US3586781A - Telecommunication apparatus - Google Patents

Telecommunication apparatus Download PDF

Info

Publication number
US3586781A
US3586781A US37482A US3586781DA US3586781A US 3586781 A US3586781 A US 3586781A US 37482 A US37482 A US 37482A US 3586781D A US3586781D A US 3586781DA US 3586781 A US3586781 A US 3586781A
Authority
US
United States
Prior art keywords
amplitude
speech signal
signals
signal path
speech
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US37482A
Inventor
Elwyn T Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOLOGY UK
Original Assignee
TECHNOLOGY UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOLOGY UK filed Critical TECHNOLOGY UK
Application granted granted Critical
Publication of US3586781A publication Critical patent/US3586781A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data

Definitions

  • TELECOMMUNICATION APPARATUS [50 ⁇ Field of Search 179/84 VF, 2 DP,15,15 A, 15 BY; 325/38 1,40,42, 324, 326, 66
  • An amplitude limiter circuit may be provided in the speech signal path; the amplitude-limiting lzclaims4 Drawing Figs action of this circuit is preferably controlled by a signal US. Cl 179/115, derived from a sample or simulation of the intermodulation,
  • a controllable amplitude-limiter circuit is described I z 10 II m 12 l r- A, 1 r.
  • the present invention relates to apparatus for telecommunications systems of the type wherein a speech signal and a data signal (or data signals) are transmitted in different frequency bands over a common telecommunications channel.
  • a speech signal and a data signal or data signals
  • a narrow band of frequencies in the speech signal is suppressed and telegraph signals are transmitted within this narrow frequency band, being separated out by filters at the receiving end of the channel.
  • the speech signal is an analogue signal and the bit rate of the data (e.g. telegraph) signal is comparatively low, such a system is often quite satisfactory.
  • quantizing noise generated as a result of the digital nature of the transmitted signals can be troublesome.
  • Quantizing noise generated from the transmission of the digital data signals spreads into the frequency band allocated to the speech signal and tends to degrade the quality of the speech signal, while quantizing noise generated from the transmission of the digitized speech signals spreadsinto the frequency band allocated to the data signals and tends to degrade their signal to noise ratio.
  • Normal speech signals vary over a very wide dynamic range; when the speech is loud, the noise derived from it may seriously interfere with the reception and decoding of the data signals, yet when the speech is soft, the noise derived from the data signals may seriously degrade the quality and intelligibility of the speech signal.
  • telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, wherein it is arranged that the data signal (or data signals) shall be amplitude modulated by a modulator responsive to the amplitude of the speech signal.
  • the modulator may be responsive to the amplitude of the speech signal only, or alternatively it may be responsive to the amplitude of the combined signal of which the speech signal forms the major part.
  • the arrangements for producing the amplitude modulation of the data signals should be arranged to operate with a time constant in the range from 100 milliseconds to 300 milliseconds.
  • the amplitude of the data signal or data signals is made to follow the mean level of the speech signal.
  • the time constant of the amplitude modulator is suitably chosen within the preferred range specified hereabove, the data signals can be received on existing apparatus since such apparatus is conventionally arranged to operate satisfactorily over a considerable range of signal amplitudes, to allow for fading effects on radio communication channels.
  • the speech signal may be passed through an amplitude limiter circuit.
  • any amplitude limitation of the speech signal must also be regarded as a distortion which degrades it.
  • the apparatus includes a voltage-controllable amplitude limiter circuit connected in series with the speech signal input channel and control means for sampling the speech signal and deriving from it a signal to control the amplitude limiter.
  • the control means may include a band-stop filter connected to receive the speech signal or the output of the amplitude limiter, a line simulator circuit connected to the output of the band-stop filter, for simulating the distorting and cross-modulating effects of a transmission system on the speech signal, a band-pass filter connected to the output of the line simulator circuit and a control circuit for rectifying the output of the band-pass filter and deriving therefrom a voltage to control the amplitude limiter.
  • the control circuit may be arranged to have a threshold effect.
  • the action of the control means is. preferably arranged to have a decay time constant of approximately milliseconds but a comparatively fast onset.
  • FIG. 1 is a schematic circuit diagram of transmitting apparatus for a voice-frequency telegraphy and telephony system using delta-modulation
  • FIG. 1a is a schematic circuit diagram ofa modified form of the apparatus of FIG. 1,
  • FIG. 2 is a schematic circuit diagram of a modified form of the apparatus of FIG. 1, and
  • FIG. 3 is a circuit diagram of some circuits used in the apparatus of FIG. 2.
  • FIG. 1 shows a microphone 1 connected to apply a speech signal through an amplifier 2 to a band-stop filter 3.
  • the drawing also shows a teleprinter 4 controlling a tone modulator 5.
  • the tone modulator 5 is arranged to gate a 1,680 cycles per second tone signal generated by atone source 6.
  • the output of the tone modulator 5 is passed through an amplitude modulator 7 to a band-pass filter 8.
  • the output of the amplifier 2 is also applied to a detector 9, whose output controls the amplitude modulator 7.
  • the outputs of the band-stop filter 3 and the band-pass filter are combined and connected to the :input ofa delta modulator 10.
  • the output of the delta modulator I0 is connected to a transmitter 11 and the output of the transmitter 11 is connected to an aerial 12.
  • the stop band of the band-stop filter 3 and the pass band of the band-pass filter 8 are similar, having a bandwidth of about 400 cycles/second centered on 1,680 cycles per second.
  • the output of the detector 9 follows the main amplitude of the speech signal at the output of the amplifier 2, and controls the amplitude of the tone pulses which form the data signals so that their amplitude is proportional to the mean level of the speech signals.
  • These tone pulses pass through the band-pass filter 8.
  • a corresponding part of the spectrum of the speech signal is obstructed by the band-stop filter 3, which permits the remainder of the speech signal to pass to the delta-modulator it).
  • the tone pulse data signals from the band-pass filter 8 are also passed to the input of the delta-modulator 10.
  • the mean amplitude of the speech signal varies considerably, but the amplitude of the data signals is varied in unison with it.
  • the amplitude modulator 7 is adjusted so that the quantizing noise resulting from the delta-modulation of the data signals does not become excessively large relative to the speech signal, even in the softest passages of the speech signal, whereas the quantizing noise resulting from the delta-modulation of the speech signals does not become excessively large relative to the data signals, even in the loudest passages of the speech signal.
  • two or more data signals may be multiplexed and then modulated as described hereinabove.
  • the invention is not restricted to systems using conventional delta modulators.
  • Various known types of modulator and transmitters may be employed, for instance a pulse code modulator may be used.
  • the invention may even be found useful in some cases where the speech signal is an analogue signal and the transmission does not involve a digitization of the combined signal.
  • the amplitude modulator in the data signal path may be made responsive to the amplitude of the combination of signals rather than to the amplitude of the speech signal alone.
  • the input of the detector 9 may be connected to the input of the deltamodulator it) instead of to the output of the amplifier 2; this arrangement is illustrated in H6. la.
  • Am amplitude limiter circuit may be connected in series with the speech signal channel, to avoid this. It also limits the maximum amplitude of the data signals, thereby making the requirements for the band-pass filters less stringent so that simpler filters may be used than might otherwise be considered advisable.
  • the apparatus may be required to operate in conjunction with various com munication channels, which may have uncertain or unknown overload characteristicsv To ensure that overloading effects are avoided on the worst channel the amplitude limiter would have to be set to operate at a speech signal level which would cause it to produce an unnecessary degradation of the speech quality when the better channels are in use.
  • FlG. shows a modified form of the apparatus, including an amplitude limiter circuit with a variable control arrangement, so that the extent of the amplitude-limiting action is no greater than is required to prevent intermodulation noise and quantizing noise from exceeding a predetermined level in a telegraph receiver circuit.
  • FIG. 2 shows parts 1 to Ill inclusive arranged as in FIG. I.
