US3585104A - Organosolv pulping and recovery process - Google Patents

Organosolv pulping and recovery process Download PDF

Info

Publication number
US3585104A
US3585104A US748320A US3585104DA US3585104A US 3585104 A US3585104 A US 3585104A US 748320 A US748320 A US 748320A US 3585104D A US3585104D A US 3585104DA US 3585104 A US3585104 A US 3585104A
Authority
US
United States
Prior art keywords
pulping
liquor
digester
plant material
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US748320A
Inventor
Theodor N Kleinert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THEODOR N KLEINERT
Original Assignee
THEODOR N KLEINERT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THEODOR N KLEINERT filed Critical THEODOR N KLEINERT
Application granted granted Critical
Publication of US3585104A publication Critical patent/US3585104A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/20Pulping cellulose-containing materials with organic solvents or in solvent environment

Definitions

  • the spent cooking liquor is recovered from the digester and is conducted at approximately the pulping conditions of temperature and pressure into a multistage flash evaporator from which the organic solvent is recovered continuously and can be recycled for make-up of the pulping liquor.
  • the multistage flash evaporation also permits recovery of lignin and water soluble components containing sugars, oligosaccharides and organic acids.
  • This invention relates to an organosolv pulping and recovery process and to an apparatus for carrying out said process.
  • this invention relates to a process and an apparatus for subjecting to pulping subdivisions of various fibrous plant materials, such as wood, bamboo, bagasse, cereal straws, etc. at an elevated temperature, using aqueous mixtures of water-miscible, volatile organic solvents as pulping agents and recovering not only the cellulosic pulp and the volatile organic components of the pulping agent, but also the noncellulosic components of the fibrous plant materials solubilized during the pulping.
  • aqueous solutions of inorganic chemicals such as the various sulfites, sodium hydroxide, mixtures of sodium hydroxide and sodium sulfide, are used as delignifying agents.
  • inorganic chemicals such as the various sulfites, sodium hydroxide, mixtures of sodium hydroxide and sodium sulfide
  • pulping agents For the so called hydrotropic pulping, sulfonates of various aromatic compounds, for instance, xylene sulfonate, have been suggested as pulping agents, exhibiting only negligible volatility.
  • penetration of the pulping chemicals into the subdivided plant materials prior to heating to maximum reaction temperature is a prime factor.
  • the process of the present invention because of the volatility of the pulping agents, results in rapid and uniform penetration without the necessity of preimpregn-ation when the subdivided fibrous plant material is directly contacted with the liquor at maximum pulping temperature and pressure.
  • the process of the present invention has the advantage that a separate stage of liquor impregnation of the fibrous plant material prior to pulping can be eliminated.
  • pulping is carried out at relatively mild conditions of liquor pH below and above the neutral point and the pulping liquor containing dissolved non-cellulosi components of the fibrous plant material is separated from the pulp dur- 3,585,104 Patented June 15, 1971 ing or soon after the pulping reaction without cooling ice this liquor i.e. at approximately the pulping conditions.
  • pulping of a fibrous plant material is carried out continuously with flow of the pulping liquor countercurrently to the flow of the subdivided plant material, for example wood chips, and the organic components of the spent pulping agent are recovered by multistage flash evaporation.
  • aqueous mixtures of the lower aliphatic alcohols such as methanol, ethanol, propanol
  • aqueous mixtures of the lower aliphatic ketones such as acetone
  • Preferential pulping agents are aqueous mixtures of ethanol in the range between about 20% and ethanol by weight.
  • the elevated temperature used during the pulping reactions should be between about C. and about 200 C., preferably between and 195 C. with the reaction time at a chosen temperature varying from one or more hours at the lowest temperatures to a few minutes at the highest temperatures.
  • pulping is carried out in the aqueous mixture containing the vola tile organic solvent with immediately reacting the subdivided fibrous plant material with the pulping agent at maximum pulping temperature and the corresponding pressure without requiring immediate previous impregnation of the plant material with the liquor.
  • a brief pre-steaming of the subdivided fibrous plant material as commonly practised in conventional pulping, for instance, ten minutes steaming at 1.05-2.00 kg./cm. steam pressure, is advisable not only in order to remove air from the plant material, but also to increase the cellwall permeability and thus to promote leaching out of the non-cellulosic portions from the pulps solubilized during pulping.
