Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3585982 A
Publication typeGrant
Publication date22 Jun 1971
Filing date25 Jun 1969
Priority date25 Jun 1969
Publication numberUS 3585982 A, US 3585982A, US-A-3585982, US3585982 A, US3585982A
InventorsJames A Hollinshead
Original AssigneeGillette Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Self-heating composition
US 3585982 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent James A. Hollinshead Winchester, Mass.

June 25, 1969 June 22, 1971 The Gillette Company Gillette Park, Boston, Mas.

Inventor Appl. No. Filed Patented Assignee SELF-HEATING coMPosmoN 17 Claims, 2 Drawing Figs.

US. Cl.

]nt.Cl Field of Search Relerenees Cited UNITED STATES PATENTS 3/1965 Caillouette ct a1 126/263 X 3,240,396 3/1966 Friedenberg 126/263 X 3,378,333 4/1968 Brite .i 126/263 X 3,473,542 10/1969 Chu et al. 126/263 X Primary Examiner-Charles J. Myhre AttomeysPhilip Colman, Oistein J. Bratlie, William M.

Anderson and Scott R. Foster ABSTRACT: The present invention is concerned with selfheating compositions and more specifically with self-heating cosmetic compositions such as aqueous shaving creams. 1n the compositions disclosed herein, at least one of the components of a heat-generating combination are encapsulated in rupturable capsules and dispersed in the composition. in especially useful embodiments, the capsules have melting points at or below the temperatures which will be generated in the composition.

SELF-HEATING COMPOSITION One object of the present invention is to provide self-heating compositions.

Another object of the present invention is to provide selfheating compositions which provide heat over a prolonged period.

Still another object of the present invention is to provide self-heating compositions which are also self-foaming.

A further object of the present invention is to provide compositions such as set forth above which can be packaged in low-pressure containers or single-use packets.

Other objects should be clear from the following detailed description, claims and drawing, wherein:

FIG. 1 is a perspective front view showing a single-use packet containing a composition within the scope of the present invention, and

FIG. 2 is a perspective front view of another single-use packet containing a composition within the scope of the present invention.

Self-heating compositions such as shaving creams are presently available in aerosol containers. Generally such compositions involve the use of a combination of heat-generating components which effect an exothermic reaction when in contact with one another. The aerosol containers which are used for such compositions generally comprise at least two separate compartments wherein the heat-generating components can be stored separately, along with the other ingredients, until time of use. Upon use, the heat-generating components are dispensed from the separate compartments through concurrently operated valves into a common discharge passageway where they come together to effect the exothermic reaction and thereby elevate the temperature of the composition. Although such aerosol-dispensed, self-heating compositions have met with considerable success, they require multicompartment containers and close tolerance valving systems in order to store the heat-generating components separately and to dispense said components in the proper stoichiometric amounts under a myriad of operating modes and conditions. The compositions of the present invention eliminate the need for such multicompartment containers and close tolerance valving systems.

in the self-heating compositions of the present invention the need for multicompartment containers and close tolerance valving systems is eliminated by encapsulating at least one of the heat-generating components in frangible capsules and dispersing the capsules in the composition. The second heatgenerating component may be added directly to the composition or it may also be encapsulated and dispersed in the composition. During use, the capsules are ruptured by mechanical force, e.g. by rubbing the composition in ones hands to release the heat-generating components and bring them together to effect the exothermic reaction. Generally, the present invention is broadly applicable to a wide range of hydrophilic and hydrophobic compositions. It is particularly useful in aqueous-based pharmaceutical and cosmetic compositions such as shaving creams wherein heat is desired to increase the effectivenes of the composition.