  • an amplitude-limiter circuit I3 is connected in series with the speech signal path from the output of the amplifer 2 to the detector 9 and the filter 3.
  • the output of the transmitter II is shown connected through a communications channel l6 to a receiver T7.
  • the receiver l7 includes complementary filters (not shown) for separating the speech signal and the data signal, and has a speech signal output connected to a loudspeaker l8 and a data signal output connected to a teleprinter T9.
  • the output of the limiter I3 is also connected through a band-stop filter 20, a line simulator circuit Ill and a band-pass filter 22 to a control circuit 23.
  • the output of the control circuit 23 is connected to control the amplitude limiter E3.
  • the filters and 22 have characteristics similar to those of the filters 3 and 8 respectively, but they do not have to carry any digital signals and can be of much simpler construction than the filters 3 and 6.
  • the signal passing through the filter 20 corresponds to, and may be regarded as a sample of, the speech signal component of the composite signal transmitted by the delta-modulator ill, the transmitter ill, and the communications channel M.
  • the line simulator circuit 23 is a network arranged to produce distortion and intermodulation ef' fects similar to those of the actual modulator fill, transmitter H and communications channel to, so that its output can be regarded as a sample of that part of the signal at the receiver 17 which is due to the speech signal transmission Since the filter 22 simulates the effect of the band-pass filter used in the receiver R7 to pass the data signals to the teleprinter 19, it passes a signal which can be regarded as a sample of the noise which reaches the teleprinter il as a result ofthe transmission of the speech signal through the system.
  • the control circuit 23 rectifies this signal to provide a direct-voltage control signal for controlling the amplitude limiter circuit 13; it is arranged to have a threshold action, so that the amplitude-limiting action is only provided when the noise reaching the teleprinter l9 approaches an amplitude which is liable to cause the teleprinter l9 to print incorrect characters.
  • FIG. 3 shows the amplitude limiter circuit 13 and the control circuit 23 in detail.
  • the speech signal input connections of the limiter circuit are connected through resistance RI and R2 to the primary of a transformer 33.
  • the transformer 33 has four secondary windings, of which three are connected to feed the filter 29, the filter and the detector 9 respectively and the fourth secondary winding is connected to the AC inputs of a bridge rectifier circuit comprising diodes Dl, D2, D3 and D4.
  • the DC output connections of the bridge rectifier circuit are connected to the emitters of a complementary pair of transistors QR and Q2.
  • Aconnection from the output of the filter 22 is capacitively coupled to two half-wave rectifier circuits 34 and 35.
  • the output of the circuit 34- is connected between a power supply positive voltage connection as and the base of the PNP transistor Oil.
  • the output of the circuit 35 is connected between a power supply negative voltage connection 37 and the base of the NPN transistor 02.
  • Four resistors R8, R9, R10 and Rill are connected in series between the connections 36 and 37.
  • the junction of the resistors R9 and RIO is connected to earth and to the collectors of the transistors Q1 and Q2.
  • the junction of the resistances R3 and R9 is connected to the emitter of the transistor Ql, while the junction of the resistances llllllll and Rlll is connected to the emitter of the transistor 02.
  • the voltages developed at these junctions are equal and opposite and shall be referred to hereinafter as +Vb and Vb respectively.
  • the diodes D1 to D4 of the bridge rectifier circuit are reverse-biased by the voltage +Vb and Vb, so that the rectifier circuit has a comparatively high impedance.
  • the diodes DI. and Dd conduct and present, in effeet, a comparatively low impedance across the primary of the transformer 33, causing the peaks of the speech signal to be flattened.
  • the threshold amplitude at which the flattening effect commences is set by the voltage +Vb and -Vb.
  • the transistors Q1 and 02 are nonconductive and the voltage +Vb and -Vb remain at preset values determined by the resistances R8 to Rllll and the voltages on the connections as and 37.
  • the impedance of the speech signal source (not shown) connected to the input connections 30 may be sufficient in conjunction with the loading effect of the bridge circuit to achieve an adequate control and the resistances ill. and may be omitted.
  • the action of the control circuit is initiated with a time constant determined mainly by the values of the capacitors in the rectifier circuits and the series resistance of the line feeding them, and decays with a longer time constant determined by the product of the values of the capacitors and the resistances connected in parallel with them.
  • the initiation time constant may be of the order of l millisecond or less; the decay time constant is preferably about milliseconds.
  • amplitude limiter circuits and other suitable control circuits may be used in place of the circuits of FIG. 3.
  • the line simulator circuit 211 may be simplified or even omitted, a direct connection being made from the output of filter 20 to the input of filter 22.
  • the arrangement of the amplitude limiter circuit and its control loop comprising the units 26) to 23 inclusive could be applied to a system in which the data signals are of constant amplitude; for example in 2 the units 7 and 9 could be omitted, and the output of the tone modulator 5 directly connected to the input of the filter 8.
  • Telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, said apparatus comprising:
  • transmitting means responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel
  • first control means connected both to said speech signal path and to said amplitude adjusting means for controlling the amplitude adjusting means to cause data signal amplitude applied to said transmitting means to increase when mean speech signal amplitude concurrently applied to said transmitting means increases, and
  • second control means connected to said transmitting means and to said amplitude limiter circuit for deriving a signal representative of interference and noise effects liable to effect reproduction of said data signals due to transmission of the speech signal in a common telecommunications channel and for controlling said amplitude limiter circuit to intensify the amplitude limiting action thereof, whenever said interference and noise effects exceed a predetermined amplitude.
  • line simulator means connected to an output of said second band stop filter for simulating probable intermodulation, distortion and noise-producing effects of said common telecommunications channel
  • control circuit connected to an output of said second band pass filter and responsive to signal amplitudes obtained therefrom.
  • variable load comprises:
  • a rectifier circuit and a bias voltage source circuit connected thereto for applying a reverse bias voltage to said rectifier circuit.
  • control circuit comprises:
  • circuit comprises:
  • Telecommunications transmitting apparatus for trans- 5 mitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel comprising:
  • a speech signal path a data signal path
  • transmitting means having a common input connection responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel
  • amplitude adjusting means series-connected in said data signal path, and having a control input, for continuously adjusting the amplitude of the signals in the said path in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted
  • control means connected to said speech signal path and to said control input of said amplitudle adjusting means for controlling said amplitude-adjusting means to cause the amplitude of data signals applied to said transmitting means to follow variations in the mean amplitude of speech signals concurrently applied to said transmitting means so that the data signal amplitude will increase whenever the speech-signal mean amplitude increases.
  • said transmitting means includes equipment of the class comprising pulse code modulators and delta modulators.
  • Telecommunications transmitting apparatus for transmitting speech signals and at least one digital date signal in different frequency ranges over a common telecommunications channel, said apparatus comprising:
  • transmitting means for transmitting both said speech and said data signals over said common telecommunications channel
  • means for maintaining a substantially constant ratio between the transmitted speech signal amplitudes and the transmitted data signal amplitudes comprismg:
  • amplitude adjusting means series connected in one of said signal paths, and having a control input for continuously adjusting the amplitude of signals in the said one of said signal paths in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted, and
  • control means connected both to said transmitting means and to said control input of said amplitude adjusting means, for varying signal amplitude in at least one of said signal paths so as to maintain said ratio substantially constant despite natural variations in the amplitude of said speech signals.
  • amplitude means comprises a variable gain amplifier series connected in said data signal path.