  • the spent pulping liquor is subjected to multistage flash evaporation, resulting in the recovery of aqueous condensates of the volatile organic components of the pulping agent for re-use.
  • the vapors formed are used as heating media in successive bodies before being withdrawn as condensates.
  • This is achieved by introducing the spent pulping liquor into the first body of a multistage flash evaporator having a pressure which, although being the highest in the evaporator system, is appreciably lower than the digester pressure.
  • partial evaporation is caused by the heat content of the liquor with formation of vapor richer in said volatile organic component of the pulping agent than the remaining liquor portions with concurrent cooling of these liquor portions prior to entering the next body of lower pressure.
  • this multistage flash evapo ration is operated by means of the pressure differentials between successive bodies of the evaporator while the remaining liquor portions flow from body to body and the vapors formed in each body are used for heating the next body while undergoing condensation with continuously withdrawing and recovering the enriched condensates for further use.
  • enriched aqueous ethanol fractions are recovered from ethanol-containing spent pulping liquors by multi stage flash evaporation.
  • the upper layer is an aqueous relatively light colored solution containing the water-soluble products derived from the fibrous plant material by the pulping reactions, such as monomer sugars, oligosaccharides, organic acids etc.
  • the lower layer is a dark-brown, quasi molten flowing mass of greater specific gravity, mainly consisting of plasticized lignin substances. Based upon this finding and the appreciable differences of the specific gravity, the aqueous layer can be easily separated by known means from the layer of the highly plasticized, quasi molten lignin substances.
  • lignin substances are highly plasticized and exhibit pronounced chemical reactivity. They can be used as raw materials for chemical conversion such as hydrogenation, oxidation, sulfonation, and other chemical reactions of the lignin, and also for condensation reactions, for instance, in the production of plastic materials.
  • the monomer sugars contained in the aqueous layer or formed by hydrolysis from the oligosaccharides also present in the aqueous solution can be used in fermentation reactions, for instance to produce ethanol, or in protein production by microbiological processes.
  • Acetic acid present in the aqueous layer, especially in hardwood pulping can be recovered by known methods such as solvent extraction with appropriate water nonmiscible solvents, such as ethyl ether, isopropyl ether, butyl acetate, amyl acetate and others.
  • the process of the present invention allows the separate recovery for further use of these two groups of substances derived from the fibrous plant materials, namely, the water-soluble products on the one hand, and the bulk of the plasticized lignin substances on the other.
  • the new process is preferably designed for continuous operation, it can also be carried out in a series of batch digesters with liquor flow from one pressure vessel to the next one in a quasi continuous countercurrent flow operation. In such case, for emptying and refilling at the end of the digestion period, each digester must be taken out of operation, while continuing the liquor flow in the remaining digesters.
  • the multistage flash evaporator is nevertheless one of continuous operation.
  • the new process is practically odorless, and by recovering the organic components of the fibrous plant materials solubilized during the pulping reactions, it eliminates also stream pollution.
  • the pulping and recovery process of the present invention eliminates the problem of air pollution and also greatly reduces the problem of water and stream pollution.
  • the new process can be used for the pulping of various fibrous plant materials, especially of various wood species.
  • it can be used for the pulping of mixtures of very different hardwoods. Since the volatile organic pulping agents penetrate easily and uniformly into all kinds of chipped wood, the new process can also be used for the pulping of hardwoods of high density.
  • the new process can be used in the whole range of pulps produced from high-yield pulps of relatively high lignin content to low-lignin bleachable pulps.
