A1 (en) * 1993-03-12 2009-07-30 Homax Products, Inc. Aerosol Spray Texture Apparatus For A Particulate Containing Material
US6152335A (en) * 1993-03-12 2000-11-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US7014073B1 (en) 1993-03-12 2006-03-21 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US6352184B1 (en) 1993-03-12 2002-03-05 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8157135B2 (en) 1993-03-12 2012-04-17 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
EP0757959A1 (en) * 1995-08-08 1997-02-12 Wella Aktiengesellschaft Pressurized gas container for dispensing foam
US6299024B1 (en) * 2000-07-05 2001-10-09 Robert E. Corba Valve assembly for dispensing container
WO2002002435A1 (en) * 2000-07-05 2002-01-10 Corba Robert E Valve assembly for dispensing container
US20020185501A1 (en) * 2001-05-09 2002-12-12 Jean-Pierre Yquel Device for packaging and dispensing at least two products
US6920904B2 (en) * 2001-05-09 2005-07-26 L'oreal S.A. Device for packaging and dispensing at least two products
US8820656B2 (en) 2003-04-10 2014-09-02 Homax Products, Inc. Dispenser for aerosol systems
US9132953B2 (en) 2003-04-10 2015-09-15 Homax Products, Inc. Dispenser for aerosol systems
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US9187236B2 (en) 2004-01-28 2015-11-17 Homax Products, Inc. Aerosol system for repairing a patched portion of a surface
US9248951B2 (en) 2004-01-28 2016-02-02 Homax Products, Inc. Texture material for covering a repaired portion of a textured surface
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US9004316B2 (en) 2004-07-02 2015-04-14 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8561840B2 (en) 2004-07-02 2013-10-22 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US7487893B1 (en) 2004-10-08 2009-02-10 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8172113B2 (en) 2004-10-08 2012-05-08 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8420705B2 (en) 2004-10-08 2013-04-16 Homax Products, Inc. Particulate materials for acoustic texture material
US20060079588A1 (en) * 2004-10-08 2006-04-13 Greer Lester R Jr Particulate materials for acoustic texture material
US7374068B2 (en) 2004-10-08 2008-05-20 Homax Products, Inc. Particulate materials for acoustic texture material
US8336742B2 (en) 2004-10-08 2012-12-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8622255B2 (en) 2004-10-08 2014-01-07 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US9004323B2 (en) 2004-10-08 2015-04-14 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20080128203A1 (en) * 2004-10-08 2008-06-05 Greer Lester R Particulate materials for acoustic texture material
US8042713B2 (en) 2004-10-08 2011-10-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US7947753B2 (en) 2004-10-08 2011-05-24 Homax Products, Inc. Particulate materials for acoustic texture material
US20090255961A1 (en) * 2004-10-08 2009-10-15 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US7784649B2 (en) 2004-10-08 2010-08-31 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20110049179A1 (en) * 2004-10-08 2011-03-03 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20110036872A1 (en) * 2004-10-08 2011-02-17 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20060124671A1 (en) * 2004-12-15 2006-06-15 Salemme James L Dispensing multi-component products
US20110089189A1 (en) * 2005-08-29 2011-04-21 Anthony Pigliacampo Apparatus and methods for multi-fluid dispensing systems
US9415927B2 (en) 2007-04-04 2016-08-16 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8883902B2 (en) 2007-04-04 2014-11-11 Homax Products, Inc. Aerosol dispensing systems and methods and compositions for repairing interior structure surfaces
US9580233B2 (en) 2007-04-04 2017-02-28 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8344056B1 (en) 2007-04-04 2013-01-01 Homax Products, Inc. Aerosol dispensing systems, methods, and compositions for repairing interior structure surfaces