Abstract

In telecommunications apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common channel, the amplitude of the data signals is made to follow the mean amplitude of the speech signal. An amplitude limiter circuit may be provided in the speech signal path; the amplitude-limiting action of this circuit is preferably controlled by a signal derived from a sample or simulation of the intermodulation, distortion and noise-producing effects of the common channel. A controllable amplitude-limiter circuit is described.

Description

Unite States Patet Inventor Elwyn T, Jones Christchurch, England Appl. No. 37.481 Filed May 19, 1970 Patented June 22, 1971 Assignee Minister of Technology in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland, London. England Priority Aug. 22, 1966 Great Britain 37496/66 Continuation of application Ser. No. 661,877, Aug. 21, 1967, now abandoned.
TELECOMMUNICATION APPARATUS [50} Field of Search 179/84 VF, 2 DP,15,15 A, 15 BY; 325/38 1,40,42, 324, 326, 66
[56] References Cited UNITED STATES PATENTS 3,406,344 10/1968 Hopper 325/66 X FOREIGN PATENTS 140,956 2/1947 Australia 179/84 (VF) 523,068 12/1937 Great Britain 179/84 (VF) Primary Examiner-Ralph D. Blakeslee Attorney-Cushman, Darby and Cushrnan ACT: ln telecommunications apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common channel, the amplitude of the data signals is made to follow the mean amplitude of the speech signal. An amplitude limiter circuit may be provided in the speech signal path; the amplitude-limiting lzclaims4 Drawing Figs action of this circuit is preferably controlled by a signal US. Cl 179/115, derived from a sample or simulation of the intermodulation,
179/2, 325/66, 179/84 distortion and noise'producing effects of the common chan- Int. Cl H04m 11/06 nel. A controllable amplitude-limiter circuit is described I z 10 II m 12 l r- A, 1 r. m MODULATDR RANSMITTER 9\ O0 DETECTOR \J )6 AMPLITUDE MODULATOR ELEPRINTER PATENTED JUN22 i971 SHEET 1 0F 4 A V KOBQJDOOE 0 mmhzEmmjwh 1 1 entar W A tarneys mZOP mOhUwFmQ QDEJDOOE TIELIECOMMUNKCATHON APPARATUS This application is a continuation of application Ser. No. 661,877, filed Aug. 21, 1967, and now abandoned.
The present invention relates to apparatus for telecommunications systems of the type wherein a speech signal and a data signal (or data signals) are transmitted in different frequency bands over a common telecommunications channel. In a commonly used system of this type, a narrow band of frequencies in the speech signal is suppressed and telegraph signals are transmitted within this narrow frequency band, being separated out by filters at the receiving end of the channel. When the speech signal is an analogue signal and the bit rate of the data (e.g. telegraph) signal is comparatively low, such a system is often quite satisfactory. However, in modern telecommunications systems it may be desired to use a digitized speech signal, or a method of transmission involving a digitization of the combined signals, for instance deltamodulation. In these circumstances, quantizing noise generated as a result of the digital nature of the transmitted signals can be troublesome. Quantizing noise generated from the transmission of the digital data signals spreads into the frequency band allocated to the speech signal and tends to degrade the quality of the speech signal, while quantizing noise generated from the transmission of the digitized speech signals spreadsinto the frequency band allocated to the data signals and tends to degrade their signal to noise ratio. Normal speech signals vary over a very wide dynamic range; when the speech is loud, the noise derived from it may seriously interfere with the reception and decoding of the data signals, yet when the speech is soft, the noise derived from the data signals may seriously degrade the quality and intelligibility of the speech signal.
It is an object of the present invention to provide telecommunications apparatus arranged to mitigate these effects.
According to the present invention, there is provided telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, wherein it is arranged that the data signal (or data signals) shall be amplitude modulated by a modulator responsive to the amplitude of the speech signal. The modulator may be responsive to the amplitude of the speech signal only, or alternatively it may be responsive to the amplitude of the combined signal of which the speech signal forms the major part. Preferably the arrangements for producing the amplitude modulation of the data signals should be arranged to operate with a time constant in the range from 100 milliseconds to 300 milliseconds.
By this arrangement, the amplitude of the data signal or data signals is made to follow the mean level of the speech signal. The amplitudes of the quantizing noise signals generated naturally follow the mean levels of the signals causing them, and so the signal-to-noise ratios for both the speech signals and the data signals are stabilized in spite of the wide dynamic range of the speech signal. If the time constant of the amplitude modulator is suitably chosen within the preferred range specified hereabove, the data signals can be received on existing apparatus since such apparatus is conventionally arranged to operate satisfactorily over a considerable range of signal amplitudes, to allow for fading effects on radio communication channels.
To improve the quality of the transmissions, or to maintain it in difficult circumstances, the speech signal may be passed through an amplitude limiter circuit. However, any amplitude limitation of the speech signal must also be regarded as a distortion which degrades it.
In some embodiments of the invention, the apparatus includes a voltage-controllable amplitude limiter circuit connected in series with the speech signal input channel and control means for sampling the speech signal and deriving from it a signal to control the amplitude limiter. The control means may include a band-stop filter connected to receive the speech signal or the output of the amplitude limiter, a line simulator circuit connected to the output of the band-stop filter, for simulating the distorting and cross-modulating effects of a transmission system on the speech signal, a band-pass filter connected to the output of the line simulator circuit and a control circuit for rectifying the output of the band-pass filter and deriving therefrom a voltage to control the amplitude limiter. The control circuit may be arranged to have a threshold effect.
The action of the control means is. preferably arranged to have a decay time constant of approximately milliseconds but a comparatively fast onset.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, of which:
FIG. 1 is a schematic circuit diagram of transmitting apparatus for a voice-frequency telegraphy and telephony system using delta-modulation,
FIG. 1a is a schematic circuit diagram ofa modified form of the apparatus of FIG. 1,
FIG. 2 is a schematic circuit diagram of a modified form of the apparatus of FIG. 1, and
FIG. 3 is a circuit diagram of some circuits used in the apparatus of FIG. 2.
FIG. 1 shows a microphone 1 connected to apply a speech signal through an amplifier 2 to a band-stop filter 3. The drawing also shows a teleprinter 4 controlling a tone modulator 5. The tone modulator 5 is arranged to gate a 1,680 cycles per second tone signal generated by atone source 6. The output of the tone modulator 5 is passed through an amplitude modulator 7 to a band-pass filter 8. The output of the amplifier 2 is also applied to a detector 9, whose output controls the amplitude modulator 7.
The outputs of the band-stop filter 3 and the band-pass filter are combined and connected to the :input ofa delta modulator 10. The output of the delta modulator I0 is connected to a transmitter 11 and the output of the transmitter 11 is connected to an aerial 12. The stop band of the band-stop filter 3 and the pass band of the band-pass filter 8 are similar, having a bandwidth of about 400 cycles/second centered on 1,680 cycles per second.