  • the present inventional also comprises an apparatus for carrying out the process described, comprising a vertical elongated cylindrical digester, means for conducting subdivided fibrous plant material into said digester, means for conducting to said digester a pulping liquor comprising an aqueous volatile organic component, means for contacting said liquor and said subdivided fibrous plant material in said digester countercurrently, a pulping zone and a cooling zone in said digester, means for withdrawing from the cooling zone said pulping liquor and heating said pulping liquor to maximum pulping temperature and re-introducing the said heated liquor into the pulping zone of the digester, means for recovering digested wood chips, a multi-stage flash evaporator, means for withdrawing the spent cooking liquor from the pulping zone and for feeding said liquor at the operating temperature and pressure of said digester into said multi-stage flash evaporator, means for recovering from said multi-stage evaporator a condensate enriched in said aqueous volatile organic component and a residual liquid low in said aqueous volatile
  • the present invention comprises an apparatus for carrying out the process described, said apparatus comprising a vertical elongated cylindrical digester having means for continuously introducing thereinto subdivided fibrous plant material against the digester pressure at the top of the digester, means for continuously withdrawing the pulp produced in a partly Washed and cooled state at the bottom of the digester, this digester having strainer rings for continuously introducing and withdrawing pulping liquor to provide liquor upflow in two temperature stages With circulation and heating means for the liquor between these two stages, the uppermost strainer ring being used to withdraw spent pulping liquor for recovery and also to provide a constant liquor level in the digester with a small vapor phase above connected to release means, the outlet of the digester for the spent pulping liquor being connected to a multistage flash evaporator, means for Withdrawing the condensates from said evaporator, the last body of said evaporator discharging the remaining liquor into a separation tank having withdrawing means for separately recovering the water insoluble highly plasticized lignin portions of relatively high
  • EXAMPLE Commercial aspen chips of about inch length are continuously introduced into chip bin 1 from which they enter low-pressure steaming vessel 3 through low-pressure rotary valve 2. While being transported through vessel 3 by screw conveyor 4, the chips are treated by a countercurrent flow of low-pressure steam (1.2 kg./cm. supplied to vessel 3 through pipe 5 and withdrawn through exhaust pipe 6 connected to rotary valve 2 and fractionating condenser column 23.
  • the spent steam contains small amounts of ethanol leaking from the digester through high-pressure rotary valve 7, and after being withdrawn through exhaust pipe 6, it is subjsected to fractionated condensation first in condenser column 23 and then in condenser column 21 connected by pipe 20.
  • the chips, steam-treated in vessel 3, are -fed continuously through high-pressure rotary valve 7 into vertical, cylindrical digester 8.
  • Digester '8 is equipped with a series of strainer rings 9, 10, 11, 12, namely, strainer rings 9 and 10 for introducing liquor and strainer rings 11 and 12, for withdrawing liquor from the digester.
  • Freshly recovered aqueous ethanol of about 45.8% ethanol content having a pH of 4 and a temperature of C. and additional re-cycled liquor of similar composition and temperature, recovered from the partially washed pulp in the screw press 13 is forced into digester 8 by means of the rotary pump 28 via pipes 67 and 29 and strainer ring 9.
  • a major portion of this liquor mixture flows in the digester upwards countercurrently to the pulp while partly washing and cooling it, and another portion of the liquor mixture flows concurrently with the cooled pulp through conduit 30 into the screw press 13, where the pressed pulp is discharged from the pressurized system of the digester.
  • the liquor portions of relatively low temperature which, after being introduced into the digester through strainer ring 9, flow upwards countercurrently to the pulp are withdrawn through strainer ring 11.
  • This liquor is re-cycled from strainer ring 11 to strainer ring 10 by rotary pump 15 via pipe 14, heater 16 and pipe 17. In this manner, the liquor is heated up to maximum pulping temperature C.) before being re-introduced into the digester. While the liquor again flows upwards in the digester between strainer rings 10 and 12 countercurrently to the plant material, pulping takes place at maximum temperature 180 C.) in liquid phase with solubilization of major portions of the noncellulosic components. Time of exposure of the plant material to the liquor at maximum temperature is about 30 minutes.
  • strainer ring 12 Through strainer ring 12, the spent pulping liquor containing about 10% by weight of solubilized non-cellulosic portions of the Wood is continuously withdrawn from the digester via pipe 31 directly into body 32, the first body of the five-stage flash evaporator 66 consisting of bodies 32, 33, 34, 35, 36 and fractionating column 37 which operates at atmospheric pressure.
  • strainer ring 12 a constant level of the pulping liquor is maintained in digester 8 and a small vapor phase is formed above the liquor level in the top section of the digester.
  • these chips are briefly exposed to a vapor phase considerably richer in ethanol content than the corresponding hquor.
  • the chips are not only rapidly heated to pulping temperature but concurrently are also impregnated with aqueous ethanol according to the ethanolwater vapour-phase liquid-phase equilibrium at pulping temperature.