Processes for encapsulating the heat-generating components are known. As examples of such processes, mention may be made of chemical methods such as disclosed in U.S. Pat. Nos. 2,800,457, 2,800,458, and 3,155,590 mechanical methods such as disclosed in U.S. Pat. Nos. 3,0l5,l28, and 3,423 ,489 and electrostatic processes such as disclosed in U.S. Pat. No. 3,159,874. Generally, such processes comprise forming a continuous wall of the encapsulating material around the material to be encapsulated and thereafter solidifying the encapsulating material. A wide variety of substances have been found useful as encapsulating materials. Such materials, in addition to being capable of being deposited around the material to be encapsulated, also have to be inert and impermeable with respect to both the compositions in which they are to be dispersed as well as the encapsulated material. Generally, if the encapsulated material and the composition in which it is to be dispersed are hydrophilic, the encapsulating material will be of a hydrophobic nature and if the encapsulated material and the composition in which it is to be dispersed are hydrophobic, the encapsulating material will be of a hydrophilic nature. As examples of typical encapsulating materials, mention may be made of gelatin, ethyl cellulose, polymethylmethacrylate, wax, gum arabic, starch, paraffin, polyethylene, polyvinyl alcohol, and polystyrene.

Generally, encapsulation processes such as set forth above are capable of producing capsules having diameters varying from about a few microns up to about 4000 microns and even larger. in the compositions of the present invention, the size of the capsules may be chosen to fit the particular need. In embodiments wherein the capsules are intended to be ruptured by hand, the rupturing can be facilitated by using the larger diameter capsules, e.g. 2000 microns and above.

The heat-generating components for use in the compositions of the present invention may be broadly selected from the various combinations of materials which effect an exothermic reaction when in contact with one another. As can be appreciated, when the composition is to be topically applied, the heat-generating components and the byproducts of the exothermic reaction should be nontoxic and nonirritating As examples of types of heat-generating combinations, mention may be made of the combination of an acid and base and the combination of a solvent and a solute having an appreciable heat of solution or dilution in the solvent, e.g. the combination of water and ethylene glycol and the combination of water and salts such as aluminum sulfate, calcium chloride, copper sulfate, ferric chloride, magnesium chloride, magnesium sulfate, etc. The latter combinations may be conveniently used in aqueous-based composition by merely encapsulating the salt in a water-insoluble, water-impenneable encapsulating material and dispersing the capsules in the composition.

In preferred embodiments of the present invention, the combination of an oxidizing reagent and a reducing reagent are used as the heat-generating components. Such oxidizing and reducing reagents may be selected broadly from the various compounds of this nature available. As examples of oxidizing agents, mention may be made of chlorates, perchlorates, permanganates, persulfates, peroxides, nitrates, metal oxides, such as copper oxide, lead oxide, and iron oxide, and perborates. The preferred oxidizing agents include hydrogen peroxide, urea peroxide, sodium peroxide, sodium perborate, sodium persulfate, ammonium persulfat e, potassium persulfate, and mixtures of any of two or more of the foregoing. As examples of reducing reagents mention may be made of metals such as magnesium, zinc, aluminum and iron; sulfites, thio-sulfates, thioureas, imidazolinethiones, thiotriazoles, thiopyridines, thio-pyrimidines, thiols, thioacids, sulfoxides, xanthates, orthoand para-polyhydroxy benzenes, aldehydes, and glycols. A preferred class of reductants for use in compositions which are to be topically applied is disclosed in U.S. Pat. No. 3,341,418. Such compounds may be represented by the structure:

in which R, may be hydrogen, lower alltyl, lower hydroxyallty l, lower alkoxy, or lower alkanoyl, and R, may be any of the foregoing except hydrogen and may in addition be phenyl. Among such compounds, are 1-phenyl-2-thio-barbituric acid, l-phenyl-5-ethyl-2-thio-barbituric acid, l-methyl-2-thiobarsuch as the heat of reaction of the components; the specific heat of the composition and the ultimate temperature desired. Usually, the heat-generating components will be used in amounts which will provide a sensible temperature rise to the composition (e.g. a rise of 25 F. from room temperature in a minute). As can be appreciated, the amounts which will produce such a rise will vary from system to system but can be readily calculated or empirically determined. in aqueous systems, such as shaving creams, when employing the heatgenerating components disclosed in U.S. Pat. No. 3,342,4l8 as little as 0.8 percent by weight of oxidant based on the total weight of the aqueous composition will suffice to produce a sensible temperature rise when a stoichiometrically equivalent amount of reductant is used. In preferred embodiments of such aqueous compositions, at least 1 percent by weight of the oxidant, with a stoichiometrically equivalent amount of the reductant, is employed.