In the operation of this apparatus, the output of the detector 9 follows the main amplitude of the speech signal at the output of the amplifier 2, and controls the amplitude of the tone pulses which form the data signals so that their amplitude is proportional to the mean level of the speech signals. These tone pulses pass through the band-pass filter 8. A corresponding part of the spectrum of the speech signal is obstructed by the band-stop filter 3, which permits the remainder of the speech signal to pass to the delta-modulator it). The tone pulse data signals from the band-pass filter 8 are also passed to the input of the delta-modulator 10. The mean amplitude of the speech signal varies considerably, but the amplitude of the data signals is varied in unison with it. The amplitude modulator 7 is adjusted so that the quantizing noise resulting from the delta-modulation of the data signals does not become excessively large relative to the speech signal, even in the softest passages of the speech signal, whereas the quantizing noise resulting from the delta-modulation of the speech signals does not become excessively large relative to the data signals, even in the loudest passages of the speech signal.
Various modifications may be made to the above-described embodiment. For instance, two or more data signals may be multiplexed and then modulated as described hereinabove. The invention is not restricted to systems using conventional delta modulators. Various known types of modulator and transmitters may be employed, for instance a pulse code modulator may be used. The invention may even be found useful in some cases where the speech signal is an analogue signal and the transmission does not involve a digitization of the combined signal.
In most cases the speech signal forms the major part of th combination of signals at the input of the modulator, so the amplitude modulator in the data signal path may be made responsive to the amplitude of the combination of signals rather than to the amplitude of the speech signal alone. For instance in the embodiment described hereinabove the input of the detector 9 may be connected to the input of the deltamodulator it) instead of to the output of the amplifier 2; this arrangement is illustrated in H6. la.
In cases where the level of the speech signal may be subject to extreme variations, there may be occasions when the combined signals overload the transmitting or receiving apparatus, causing undesirable distortion and unusually strong mutual interference. Am amplitude limiter circuit may be connected in series with the speech signal channel, to avoid this. It also limits the maximum amplitude of the data signals, thereby making the requirements for the band-pass filters less stringent so that simpler filters may be used than might otherwise be considered advisable. However, in practice the apparatus may be required to operate in conjunction with various com munication channels, which may have uncertain or unknown overload characteristicsv To ensure that overloading effects are avoided on the worst channel the amplitude limiter would have to be set to operate at a speech signal level which would cause it to produce an unnecessary degradation of the speech quality when the better channels are in use. FlG. shows a modified form of the apparatus, including an amplitude limiter circuit with a variable control arrangement, so that the extent of the amplitude-limiting action is no greater than is required to prevent intermodulation noise and quantizing noise from exceeding a predetermined level in a telegraph receiver circuit.
FIG. 2 shows parts 1 to Ill inclusive arranged as in FIG. I. However, an amplitude-limiter circuit I3 is connected in series with the speech signal path from the output of the amplifer 2 to the detector 9 and the filter 3. The output of the transmitter II is shown connected through a communications channel l6 to a receiver T7. The receiver l7 includes complementary filters (not shown) for separating the speech signal and the data signal, and has a speech signal output connected to a loudspeaker l8 and a data signal output connected to a teleprinter T9.
The output of the limiter I3 is also connected through a band-stop filter 20, a line simulator circuit Ill and a band-pass filter 22 to a control circuit 23. The output of the control circuit 23 is connected to control the amplitude limiter E3.
The filters and 22 have characteristics similar to those of the filters 3 and 8 respectively, but they do not have to carry any digital signals and can be of much simpler construction than the filters 3 and 6. The signal passing through the filter 20 corresponds to, and may be regarded as a sample of, the speech signal component of the composite signal transmitted by the delta-modulator ill, the transmitter ill, and the communications channel M. The line simulator circuit 23 is a network arranged to produce distortion and intermodulation ef' fects similar to those of the actual modulator fill, transmitter H and communications channel to, so that its output can be regarded as a sample of that part of the signal at the receiver 17 which is due to the speech signal transmission Since the filter 22 simulates the effect of the band-pass filter used in the receiver R7 to pass the data signals to the teleprinter 19, it passes a signal which can be regarded as a sample of the noise which reaches the teleprinter il as a result ofthe transmission of the speech signal through the system. The control circuit 23 rectifies this signal to provide a direct-voltage control signal for controlling the amplitude limiter circuit 13; it is arranged to have a threshold action, so that the amplitude-limiting action is only provided when the noise reaching the teleprinter l9 approaches an amplitude which is liable to cause the teleprinter l9 to print incorrect characters.
FIG. 3 shows the amplitude limiter circuit 13 and the control circuit 23 in detail. The speech signal input connections of the limiter circuit are connected through resistance RI and R2 to the primary ofa transformer 33. The transformer 33 has four secondary windings, of which three are connected to feed the filter 29, the filter and the detector 9 respectively and the fourth secondary winding is connected to the AC inputs ofa bridge rectifier circuit comprising diodes Dl, D2, D3 and D4. The DC output connections of the bridge rectifier circuit are connected to the emitters of a complementary pair of transistors QR and Q2.
Aconnection from the output of the filter 22 (FIG. 2) is capacitively coupled to two half- wave rectifier circuits 34 and 35. The output of the circuit 34- is connected between a power supply positive voltage connection as and the base of the PNP transistor Oil. The output of the circuit 35 is connected between a power supply negative voltage connection 37 and the base of the NPN transistor 02. Four resistors R8, R9, R10 and Rill are connected in series between the connections 36 and 37. The junction of the resistors R9 and RIO is connected to earth and to the collectors of the transistors Q1 and Q2. The junction of the resistances R3 and R9 is connected to the emitter of the transistor Ql, while the junction of the resistances llllllll and Rlll is connected to the emitter of the transistor 02. The voltages developed at these junctions are equal and opposite and shall be referred to hereinafter as +Vb and Vb respectively.
Normally, the diodes D1 to D4 of the bridge rectifier circuit are reverse-biased by the voltage +Vb and Vb, so that the rectifier circuit has a comparatively high impedance. However, when the amplitude of the speech signal exceeds the voltage Vb, the diodes DI. and Dd conduct and present, in effeet, a comparatively low impedance across the primary of the transformer 33, causing the peaks of the speech signal to be flattened. The threshold amplitude at which the flattening effect commences is set by the voltage +Vb and -Vb.