US8784942B2 (en) 2007-04-04 2014-07-22 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8551572B1 (en) 2007-04-04 2013-10-08 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9592527B2 (en) 2007-04-05 2017-03-14 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator
US20160347535A1 (en) * 2014-12-10 2016-12-01 Yoke En Ong A Single Hole Single Action Aerosol Can
US9926129B2 (en) * 2014-12-10 2018-03-27 Orientus Industry Sdn. Bhd. Single hole single action aerosol can
RU2678687C2 (en) * 2014-12-10 2019-01-30 Ориентус Индастри Эсдиэн. Биэйчди. Aerosol can of disposable action with single spray opening
US10046885B2 (en) 2016-04-20 2018-08-14 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
US11608213B2 (en) 2016-04-20 2023-03-21 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
US10899503B2 (en) 2016-04-20 2021-01-26 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
US10526130B2 (en) 2016-04-20 2020-01-07 Yeti Coolers, Llc Insulating container
US10138047B2 (en) 2016-04-20 2018-11-27 Yeti Coolers, Llc Spigot and spigot guard for an insulating container
USD835947S1 (en) 2017-07-12 2018-12-18 Yeti Coolers, Llc Container mounting apparatus
USD830123S1 (en) * 2017-07-12 2018-10-09 Yeti Coolers, Llc Dispenser
USD835471S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Container
USD835946S1 (en) 2017-07-12 2018-12-18 Yeti Coolers, Llc Container
USD835472S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Combined container mounting apparatus and container
USD839661S1 (en) 2017-07-12 2019-02-05 Yeti Coolers, Llc Container mounting apparatus
USD997651S1 (en) 2017-07-12 2023-09-05 Yeti Coolers, Llc Container
USD835470S1 (en) 2017-07-12 2018-12-11 Yeti Coolers, Llc Container
USD887789S1 (en) 2017-07-12 2020-06-23 Yeti Coolers, Llc Container
USD830122S1 (en) 2017-07-12 2018-10-09 Yeti Coolers, Llc Dispenser
USD915831S1 (en) 2017-07-12 2021-04-13 Yeti Coolers, Llc Container
USD930441S1 (en) 2017-07-12 2021-09-14 Yeti Coolers, Llc Container
USD965390S1 (en) 2017-07-12 2022-10-04 Yeti Coolers, Llc Container
USD830116S1 (en) 2017-07-12 2018-10-09 Yeti Coolers, Llc Container mounting apparatus
USD843180S1 (en) 2017-10-25 2019-03-19 Yeti Coolers, Llc Container mounting apparatus

Similar Documents

Publication Publication Date Title
US3592359A (en) Spring-valve member in pressurized two fluid dispenser
US3490651A (en) Dispenser system for simultaneous dispensing of separately stored fluids
US5687884A (en) Metering device for dispensing constant unit doses
US3698595A (en) Pressurized dispenser
US3180374A (en) Combined filling and dispensing valve for containers for compressed fluids
US4420100A (en) Dispensing apparatus
US2877936A (en) Valve and dispensing apparatus for pressure containers and the like
US2831618A (en) Dispensing valve dischargeable in upright position
US4431326A (en) Paint applicator and container
US2837249A (en) Aerosol valve
US3610481A (en) Two-fluid aerosol dispenser with internal collapsible secondary fluid container
EP1630108B1 (en) Double walled fluid-storing container
US3451596A (en) Integral plug valve assembly for dispenser of products in the fluid state
JPH08318979A (en) Device for housing and dosing of fluid or semi-fluid object
US2766913A (en) Dispensing valve
GB1523981A (en) Pressure package for dispensing two nongaseous immiscible fluid phases
US4349135A (en) Aerosol container valve mounting
US3825159A (en) Aerosol valve assembly
US6131776A (en) Packaging and pressurized dispensing assembly with extemporaneous pressurization
US3447551A (en) Upside-downside aerosol dispensing valve
US3054536A (en) Valve and closure construction for aerosol devices
US2889086A (en) Dispensing valve with stem sealing means
GB1165081A (en) Pressure Fillable Valve Assembly for Pressurized Aerosol Dispensing Containers
US3372839A (en) Dispenser with means to prevent bursting of the container
US2811390A (en) Aerosol valve assembly