When desired, catalysts or amounts of one of the heatgenerating components in excess of the stoichiometric amount may be used to promote or accelerate the heat-generating reaction. When employing catalysts such materials may be separately encapsulated or they may be added to the phase of the composition in which they are inactive. As can be appreciated, the type of catalyst will depend upon the nature of the heat-generating components. As examples of catalysts which can be employed in oxidant-reductant systems such as disclosed in U.S. Pat. No. 3,341,4l8 mention may be made of the alkali metal and ammonium salts of molybdates and tungstates.

In especially useful embodiments of the present invention, the compositions are self'foaming as well as self-heating. This is accomplished by incorporating into the foamable composition a foam-generating material which is insoluble or only slightly soluble in the composition e.g. less than 2 gms. per 100 cc. and which is a liquid at room temperature, e.g. 25 C. but boils at the elevated temperature which will result from the reaction of the heat-generating components. in preferred embodiments of the present invention, the foam-generating materials will have boiling points between about 95 F. to about 160 F. As examples of foam-generating materials mention may be made of pentane, hexane, dichlorotetrafluoroethane and trichlorotrifluoroethane. When the compositions are to be marketed in single use, packets, or in containers which will be open to the atmosphere, only for short periods of time during the dispensing of the composition, the foam-generating materials may be added directly to the compositions. In uses wherein the compositions may be exposed to the atmosphere for extended periods, the foamgenerating materials may be encapsulated. At time of use, the capsules containing the foam-generating materials are ruptured along with those containing the heat-generating components to provide a self-heating, self-foaming composition.

in preferred embodiments of the present invention, the heat-generating components are encapsulated in thermoplastic materials which have melting points at or below the temperature which will be generated in the compositions. Such embodiments make it possible to provide compositions which are able to generate heat over a prolonged period and thus may be called self-sustaining. Generally, in such selfsustaining compositions the heat-generating components are present in amounts in excess of that which is necessary to bring the composition to the desired or specified temperature. lnusing such self-sustaining compositions, at least that portion of the capsules are ruptured which will bring the composition or a portion of it to the temperature at which the walls of the unruptured capsules will melt. As the composition or portions of it reach such temperatures, the walls of unruptured capsules in the composition or adjacent to the heated portion of it will gradually melt over a prolonged period and continuously release additional quantities of the heat-generating components; thus sustaining the evolution of heat. In compositions which are self-foaming, as well as self-heating, the foaming action may be similarly sustained by also incorporating the foam-generating materials into similar capsules.

in still another preferred embodiment of this invention, the compositions are compounded so that they may be elevated to the desired temperature over a prolonged period. This is accomplished by incorporating the heat-generating components in a plurality of thermoplastic capsules which have sequentially higher melting points e.g. a first portion of the heatgenerating components are incapsulated in an encapsulating material which melts at e.g. F., a second portion is encapsulated in a material which melts at F and so on. Generally, the melting points of the encapsulating materials will lie in a range of temperatures which are above the temperature at which the composition will normally be stored and at or below the desired temperature to which the composition is to be heated. When it is desired that the compositions also be self-sustaining, this is readily accomplished by using an excess of the heat-generating components and incorporating the excess components in the highest melting encapsulating material.

The self-sustaining and/or gradually elevatable compositions disclosed above are especially useful in heating pads, garments, etc.