When the amplitude of the signal from the filter 22 is comparatively small, so that the output voltage of the rectifier circuit 34 is less than the voltage drop across the resistor R8, and the output voltage of the rectifier circuit 35 is less than the voltage drop across the resistor Rlll, then the transistors Q1 and 02 are nonconductive and the voltage +Vb and -Vb remain at preset values determined by the resistances R8 to Rllll and the voltages on the connections as and 37.
When the amplitude of the signal from the filter 22 becomes larger, the outputs of the rectifier circuits 34 and 35 exceed the voltage drops across the resistors R8 and RM respectively and cause the transistors Ql and O2 to conduct. This reduces the voltages +Vb and -Vb, so that the onset of the limiting action of the bridge rectifier circuit occurs at lesser amplitudes of the speech signal.
In many applications, the impedance of the speech signal source (not shown) connected to the input connections 30 (for instance the output impedance of the amplifier 2 in FIG. 2) may be sufficient in conjunction with the loading effect of the bridge circuit to achieve an adequate control and the resistances ill. and may be omitted.
The action of the control circuit is initiated with a time constant determined mainly by the values of the capacitors in the rectifier circuits and the series resistance of the line feeding them, and decays with a longer time constant determined by the product of the values of the capacitors and the resistances connected in parallel with them. The initiation time constant may be of the order of l millisecond or less; the decay time constant is preferably about milliseconds.
Various other modifications of the invention will be apparent to persons skilled in the art. For instance, other forms of amplitude limiter circuits and other suitable control circuits may be used in place of the circuits of FIG. 3. The line simulator circuit 211 may be simplified or even omitted, a direct connection being made from the output of filter 20 to the input of filter 22. The arrangement of the amplitude limiter circuit and its control loop comprising the units 26) to 23 inclusive could be applied to a system in which the data signals are of constant amplitude; for example in 2 the units 7 and 9 could be omitted, and the output of the tone modulator 5 directly connected to the input of the filter 8.
What I claim is:
1. Telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, said apparatus comprising:
a speech signal path,
a data signal path,
transmitting means responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel,
an electrically controllable amplitude limiter circuit connected in said speech signal path,
amplitude adjusting means series connected in one of said signal paths,
first control means connected both to said speech signal path and to said amplitude adjusting means for controlling the amplitude adjusting means to cause data signal amplitude applied to said transmitting means to increase when mean speech signal amplitude concurrently applied to said transmitting means increases, and
second control means connected to said transmitting means and to said amplitude limiter circuit for deriving a signal representative of interference and noise effects liable to effect reproduction of said data signals due to transmission of the speech signal in a common telecommunications channel and for controlling said amplitude limiter circuit to intensify the amplitude limiting action thereof, whenever said interference and noise effects exceed a predetermined amplitude.
2. Apparatus as in claim 1 wherein said transmitting means comprises:
a band stop filter connected to said speech signal path,
a band pass filter connected to said data signal path,
a transmitter connected to outputs of said band stop filter and said band pass filter; and where said second control means comprises:
a second band stop filter connected to said speech signal path,
line simulator means connected to an output of said second band stop filter for simulating probable intermodulation, distortion and noise-producing effects of said common telecommunications channel,
a second band-pass filter connected to an output of said line simulator means, and
a control circuit connected to an output of said second band pass filter and responsive to signal amplitudes obtained therefrom.
3. Apparatus as in claim 2 wherein said amplitude limiter circuit comprises:
an impedance in series with said speech signal path, and a variable load in parallel with said speech signal path. 4. Apparatus as in claim 3 wherein said variable load comprises:
a rectifier circuit, and a bias voltage source circuit connected thereto for applying a reverse bias voltage to said rectifier circuit.
5. Apparatus as in claim 4 wherein said control circuit comprises:
circuit comprises:
a potentiometer chain, and
at least one transistor connected in parallel with part of said potentiometer chain and connected to an output of said rectifying means. 7, Telecommunications transmitting apparatus for trans- 5 mitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, said apparatus comprising:
a speech signal path, a data signal path, transmitting means having a common input connection responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel,
amplitude adjusting means, series-connected in said data signal path, and having a control input, for continuously adjusting the amplitude of the signals in the said path in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted, and
control means connected to said speech signal path and to said control input of said amplitudle adjusting means for controlling said amplitude-adjusting means to cause the amplitude of data signals applied to said transmitting means to follow variations in the mean amplitude of speech signals concurrently applied to said transmitting means so that the data signal amplitude will increase whenever the speech-signal mean amplitude increases.
8. Apparatus as in claim 7 wherein an amplitude limiter circuit is provided in said speech signal path.
9. Apparatus as in claim 7 wherein said transmitting means includes equipment of the class comprising pulse code modulators and delta modulators.
10. Telecommunications transmitting apparatus for transmitting speech signals and at least one digital date signal in different frequency ranges over a common telecommunications channel, said apparatus comprising:
a speech signal path for carrying said speech signals,
a data signal path for carrying said data signals,
transmitting means for transmitting both said speech and said data signals over said common telecommunications channel, and
means for maintaining a substantially constant ratio between the transmitted speech signal amplitudes and the transmitted data signal amplitudes, said means comprismg:
amplitude adjusting means, series connected in one of said signal paths, and having a control input for continuously adjusting the amplitude of signals in the said one of said signal paths in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted, and
control means connected both to said transmitting means and to said control input of said amplitude adjusting means, for varying signal amplitude in at least one of said signal paths so as to maintain said ratio substantially constant despite natural variations in the amplitude of said speech signals.
ll. Apparatus as in claim 10 wherein said amplitude means comprises a variable gain amplifier series connected in said data signal path.
12. Apparatus as in claim 11 wherein said first control means is connected to said speech signal path for adjusting the gain of said variable gain amplifier in accordance with the amplitude of said speech signal.