  • the chips when subsequently submerged mto the liquor are at cooking conditions, so that pulping starts immediately.
  • the vapor phase in the top section of the digester is connected via pipe 18 and release valve 19 for continuously releasing sufi'icient amounts of the vapor mixture in order to remove permanent gases such as air and carbon dioxide accumulating in the vapor phase during pulping. In this way also, water portions are removed from the digesting system.
  • Valve 19 is connected via pipe 20 to the fractionating condenser column 21 for recovery of aqueous ethanol from said withdrawn vapor.
  • the fractionating condenser column 21 also, the ethanol-water vapors partially enriched in ethanol in condenser column 23 are further subjected to fractionated condensation.
  • the total of the aqueous ethanol recovered in fractionating condenser column 21 flows via pipe 65 by means of the rotary pump 22 into the liquor make-up tank 27 for re-use.
  • Non-condensable gases air and carbon dioxide
  • the water is withdrawn from fractionating condenser column 21 through pipe 62 together with some condensed volatiles derived from the Wood in some cases, such as terpenes.
  • the partly washed and cooled pulp together with portions of the liquor are fed by the digester pressure through conduit into the screw press 13.
  • Liquor squeezed out from the pulp in this screw press is re-cycled via pipe 67 by rotary pump 28 and via pipe 29 into strainer ring 9 and enters the digester together with fresh liquor from liquor make-up tank 27 also supplied by rotary pump 28 via pipe 29.
  • the pulp is treated in washer 24 in a countercurrent flow of weak aqueous sodium hydroxide (3-6 g. NaOH per liter) solution at 90-100" C. entering through pipe 25 and being withdrawn through pipe 26 for recovering the ethanol portions by fractionated distillation.
  • the pulp is recovered for further treatment by the screw press 60 and the liquor thus removed is re-cycled into washer 24 via pipes 68 and 25.
  • the spent pulping liquor withdrawn from the digester through strainer ring 12 at digester temperature (180 C.) and pressure (17.4 kg.-cm. contains per 100 kg., about 41.6 kg. ethanol, 48.4 kg. Water and 10 kg. noncellulosic solids solubilized from the wood during pulping.
  • This liquor enters via pipe 31 into the first body 32 of the five-stage fiash evaporator 66, consisting of the bodies 32, 33, 34, 35, 36 and fractionation column 37, and operating at falling pressures and temperatures. While Residual liquor (1:51.)
  • Pipes 42, 43, 44 and 45 connect the vapor phase of bodies 32, 33, 34 and 35 to the condenser-heater elements of the subsequent bodies 33, 34, 35 and 36, respectively.
  • Pipe 46 connects the vapor phase of body 36 to the fractionating condenser column 37.
  • Pipes 47, 48, 49 and 50 carry the residual liquor from the first body 32 to the subsequent bodies 33, 34, 35 and 36.
  • Pipes 51, 52, 53, 54, 55, 56 and 57 feed the condensates of aqueous ethanol recovered from the bodies 33, 34, 35, 36 and from the fractionating column 37 and condenser 41 via pipe 57 into the liquor make-up tank 27 by means of the rotary pump 58.
  • Pipes 51, 52, 53 and 54 are equipped with cooling devices for the condensates (not shown in the drawing) to reduce the temperature of the corresponding condensates to a temperature level not substantially higher than about 100 C.
  • Valves 61, 62 and 63 indicate the water outlets from the fractionating condenser columns 37, 21 and 23 respectively.
  • Liquor make-up tank 27 is equipped with known means (not shown in the drawing) for cooling or heating the recovered mixture of the pulping agent, and also with other means (not shown) for adjusting the resulting mixture to the desired level of concentration and temperature for re-use in pulping and introduction into digester by means of rotary pump 28 via pipe 29 and strainer ring 9.
  • Table II shows the approximate amounts and composition of the residual liquor leaving the bodies 32, 33, 34, 35 and 36 of the five-stage flash evaporator 66, and those of the ethanol-water vapors formed in these bodies, and also the corresponding vapor pressures, assuming that all the vapors have been condensed.