In certain end uses of the compositions of the present invention, e.g. cosmetics such as shaving creams, the fragments of the ruptured capsules give the compositions a gritty feel and are undesirable. Such undesirable characteristics may be substantially reduced by encapsulating the reagents in thermoplastic materials, such as taught above, which have melting points at or below the temperature which will be generated in the compositions by the reaction of the heat-generating components. in the melted state such encapsulating materials are usually readily dispersible in the compositions and thereby provide a convenient mode of eliminating the undesirable feel of the solid shell fragments. in some compositions, such as shaving creams, there will be surface active agents present which will facilitate such dispersion. In compositions where such surface active agents are not present, it is preferable, if the formulation will tolerate it, to add such surface active agents to aid in the dispersion.

Generally, the thermoplastic encapsulating materials for use in this invention may be selected from the low melting forms of the encapsulating materials previously mentioned above. A particularly useful class of thermoplastic materials for use in such embodiments are the waxes and especially beeswax (solidification point 605 to 62 C). Such waxes, in addition to providing a means of accomplishing the objectives set forth above may also, in some instances, be a useful ingredient in the composition or provide it with desirable characteristics such as body.

Thermoplastic capsules for use in the above embodiments may be readily prepared by known processes. in one such process, the thermoplastic encapsulating material is dispersed in an external phase which is a nonsolvent for both the encapsulating material and the material to be encapsulated. The

tions finch compositions may be illustrated by the following shaving cream formulation which is prepafed as set forth below.

An 8.2 percent aqueous hydrogen peroxide solution (the oxidant) is encapsulated in beeswax by methods such as set forth above, to provide capsules having an average diameter of at least 2000 microns. The capsules are uniformly dispersed in a shaving cream formulation having the following composition by weight:

Distilled water 66. 09

The capsules are added to the formulation in amounts such that there will be about one part by weight of the aqueous peroxide solution present for each three parts of the shaving cream formulation.

In using the above composition for shaving, an amount of it, sufiicient for one shave, is applied to the hand and rubbed to rupture the capsules and release the aqueous peroxide solu tion. Upon release, the peroxide reacts with the l-phenyl-S- ethyl-Z-thiobarbituric acid reductant to elevate the temperature of the composition. The rubbing is continued until the melted capsule fragments are dispersed in the composition and the resulting hot shaving cream is then applied to the beard.

if it is desired to make the above shaving formulation selffoaming as well as self-heating, this can be readily accomplished by adding a foam-generating material, such as described above, to the composition. Usually, the use of about 0.75 to about 2.0 gram molecular weights of the foamgenerating material per 1000 gms of the aqueous composition will provide a useful foam. if it is desired to sustain the heatgenerating action, this is accomplished by using an excess of the heat-generating components and initially rupturing that portion of the capsules which will bring the composition or a portion of it to a temperature which will gradually melt the remaining unruptured capsules.

ln packaging the compositions of the present invention, it is generally not advisable to use squeeze-type tubes because a certain portion of the capsules in the unused portion of the composition will be ruptured during the dispensing operation. If it is desired to package the compositions in bulk, it is best to use wide-necked jars which will enable the user to gingerly remove the portion he wishes to use without rupturing the capsules in the unused portion of the composition.

When using such bulk packaging, the viscosity of the compositions should preferrably be such that the capsules will remain uniformly suspended in the composition until time of use and will not require stirring. Such suspension of the capsules may be achieved by employing in the compositions one or more of the many thickening and suspending reagents which are commercially available.

The compositions of the present invention are particularly useful in single use packets such as shown in FIGS. 1 and 2. Referring to FIG. 1, the packet 1 comprises a completely enclosed chamber 3 which is bounded by resilient sidewalls 4 which are sealed to each other along their peripheries. The chamber opens into a narrow dispensing channel 7.which is 'closed 08' by a tear-off cap 9. Within the chamber, there is provided a shaving cream composition 5 containing a plurality of first 11 and second 13 capsules. The first capsules 1] contain a heat-generating material which is reactive with another heat-generating material which is disposed in the shaving cream composition and the second capsules 13 contain a foam-generating material. In use, the sidewalls 4 of the packet l are pressed together to rupture the capsules l1 and 13. When the capsules 11 and 13 are ruptured and the composi tion becomes hot and begins to foam, the tear-off cap is removed. Under the pressure of the foam-generating material, the hot shaving composition is forced out of the packet l for use.

in FIG. 2, there is shown a packet similar to that shown in claim 1, except that it is encased by a rigid protective sheath [5 which prevents the accidental rupturing of the capsules ll and 13. The sheath 15 is provided with an opening 17 in its top through which the capped dispensing channel 7 protrudes and in its 15 sidewalls there are positioned openings 21 which provide access to the resilient sidewalls 4 so that they may be pressed together during use to rupture the capsules 11 and 13.