Claims (12)

1. Telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, said apparatus comprising: a speech signal path, a data signal path, transmitting means responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel, an electrically controllable amplitude limiter circuit connected in said speech signal path, amplitude adjusting means series connected in one of said signal paths, first control means connected both to said speech signal path and to said amplitude adjusting means for controlling the amplitude adjusting means to cause data signal amplitude applied to said transmitting means to increase when mean speech signal amplitude concurrently applied to said transmitting means increases, and second control means connected to said transmitting means and to said amplitude limiter circuit for deriving a signal representative of interference and noise effects liable to effect reproduction of said data signals due to transmission of the speech signal in a common telecommunications channel and for controlling said amplitude limiter circuit to intensify the amplitude limiting action thereof, whenever said interference and noise effects exceed a predetermined amplitude.
2. Apparatus as in claim 1 wherein said transmitting means comprises: a band stop filter connected to said speech signal path, a band pass filter connected to said data signal path, a transmitter connected to outputs of said band stop filter and said band pass filter; and where said second control means comprises: a second band stop filter connected to said speech signal path, line simulator means connected to an output of said second band stop filter for simulating probable intermodulation, distortion and noise-producing effects of said common telecommunications channel, a second band-pass filter connected to an output of said line simulator means, and a control circuit connected to an output of said second band pass filter and responsive to signal amplitudes obtained therefrom.
3. Apparatus as in claim 2 wherein said amplitude limiter circuit comprises: an impedance in series with said speech signal path, and a variable load in parallel with said speech signal path.
4. Apparatus as in claim 3 wherein said variable load comprises: a rectifier circuit, and a bias voltage source circuit connected thereto for applying a reverse bias voltage to said rectifier circuit.
5. Apparatus as in claim 4 wherein said control circuit comprises: rectifying means having input connections to an output of said second band pass filter, and said rectifying means also having output connections to said bias voltage source circuit.
6. Apparatus as in claim 5 wherein said bias voltage source circuit comprises: a potentiometer chain, and at least one transistor connected in parallel with part of said potentiometer chain and connected to an output of said rectifying means.
7. Telecommunications transmitting apparatus for transmitting a speech signal and at least one digital data signal in different frequency ranges over a common telecommunications channel, said apparatus comprising: a speech signal path, a data signal path, transmitting means having a common input connection responsive to signals from said speech signal path and to signals from said data signal path for transmitting said signals over said common telecommunications channel, amplitude adjusting means, series-connected in said data signal path, and having a control input, for continuously adjusting the amplitude of the signals in the said path in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted, and control means connected to said speech signal path and to said control input of said amplitude adjusting means for controlling said amplitude-adjusting means to cause the amplitude of data signals applied to said transmitting means to follow variations in the mean amplitude of speech signals concurrently applied to said transmitting means so that the data signal amplitude will increase whenever the speech-signal mean amplitude increases.
8. Apparatus as in claim 7 wherein an amplitude limiter circuit is provided in said speech signal path.
9. Apparatus as in claim 7 wherein said transmitting means includes equipment of the class comprising pulse code modulators and delta modulators.
10. Telecommunications transmitting apparatus for transmitting speech signals and at least one digital date signal in different frequency ranges over a common telecommunications channel, said apparatus comprising: a speech signal path for carrying said speech signals, a data signal path for carrying said data signals, transmitting means for transmitting both said speech and said data signals over said common telecommunications channel, and means for maintaining a substantially constant ratio between the transmitted speech signal amplitudes and the transmitted data signal amplitudes, said means comprising: amplitude adjusting means, series connected in one of said signal paths, and having a control input for continuously adjusting the amplitude of signals in the said one of said signal paths in response to variations of a signal applied to said control input, while preserving the waveform of said signals substantially undistorted, and control means connected both to said transmitting means and to said contRol input of said amplitude adjusting means, for varying signal amplitude in at least one of said signal paths so as to maintain said ratio substantially constant despite natural variations in the amplitude of said speech signals.
11. Apparatus as in claim 10 wherein said amplitude means comprises a variable gain amplifier series connected in said data signal path.
12. Apparatus as in claim 11 wherein said first control means is connected to said speech signal path for adjusting the gain of said variable gain amplifier in accordance with the amplitude of said speech signal.
US37482A 1970-05-19 1970-05-19 Telecommunication apparatus Expired - Lifetime US3586781A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3748270A 1970-05-19 1970-05-19

Publications (1)

Publication Number Publication Date
US3586781A true US3586781A (en) 1971-06-22

Family

ID=21894576

Family Applications (1)

Application Number Title Priority Date Filing Date
US37482A Expired - Lifetime US3586781A (en) 1970-05-19 1970-05-19 Telecommunication apparatus

Country Status (1)