  • the residual liquor flows from body 32 through bodies 33, 34, 35 into body 36 partial evaporation of aqueous ethanol of relatively high ethanol content takes place in each body partly by the differences of the heat contents of the liquor in the various bodies, and partly by the condensation heats of the vapors from each preceding body used as heating medium in the condenser-heater elements resulting in condensation of the vapors.
  • the residual liquor is withdrawn into the separation tank 38 where the water-insoluble, molten phase of highly plasticized lignin of relatively high specific gravity separates from the aqueous layer of lower specific gravity and accumulates in the lower part of tank 38.
  • the vapors formed in body 36 undergo fractionated condensation in the fractionating condenser column 37 which operates at atmospheric pressure.
  • the residual liquor (27.8 kg.) withdrawn from body 36 contains about 10 kg. non-cellulosic solids solubilized from the wood during pulping.
  • this liquor separates easily into a non-aqueous, dark-brown, quasi molten phase of highly plasticized lignin (about 4.5- 5 kg. calculated on kg. of the initial spent pulping liquor) of about 1.5 specific gravity and an aqueous phase (22.823.3 kg.) of about 1.1-1.2 specific gravity containing about 5-5 .5 kg. monomer sugars, oligosaccharides and also acetic acid derived from the Wood.
  • aqueous fraction withdrawn from the separation tank 38 into the fractionating column 40 residual ethanol and methanol split off from the wood during pulping can be recovered in vessel 41 and withdrawn therefrom through pipe 55 for further use.
  • the aqueous fraction stripped of ethanol and methanol in this way is withdrawn from column 40 through valve 59.
  • This fraction contains up to about 2% acetic acid calculated on the initial wood which can be recovered by extraction with isopropyl ether or butyl acetate.
  • the aqueous solution of the wood sugars and oligosaccharides can be used as a nutrient for microorganisms in fermentation processes or for biological production of proteins. After removal of the water, the solids of the residue can be used as a fodder for stall-feeding cattle, pigs, etc.
  • the highly plasticized lignin phase after recovering the small amounts of ethanol and methanol retained, preferably by steam stripping, can be used directly in the production of plastic materials or as raw material in the organic industry for chemical conversion such as hydrogenation, oxidation, sulfonation, etc.
  • the first body of the flash evaporator can be equipped with heating elements for partly steam heating the liquor withdrawn from the digester. In this case, an increased amount of heat is available in the first body for liquor evaporation than without this additional heating. This first body can then be of reduced size, and also the number of bodies can be reduced from five to four.
  • a continuous method for digesting subdivided fibrous plant material in a digester at an elevated digesting pressure and at an elevated digesting temperature without preimpregnation of pulping agent which consists essentially of (a) feeding said subdivided fibrous plant material to an inlet of said digester and moving said fibrous plant material through the digester to a fibrous plant material outlet remote from said inlet;

Abstract

A PROCESS IS PROVIDED FOR PULPING SUBDIVIDED FIBROUS PLANT MATERIAL, USING AS PULPING AGENT A MIXTURE OF WATER AND A WATER MISCIBLE, VOLATILE ORGANIC SOLVENT FOR EXAMPLE ETHANOL. THE DIGESTION IS CARRIED OUT IN A COUNTERCURRENT MANNER, THE SUBDIVIDED FIBROUS PLANT MATERIAL BEING IMMERSED IN THE PULPING LIQUOR AT AN ELEVATED TEMPERATURE AND PRESSURE. THE SPENT COOKING LIQUOR IS RECOVERED FROM THE DIGESTER AND IS CONDUCTED AT APPROXIMATELY THE PULPING CONDITIONS OF TEMPERATURE AND PRESSURE INTO A MULTISTAGE FLASH EVAPORATOR FROM WHICH THE ORGANIC SOLVENT IS RECOVERED CONTINUOUSLY AND CAN BE RECYCLED FOR MAKE-UP OF THE PULPING LIQUOR. THE MULTISTAGE FLASH EVAPORATION ALSO PERMITS RECOVERY OF LIGNIN AND WATER SOLUBLE COMPONENTS CONTAINING SUGARS, OLIGOSACCHARIDES AND ORGANIC ACIDS.