It should be appreciated that in single-use packets, such as shown in FIGS 1 and 2, the foam-generating material, when desired, may be disposed directly in the composition. Similarly, the heat-generating materials and the foam-generating materials may be disposed in single large frangible capsules which are positioned contiguous to the composition.

In embodiments of the present invention where the heat generating component and the foam-generating material are inert with respect to each other, it should be understood that they may be encapsulated in the same capsules.

Having thus described the invention, what I claim is:

1. An aqueous self-heating composition comprising a combination of at least first and second heat-generating components which when in contact with one another effect an exothermic reaction; at least one of said components which is nonaqueous being encapsulated into a plurality of frangible capsules which are dispersed in said aqueous composition, the encapsulating material for said capsules being both inert and impermeable with respect to the aqueous composition and the heat-generating components.

2. A self-heating composition as defined in claim 1 wherein the encapsulating material has a melting point which is at or below the temperature which is generated in the composition when said heat-generating components effect the exothermic reaction.

3. A self-heating composition as defined in claim 2 which includes a foam-generating material, said foam-generating material being a liquid at room temperature and having a boiling point which is below the temperature which is generated in the composition when said heat-generating components effect the exothermic reaction.

4. A self-heating composition as defined in claim 1 which includes a foam-generating material, said foam-generating material being a liquid at room temperature and having a boiling point which is below the temperature which is generated in the composition when said heat-generating components effect the exothermic reaction.

5. A self-heating composition as defined in claim 1 in which said composition is a shaving cream.

6. A self-heating composition as defined in claim 4 wherein said composition is a shaving cream.

7. A self-heating composition as defined in claim 4 wherein said foam-generating material is encapsulated into a plurality of frangible capsules which are dispersed in said composition, the encapsulating material for said capsules being both inert and impermeable with respect to said composition and said foam-generating material.

8. A single-use packet containing a self-heating composition, said packet comprising an enclosed chamber in which said composition is disposed, said chamber being bound by at least one resilient wall and having a dispensing opening which I i packet as defined in claim 8 wherein said composition also comprises a foam-generating material, said foam-generating material being a liquid at room temperature and having a boiling point below the temperature which is generated in the composition when said heat-generating components effect the exothermic reaction.

MD. A packet as defined in claim 9 in which said composition is a shaving cream.

iii. A packet as defined in claim 9 wherein said foamgenerating material is encapsulated in at least one frangible capsule which is positioned within the packet contiguous said composition, the encapsulating material for said capsule being both inert and impermeable with respect to said composition and said heat-generating composition.

12. A packet as defined in claim ll in which said composition is a shaving cream.

13. A packet as defined in claim 8 in which said composition is a shaving cream.

M. An aqueous self-heating composition which is capable of evolving heat over a prolonged period, said composition comprising a combination of at least first and second heatgenerating components which in contact with one another effect an exothermic reaction said combination of heat-generating components being present in amounts in excess of that which is required to bring the composition to a desired specified temperature, at least one of said components which is nonaqueous being encapsulated into a plurality of frangible capsules which are dispersed in said composition, the encapsulating material for said capsules being both inert and impermeable with respect to the aqueous composition and the heat-generating components and having a melting point at or below said specified temperature whereby upon rupturing at least that portion of the capsules which will bring at least a portion of the composition above said melting point, the unruptured capsules will gradually melt over a prolonged period and continuously release additional quantities of the heatgenerating component.