Country Link
US (1) US3586781A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666889A (en) * 1966-08-27 1972-05-30 Philips Corp Transmission system
US3689879A (en) * 1971-05-18 1972-09-05 Baxter Laboratories Inc Conservation of transient pulses in analog to digital conversion
US3727005A (en) * 1971-06-30 1973-04-10 Ibm Delta modulation system with randomly timed multiplexing capability
US3940567A (en) * 1973-12-05 1976-02-24 Nissan Motor Co., Ltd. Multiplex transmission system on-off signal
US4205201A (en) * 1978-01-18 1980-05-27 Kahn Leonard R Method and means for reducing intelligible crosstalk in telephone systems
US4271499A (en) * 1978-07-12 1981-06-02 H.F. Communications Corporation Method and apparatus for digitally implementing a linked compressor-expander telecommunications system
EP0098300A1 (en) * 1982-01-08 1984-01-18 Applied Spectrum Tech Simultaneous transmission of two information signals within a band-limited communications channel.
US4442540A (en) * 1981-06-04 1984-04-10 Bell Telephone Laboratories, Incorporated Data over voice transmission arrangement
US4679243A (en) * 1984-08-17 1987-07-07 National Research Development Corporation Data transmission using a transparent tone-in band system
US4703476A (en) * 1983-09-16 1987-10-27 Audicom Corporation Encoding of transmitted program material
WO1988003342A1 (en) * 1986-10-31 1988-05-05 Motorola, Inc. Ssb communiction system with fm data capability
US4817192A (en) * 1986-10-31 1989-03-28 Motorola, Inc. Dual-mode AFC circuit for an SSB radio transceiver
US4852086A (en) * 1986-10-31 1989-07-25 Motorola, Inc. SSB communication system with FM data capability
US4947453A (en) * 1985-08-02 1990-08-07 National Research Development Corporation Transparent tone-in band transmitters, receivers and systems
US4955083A (en) * 1986-10-31 1990-09-04 Motorola, Inc. Dual mode radio transceiver for an SSB communication system
US5038402A (en) * 1988-12-06 1991-08-06 General Instrument Corporation Apparatus and method for providing digital audio in the FM broadcast band
US5150365A (en) * 1986-11-18 1992-09-22 Hitachi, Ltd. Communication system for coexistent base band and broad band signals
US5295138A (en) * 1992-04-21 1994-03-15 Northwest Starscon Limited Partnership Apparatus and method for optimal frequency planning in frequency division multiplexing transmissions
US5646940A (en) * 1992-05-04 1997-07-08 Novi International, Inc. System for simultaneous analog and digital communications over an analog channel
US6266320B1 (en) * 1998-04-08 2001-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Amplitude limitation in CDMA system
US20030187798A1 (en) * 2001-04-16 2003-10-02 Mckinley Tyler J. Digital watermarking methods, programs and apparatus
US6757300B1 (en) 1998-06-04 2004-06-29 Innes Corporation Pty Ltd Traffic verification system
US6792030B2 (en) * 1999-10-05 2004-09-14 Nortel Networks Limited Method and apparatus for delivering non-obtrusive data services by spread spectrum modulation
US20050091268A1 (en) * 2000-01-26 2005-04-28 Meyer Joel R. Systems and methods of managing audio and other media
US20050254684A1 (en) * 1995-05-08 2005-11-17 Rhoads Geoffrey B Methods for steganographic encoding media
US20050286736A1 (en) * 1994-11-16 2005-12-29 Digimarc Corporation Securing media content with steganographic encoding
US20060133645A1 (en) * 1995-07-27 2006-06-22 Rhoads Geoffrey B Steganographically encoded video, and related methods
US7181022B2 (en) 1993-11-18 2007-02-20 Digimarc Corporation Audio watermarking to convey auxiliary information, and media embodying same
US20070189533A1 (en) * 1996-04-25 2007-08-16 Rhoads Geoffrey B Wireless Methods And Devices Employing Steganography
US20080125083A1 (en) * 1996-04-25 2008-05-29 Rhoads Geoffrey B Wireless Methods and Devices Employing Steganography
US20080123899A1 (en) * 1993-11-18 2008-05-29 Rhoads Geoffrey B Methods for Analyzing Electronic Media Including Video and Audio
US7545951B2 (en) 1999-05-19 2009-06-09 Digimarc Corporation Data transmission by watermark or derived identifier proxy
US7562392B1 (en) 1999-05-19 2009-07-14 Digimarc Corporation Methods of interacting with audio and ambient music
US7590259B2 (en) 1995-07-27 2009-09-15 Digimarc Corporation Deriving attributes from images, audio or video to obtain metadata
US7606390B2 (en) 1995-05-08 2009-10-20 Digimarc Corporation Processing data representing video and audio and methods and apparatus related thereto
US7756290B2 (en) 2000-01-13 2010-07-13 Digimarc Corporation Detecting embedded signals in media content using coincidence metrics
US7961949B2 (en) 1995-05-08 2011-06-14 Digimarc Corporation Extracting multiple identifiers from audio and video content
US7987245B2 (en) 1995-07-27 2011-07-26 Digimarc Corporation Internet linking from audio
US8099403B2 (en) 2000-07-20 2012-01-17 Digimarc Corporation Content identification and management in content distribution networks
US8204222B2 (en) 1993-11-18 2012-06-19 Digimarc Corporation Steganographic encoding and decoding of auxiliary codes in media signals