Description

June 15, 1971 T. N. KLEINERT 3,535,194
ORGANOSOLV PULPING AND RECOVERY PROCESS Filed July 29, 1968 INVI'IN'I'UR THeodo N. KLEINERI .1 TIN/(N12. Y
United States Patent 3,585,104 ORGANOSOLV PULPING AND RECOVERY PROCESS Theodor N. Kleinert, 120 Embleton Crescent, Pointe Claire, Quebec, Canada Filed July 29, 1968, Ser. No. 748,320 Int. Cl. D21c 3/24 U.S. Cl. 162-17 8 Claims ABSTRACT OF THE DISCLOSURE A process is provided for pulping subdivided fibrous plant material, using as pulping agent a mixture of water and a water miscible, volatile organic solvent for example ethanol. The digestion is carried out in a countercurrent manner, the subdivided fibrous plant material being immersed in the pulping liquor at an elevated temperature and pressure. The spent cooking liquor is recovered from the digester and is conducted at approximately the pulping conditions of temperature and pressure into a multistage flash evaporator from which the organic solvent is recovered continuously and can be recycled for make-up of the pulping liquor. The multistage flash evaporation also permits recovery of lignin and water soluble components containing sugars, oligosaccharides and organic acids.
This invention relates to an organosolv pulping and recovery process and to an apparatus for carrying out said process.
More particularly, this invention relates to a process and an apparatus for subjecting to pulping subdivisions of various fibrous plant materials, such as wood, bamboo, bagasse, cereal straws, etc. at an elevated temperature, using aqueous mixtures of water-miscible, volatile organic solvents as pulping agents and recovering not only the cellulosic pulp and the volatile organic components of the pulping agent, but also the noncellulosic components of the fibrous plant materials solubilized during the pulping.
In most of the known chemical pulping processes, aqueous solutions of inorganic chemicals, such as the various sulfites, sodium hydroxide, mixtures of sodium hydroxide and sodium sulfide, are used as delignifying agents. For the so called hydrotropic pulping, sulfonates of various aromatic compounds, for instance, xylene sulfonate, have been suggested as pulping agents, exhibiting only negligible volatility. In all these pulping techniques, penetration of the pulping chemicals into the subdivided plant materials prior to heating to maximum reaction temperature is a prime factor.
In contrast to these conventional pulping processes, the process of the present invention, because of the volatility of the pulping agents, results in rapid and uniform penetration without the necessity of preimpregn-ation when the subdivided fibrous plant material is directly contacted with the liquor at maximum pulping temperature and pressure. Thus, the process of the present invention has the advantage that a separate stage of liquor impregnation of the fibrous plant material prior to pulping can be eliminated.
It is an object of the present invention to provide a new, superior and economical pulping process.
Other objects and advantages of the present invention will become apparent from the description to follow.
In accordance with the present invention, pulping is carried out at relatively mild conditions of liquor pH below and above the neutral point and the pulping liquor containing dissolved non-cellulosi components of the fibrous plant material is separated from the pulp dur- 3,585,104 Patented June 15, 1971 ing or soon after the pulping reaction without cooling ice this liquor i.e. at approximately the pulping conditions.
It was found that by keeping the liquor pH between about 4 and 10, viscosity and inherent strength properties of the pulped cellulosic fibres are preserved to a large extent. On the other hand, it was found that by separating the spent pulping liquor containing larger amounts of the non-cellulosic components dissolved from the fibrous plant material, from the pulp produced during or soon after the pulping reaction without substantial cooling, retention and/or reprecipitation of the said noncellulosic components, especially lignin, are greatly reduced. In this way, the purity of the pulp is improved, compared to cooling of the pulp in presence of this highly contaminated liquor.
In a tangible embodiment of the present invention, pulping of a fibrous plant material is carried out continuously with flow of the pulping liquor countercurrently to the flow of the subdivided plant material, for example wood chips, and the organic components of the spent pulping agent are recovered by multistage flash evaporation.
It was found that aqueous mixtures of the lower aliphatic alcohols, such as methanol, ethanol, propanol, and aqueous mixtures of the lower aliphatic ketones, such as acetone, or aqueous mixtures containing both lower aliphatic alcohols and lower aliphatic ketones are appropriate pulping agents according to the invention. Preferential pulping agents are aqueous mixtures of ethanol in the range between about 20% and ethanol by weight.