16. An aqueous self-heating composition which rises gradually to a specified temperature over a prolonged period said composition comprising a combination of at least first and second heat-generating components which in contact with one another effect an exothermic reaction, at least one of said heat-generating components which is nonaqueous being encapsulated in a plurality of encapsulating materials, said plurality of encapsulating materials being inert and impermeable with respect to said composition and said heat-generating components and having sequentially higher melting points which are above the temperature at which the aqueous composition is normally stored and at or below said specified temperature.

J17. A self-heating composition as defined in claim 16 which evolves heat over a prolonged period when said composition reaches the specified temperature said composition comprising said heat-generating components in amounts in excess of that required to elevate the composition to said specified temperature, the excess of heat-generating components being encapsulated in the encapsulating material which has the highest melting point in said plurality of encapsulating materials.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3175558 *14 Mar 196230 Mar 1965James C CaillonetteThermal therapeutic pack
US3240396 *11 Jun 196315 Mar 1966Robert M FriedenbergAerosol dispenser
US3378333 *10 Aug 196616 Apr 1968Alan D. BriteWater activated vaporizer
US3473542 *8 Sep 196721 Oct 1969Shell Oil CoIn situ pipeline heat generation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4088751 *3 Nov 19759 May 1978Colgate-Palmolive CompanySelf-heating cosmetic
US4142508 *5 Apr 19776 Mar 1979Kay Laboratories, Inc.Method for splicing cables and hot pack for use therein
US4901466 *3 May 198820 Feb 1990Davis Raymond KFishing lure treatment
US5035230 *23 Feb 199030 Jul 1991Steidl Gary VDisposable food heater
US5163504 *8 Jul 198817 Nov 1992Resnick Joseph AContainer heating or cooling device and building material
US5263991 *21 Oct 199223 Nov 1993Biomet, Inc.Method for heating biocompatible implants in a thermal packaging line
US5376120 *21 Oct 199227 Dec 1994Biomet, Inc.Biocompatible implant and method of using same
US5553741 *23 Dec 199410 Sep 1996River Medical, Inc.Liquid delivery device
US5558255 *5 Jun 199524 Sep 1996River Medical, Inc.Liquid delivery device
US5571261 *5 Aug 19945 Nov 1996River Medical, IncLiquid delivery device
US5578005 *16 Sep 199426 Nov 1996River Medical, Inc.Apparatus and methods for multiple fluid infusion
US5588556 *5 Jun 199531 Dec 1996River Medical, Inc.Method for generating gas to deliver liquid from a container
US5700245 *13 Jul 199523 Dec 1997Winfield MedicalApparatus for the generation of gas pressure for controlled fluid delivery
US5702375 *22 Jun 199530 Dec 1997Stephen P. AngelilloAbsorbent pad and thermal pack
US5736110 *10 May 19967 Apr 1998Angelillo; Stephen P.Activator for initiating crystallization of a supersaturated solution
US6228375 *1 Jun 19998 May 2001Robert William KocherMicro hand sanitizers (MHS)
US624825712 Jul 199919 Jun 2001Tda Research, Inc.Portable heat source
US62656317 Oct 199724 Jul 2001Sherwood Services AgAbsorbent pad and thermal pack
US628988912 Jul 199918 Sep 2001Tda Research, Inc.Self-heating flexible package
US648451410 Oct 200026 Nov 2002The Procter & Gamble CompanyProduct dispenser having internal temperature changing element
US654706310 Oct 200015 Apr 2003The Procter & Gamble CompanyArticle for the delivery of foam products
US68270803 Oct 20027 Dec 2004Kimberly-Clark Worldwide, Inc.Pressure activated reaction vessel and package