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666889A (en) * 1966-08-27 1972-05-30 Philips Corp Transmission system
US3689879A (en) * 1971-05-18 1972-09-05 Baxter Laboratories Inc Conservation of transient pulses in analog to digital conversion
US3727005A (en) * 1971-06-30 1973-04-10 Ibm Delta modulation system with randomly timed multiplexing capability
US3940567A (en) * 1973-12-05 1976-02-24 Nissan Motor Co., Ltd. Multiplex transmission system on-off signal
US4205201A (en) * 1978-01-18 1980-05-27 Kahn Leonard R Method and means for reducing intelligible crosstalk in telephone systems
US4271499A (en) * 1978-07-12 1981-06-02 H.F. Communications Corporation Method and apparatus for digitally implementing a linked compressor-expander telecommunications system
US4442540A (en) * 1981-06-04 1984-04-10 Bell Telephone Laboratories, Incorporated Data over voice transmission arrangement
EP0098300A1 (en) * 1982-01-08 1984-01-18 Applied Spectrum Tech Simultaneous transmission of two information signals within a band-limited communications channel.
EP0098300A4 (en) * 1982-01-08 1986-03-04 Applied Spectrum Tech Simultaneous transmission of two information signals within a band-limited communications channel.
US4703476A (en) * 1983-09-16 1987-10-27 Audicom Corporation Encoding of transmitted program material
US4679243A (en) * 1984-08-17 1987-07-07 National Research Development Corporation Data transmission using a transparent tone-in band system
US4947453A (en) * 1985-08-02 1990-08-07 National Research Development Corporation Transparent tone-in band transmitters, receivers and systems
US4817192A (en) * 1986-10-31 1989-03-28 Motorola, Inc. Dual-mode AFC circuit for an SSB radio transceiver
US4852086A (en) * 1986-10-31 1989-07-25 Motorola, Inc. SSB communication system with FM data capability
WO1988003342A1 (en) * 1986-10-31 1988-05-05 Motorola, Inc. Ssb communiction system with fm data capability
US4955083A (en) * 1986-10-31 1990-09-04 Motorola, Inc. Dual mode radio transceiver for an SSB communication system
US5150365A (en) * 1986-11-18 1992-09-22 Hitachi, Ltd. Communication system for coexistent base band and broad band signals
US5038402A (en) * 1988-12-06 1991-08-06 General Instrument Corporation Apparatus and method for providing digital audio in the FM broadcast band
US5293633A (en) * 1988-12-06 1994-03-08 General Instrument Corporation Apparatus and method for providing digital audio in the cable television band
US5295138A (en) * 1992-04-21 1994-03-15 Northwest Starscon Limited Partnership Apparatus and method for optimal frequency planning in frequency division multiplexing transmissions
US5646940A (en) * 1992-05-04 1997-07-08 Novi International, Inc. System for simultaneous analog and digital communications over an analog channel
US8204222B2 (en) 1993-11-18 2012-06-19 Digimarc Corporation Steganographic encoding and decoding of auxiliary codes in media signals
US8023695B2 (en) 1993-11-18 2011-09-20 Digimarc Corporation Methods for analyzing electronic media including video and audio
US7697719B2 (en) 1993-11-18 2010-04-13 Digimarc Corporation Methods for analyzing electronic media including video and audio
US7522728B1 (en) * 1993-11-18 2009-04-21 Digimarc Corporation Wireless methods and devices employing steganography
US7181022B2 (en) 1993-11-18 2007-02-20 Digimarc Corporation Audio watermarking to convey auxiliary information, and media embodying same
US20080123899A1 (en) * 1993-11-18 2008-05-29 Rhoads Geoffrey B Methods for Analyzing Electronic Media Including Video and Audio
US20050286736A1 (en) * 1994-11-16 2005-12-29 Digimarc Corporation Securing media content with steganographic encoding
US7248717B2 (en) 1994-11-16 2007-07-24 Digimarc Corporation Securing media content with steganographic encoding
US20080273747A1 (en) * 1995-05-08 2008-11-06 Rhoads Geoffrey B Controlling Use of Audio or Image Content
US7606390B2 (en) 1995-05-08 2009-10-20 Digimarc Corporation Processing data representing video and audio and methods and apparatus related thereto
US7970167B2 (en) 1995-05-08 2011-06-28 Digimarc Corporation Deriving identifying data from video and audio
US7961949B2 (en) 1995-05-08 2011-06-14 Digimarc Corporation Extracting multiple identifiers from audio and video content
US20050254684A1 (en) * 1995-05-08 2005-11-17 Rhoads Geoffrey B Methods for steganographic encoding media
US7936900B2 (en) 1995-05-08 2011-05-03 Digimarc Corporation Processing data representing video and audio and methods related thereto
US7499566B2 (en) 1995-05-08 2009-03-03 Digimarc Corporation Methods for steganographic encoding media
US20090060269A1 (en) * 1995-05-08 2009-03-05 Rhoads Geoffrey B Content Identification Through Deriving Identifiers from Video, Images and Audio
US8116516B2 (en) 1995-05-08 2012-02-14 Digimarc Corporation Controlling use of audio or image content
US7650009B2 (en) 1995-05-08 2010-01-19 Digimarc Corporation Controlling use of audio or image content
US20090290754A1 (en) * 1995-05-08 2009-11-26 Rhoads Geoffrey B Deriving Identifying Data From Video and Audio
US7564992B2 (en) 1995-05-08 2009-07-21 Digimarc Corporation Content identification through deriving identifiers from video, images and audio
US8442264B2 (en) 1995-07-27 2013-05-14 Digimarc Corporation Control signals in streaming audio or video indicating a watermark
US8521850B2 (en) 1995-07-27 2013-08-27 Digimarc Corporation Content containing a steganographically encoded process identifier
US8190713B2 (en) 1995-07-27 2012-05-29 Digimarc Corporation Controlling a device based upon steganographically encoded data
US7577273B2 (en) 1995-07-27 2009-08-18 Digimarc Corporation Steganographically encoded video, deriving or calculating identifiers from video, and related methods
US20090262975A1 (en) * 1995-07-27 2009-10-22 Rhoads Geoffrey B Deriving or Calculating Identifiers From Video Signals
US7987245B2 (en) 1995-07-27 2011-07-26 Digimarc Corporation Internet linking from audio
US7590259B2 (en) 1995-07-27 2009-09-15 Digimarc Corporation Deriving attributes from images, audio or video to obtain metadata
US20060133645A1 (en) * 1995-07-27 2006-06-22 Rhoads Geoffrey B Steganographically encoded video, and related methods
US7949149B2 (en) 1995-07-27 2011-05-24 Digimarc Corporation Deriving or calculating identifying data from video signals
US20110194730A1 (en) * 1995-07-27 2011-08-11 Rhoads Geoffrey B Control signals in streaming audio or video indicating a watermark
US20080125083A1 (en) * 1996-04-25 2008-05-29 Rhoads Geoffrey B Wireless Methods and Devices Employing Steganography
US20100296526A1 (en) * 1996-04-25 2010-11-25 Rhoads Geoffrey B Wireless Methods and Devices Employing Plural-Bit Data Derived from Audio Information
US7715446B2 (en) 1996-04-25 2010-05-11 Digimarc Corporation Wireless methods and devices employing plural-bit data derived from audio information
US8369363B2 (en) 1996-04-25 2013-02-05 Digimarc Corporation Wireless methods and devices employing plural-bit data derived from audio information
US8027663B2 (en) 1996-04-25 2011-09-27 Digimarc Corporation Wireless methods and devices employing steganography
US20070189533A1 (en) * 1996-04-25 2007-08-16 Rhoads Geoffrey B Wireless Methods And Devices Employing Steganography
US6266320B1 (en) * 1998-04-08 2001-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Amplitude limitation in CDMA system
US6757300B1 (en) 1998-06-04 2004-06-29 Innes Corporation Pty Ltd Traffic verification system
US7965864B2 (en) 1999-05-19 2011-06-21 Digimarc Corporation Data transmission by extracted or calculated identifying data
US7562392B1 (en) 1999-05-19 2009-07-14 Digimarc Corporation Methods of interacting with audio and ambient music
US7545951B2 (en) 1999-05-19 2009-06-09 Digimarc Corporation Data transmission by watermark or derived identifier proxy
US6792030B2 (en) * 1999-10-05 2004-09-14 Nortel Networks Limited Method and apparatus for delivering non-obtrusive data services by spread spectrum modulation
US8027510B2 (en) 2000-01-13 2011-09-27 Digimarc Corporation Encoding and decoding media signals
US7756290B2 (en) 2000-01-13 2010-07-13 Digimarc Corporation Detecting embedded signals in media content using coincidence metrics
US7593576B2 (en) 2000-01-26 2009-09-22 Digimarc Corporation Systems and methods of managing audio and other media
US20050091268A1 (en) * 2000-01-26 2005-04-28 Meyer Joel R. Systems and methods of managing audio and other media
US8099403B2 (en) 2000-07-20 2012-01-17 Digimarc Corporation Content identification and management in content distribution networks
US20030187798A1 (en) * 2001-04-16 2003-10-02 Mckinley Tyler J. Digital watermarking methods, programs and apparatus

Similar Documents

Publication Publication Date Title
US3586781A (en) Telecommunication apparatus
GB2147476A (en) Voice and data interface circuit
US3330912A (en) Telephone system
GB2024573A (en) Syllabic compander with logarithmic chain
US4490584A (en) Infrared remote telephone system level control
DE2826851B2 (en) Circuit arrangement for switching on a local call signal generator
US4081620A (en) Sidetone control circuit for a telephone set
US3691311A (en) Telephone user set
US3458815A (en) Constant level signal transmission with band-edge pilot tone amplitude adjustment
US3559068A (en) Compression-expansion information transmission system using an fm compression pilot signal
GB701607A (en) Improvements in or relating to two-way telecommunication systems
US3181074A (en) Compandor
US3182137A (en) Gain-adjusting audio level terminator
US3024313A (en) Carrier-wave telephony transmitters for the transmission of single-sideband speech signals
US4445002A (en) Sidetone circuit
US2852621A (en) Voice switching in telephone transmission systems
US3022504A (en) Two-way radio telephone system utilizing frequency subbands to provide transmitter-receiver isolation
US3283073A (en) Intercommunication system and eavesdropping preventing means therefor
US2343753A (en) Receiving circuit for telegraph signaling systems
US2390850A (en) Unbalance correcting amplifier system
US3946170A (en) Self regulating telephone sets
US3275759A (en) Break-in arrangement with compensation for variations in the trans-hybrid loss for echo suppressors
US3707606A (en) Arrangement for operators telephone set
US3562439A (en) Telephone inband signalling system
US2302293A (en) Crosstalk reduction