Furthermore, it was found that in order to shorten pulping time, the elevated temperature used during the pulping reactions should be between about C. and about 200 C., preferably between and 195 C. with the reaction time at a chosen temperature varying from one or more hours at the lowest temperatures to a few minutes at the highest temperatures.
In earlier work (U.S. Pat. 1,856,567), the inventor has shown that at temperatures between about 180 C. and 210 C. aqueous mixtures of the lower aliphatic alcohols, such as methanol, or ethanol in the medium concentration range between about 20% and 75 by weight alcohol content have a stronger delignifying eflect upon fibrous plant materials than the water-free alcohols. No noticeable amounts of the alcohols were found to be chemically consumed during the pulping reactions. These findings were based upon batch cooking with slow rise to temperature and using cooking times of several hours. The inventor has now elucidated some of the basic mechanisms underlying pulping of fibrous plant materials in aqueous ethanol (Thermal Pulping in Alcohol-Water Mixtures, T. N. Kleinert, Holzforschung und Holzverwertung 19, No. 4, 60-65 (August 1967)). It has now been found that, with rapid heating to maximum reaction temperature of the subdivided plant material submerged in the liquor, delignification is enhanced, and lignin solubilization takes place approximating an overall reaction pattern of apparently first order.
Thus, it is an advantage of the invention that pulping is carried out in the aqueous mixture containing the vola tile organic solvent with immediately reacting the subdivided fibrous plant material with the pulping agent at maximum pulping temperature and the corresponding pressure without requiring immediate previous impregnation of the plant material with the liquor. However, a brief pre-steaming of the subdivided fibrous plant material, as commonly practised in conventional pulping, for instance, ten minutes steaming at 1.05-2.00 kg./cm. steam pressure, is advisable not only in order to remove air from the plant material, but also to increase the cellwall permeability and thus to promote leaching out of the non-cellulosic portions from the pulps solubilized during pulping.
It was also found that when pulping is carried out in a continuous countercurrent flow system with continuous removal of the spent liquor for continuous recovery of the volatile organic components of the pulping agent without preceding cooling of the liquor, undesired secondary reactions, especially those which counteract delignification and contribute to lignin retention, are reduced, and thus, pulps of higher purity are produced.
Furthermore, it was found that the minor amounts of lignin which may be reprecipitated from the liquor onto the pulp fibres or still be present in a solubilized form within the cell walls can be easily removed by hot washing the pulp at atmospheric pressure with dilute alkali, for instance, an aqueous sodium hydroxide solution of 3-6 g. NaOH per liter, at 90100 C. temperature. When carrying out this washing in a closed system, this pulp purification can be combined with recovering the organic component of the pulping agent carried over with the pulp, by subjecting the alkaline liquor withdrawn from washing to a fractionated distillation and, if desired, recycling the recovered aqueous organic component into the pulping system.
In accordance with a preferred embodiment of the present invention, the spent pulping liquor is subjected to multistage flash evaporation, resulting in the recovery of aqueous condensates of the volatile organic components of the pulping agent for re-use.
In this multistage flash evaporation, in a known manner, the vapors formed are used as heating media in successive bodies before being withdrawn as condensates. This is achieved by introducing the spent pulping liquor into the first body of a multistage flash evaporator having a pressure which, although being the highest in the evaporator system, is appreciably lower than the digester pressure. As a result, because of the pressure differential between inand outgoing liquor, partial evaporation is caused by the heat content of the liquor with formation of vapor richer in said volatile organic component of the pulping agent than the remaining liquor portions with concurrent cooling of these liquor portions prior to entering the next body of lower pressure. Additional heat of evaporation in the second and the following bodies is supplied by the condensation of the vapors formed in the preceding body. In a known manner, this multistage flash evapo ration is operated by means of the pressure differentials between successive bodies of the evaporator while the remaining liquor portions flow from body to body and the vapors formed in each body are used for heating the next body while undergoing condensation with continuously withdrawing and recovering the enriched condensates for further use.