US744243928 Dec 200528 Oct 2008Kimberly-Clark Worldwide, Inc.Microencapsulated heat delivery vehicles
US749735130 May 20063 Mar 2009Kimberly-Clark Worldwide, Inc.Wet wipe dispensing system
US751758210 May 200714 Apr 2009Kimberly-Clark Worldwide, Inc.Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes
US759795414 Dec 20066 Oct 2009Kimberly-Clark Worldwide, Inc.Supersaturated solutions using crystallization enthalpy to impact temperature change to wet wipes
US765441230 May 20062 Feb 2010Kimberly-Clark Worldwide, Inc.Wet wipe dispensing system for dispensing warm wet wipes
US76747618 Oct 20029 Mar 2010Unilever Home & Personal Care, Division Of Conopco, Inc.Water soluble sachet with a dishwashing enhancing particle
US78500417 Nov 200814 Dec 2010John David AmundsonWet wipes dispensing system
US785434925 Nov 200321 Dec 2010The Gillette CompanyShave gel products
US78828383 Mar 20088 Feb 2011Blaise Harrison, LlcExothermic condom packaging
US791489128 Dec 200529 Mar 2011Kimberly-Clark Worldwide, Inc.Wipes including microencapsulated delivery vehicles and phase change materials
US792414230 Jun 200812 Apr 2011Kimberly-Clark Worldwide, Inc.Patterned self-warming wipe substrates
US819284114 Dec 20065 Jun 2012Kimberly-Clark Worldwide, Inc.Microencapsulated delivery vehicle having an aqueous core
US822173423 Nov 200917 Jul 2012The Procter & Gamble CompanySelf-heating shaving compositions
US8318654 *30 Nov 200627 Nov 2012Kimberly-Clark Worldwide, Inc.Cleansing composition incorporating a biocide, heating agent and thermochromic substance
US836759915 Jan 20105 Feb 2013Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Dishwashing composition with particles
US8393250 *4 May 200512 Mar 2013Alcatel LucentTool for stripping off a jacket from tubes or cables
US85860179 Aug 200419 Nov 2013The Gillette CompanySelf-heating non-aerosol shave product
US20100004569 *31 Jul 20077 Jan 2010Kim SujungPack for Eye Warming Massage
EP1310186A1 *7 Nov 200214 May 2003L'orealCosmetic articles having encapsulated liquid and method of making same
WO1991013296A1 *25 Jan 199124 Aug 1991Int Thermal Packaging IncDisposable food heater
WO2001026499A1 *10 Oct 200019 Apr 2001James Herbert DavisSemi-enclosed applicator for distributing a substance onto a target surface
WO2001026994A1 *10 Oct 200019 Apr 2001Curtis Joseph GaryTemperature change pouch with dispensing chamber
WO2002006421A1 *13 Jul 200024 Jan 2002Li Yu JunMethods and reaction mixtures for controlling exothermic reactions
WO2002030237A2 *9 Oct 200118 Apr 2002Procter & GambleArticle for the delivery of foam products
WO2002030251A2 *9 Oct 200118 Apr 2002Procter & GambleProduct dispenser having internal temperature changing element
WO2003094644A1 *9 Aug 200220 Nov 2003Mirco PolentaHeated or cooled item of clothing
WO2007075207A1 *4 Oct 20065 Jul 2007Kimberly Clark CoMicroencapsulated delivery vehicles
WO2007075209A1 *4 Oct 20065 Jul 2007Kimberly Clark CoWax microencapsulated heat delivery vehicles
WO2007075216A1 *26 Oct 20065 Jul 2007Kimberly Clark CoWipes including microencapsulated heat dlivery vehicles and phase change materials
WO2007078393A1 *26 Oct 200612 Jul 2007Kimberly Clark CoWipes including microencapsulated heat delivery vehicles and phase change materials
WO2008072122A1 *14 Nov 200719 Jun 2008Kimberly Clark CoWarming personal care products
Classifications
U.S. Classification126/263.1, D09/415
International ClassificationA61Q9/02, A45D27/02, A61K8/02
Cooperative ClassificationA61Q9/02, A61K2201/052, A45D27/02, B65D75/5811, A61K8/02, A61K2800/242
European ClassificationB65D75/58B1, A45D27/02, A61K8/02, A61Q9/02