For the special case when aqueous ethanol is used as a pulping agent, the inventor has carefully studied the vaporphase liquid-phase equilibria of aqueous ethanol of varying concentration in the temperature range between 120 C. and 180 C. (The Liquid-Phase Vapor-Phase Equilibria of Ethanol-Water Mixtures at Temperatures Between 120 C. and 180 C., T. Kleinert, special issue No. 2, zu den Zeitschriften des Vereins Deutscher Chemiker, Verlag Chemie, Berlin, 1933). Based upon these experimental results, multistage flash evaporation for recovery of aqueous ethanol enriched in ethanol concentration from the spent pulping liquor can be calculated.
Thus, enriched aqueous ethanol fractions are recovered from ethanol-containing spent pulping liquors by multi stage flash evaporation.
Furthermore, it was found that during the distilling off of the volatile organic components of the pulping agent from the spent liquor for recovery and reuse, when reaching low concentrations of this volatile organic component, such as ethanol, the residual liquor portions separate into two layers of appreciably different specific gravity. The upper layer is an aqueous relatively light colored solution containing the water-soluble products derived from the fibrous plant material by the pulping reactions, such as monomer sugars, oligosaccharides, organic acids etc. The lower layer is a dark-brown, quasi molten flowing mass of greater specific gravity, mainly consisting of plasticized lignin substances. Based upon this finding and the appreciable differences of the specific gravity, the aqueous layer can be easily separated by known means from the layer of the highly plasticized, quasi molten lignin substances.
These findings permit to combine the recovery of the volatile organic components of the pulping agent from the spent pulping liquor with the separate recovery of the water-soluble derivatives of the fibrous plant materials on the one hand and of the related water-insoluble lignin substances on the other.
These lignin substances are highly plasticized and exhibit pronounced chemical reactivity. They can be used as raw materials for chemical conversion such as hydrogenation, oxidation, sulfonation, and other chemical reactions of the lignin, and also for condensation reactions, for instance, in the production of plastic materials.
On the other hand, the monomer sugars contained in the aqueous layer or formed by hydrolysis from the oligosaccharides also present in the aqueous solution, can be used in fermentation reactions, for instance to produce ethanol, or in protein production by microbiological processes. Acetic acid present in the aqueous layer, especially in hardwood pulping, can be recovered by known methods such as solvent extraction with appropriate water nonmiscible solvents, such as ethyl ether, isopropyl ether, butyl acetate, amyl acetate and others.
Therefore, the process of the present invention allows the separate recovery for further use of these two groups of substances derived from the fibrous plant materials, namely, the water-soluble products on the one hand, and the bulk of the plasticized lignin substances on the other.
Although the new process is preferably designed for continuous operation, it can also be carried out in a series of batch digesters with liquor flow from one pressure vessel to the next one in a quasi continuous countercurrent flow operation. In such case, for emptying and refilling at the end of the digestion period, each digester must be taken out of operation, while continuing the liquor flow in the remaining digesters. However, as will be apparent to persons skilled in the art, the multistage flash evaporator is nevertheless one of continuous operation.
The new process is practically odorless, and by recovering the organic components of the fibrous plant materials solubilized during the pulping reactions, it eliminates also stream pollution.
Thus, the pulping and recovery process of the present invention eliminates the problem of air pollution and also greatly reduces the problem of water and stream pollution.
The new process can be used for the pulping of various fibrous plant materials, especially of various wood species. In particular, it can be used for the pulping of mixtures of very different hardwoods. Since the volatile organic pulping agents penetrate easily and uniformly into all kinds of chipped wood, the new process can also be used for the pulping of hardwoods of high density.
Because of the mild pH conditions preferentially between pH 4 and pH 10, used during pulping and the relatively short pulping times, the viscosities and strength properties of the pulps produced are relatively high.
The new process can be used in the whole range of pulps produced from high-yield pulps of relatively high lignin content to low-lignin bleachable pulps.
In a preferred embodiment thereof the present inventional also comprises an apparatus for carrying out the process described, comprising a vertical elongated cylindrical digester, means for conducting subdivided fibrous plant material into said digester, means for conducting to said digester a pulping liquor comprising an aqueous volatile organic component, means for contacting said liquor and said subdivided fibrous plant material in said digester countercurrently, a pulping zone and a cooling zone in said digester, means for withdrawing from the cooling zone said pulping liquor and heating said pulping liquor to maximum pulping temperature and re-introducing the said heated liquor into the pulping zone of the digester, means for recovering digested wood chips, a multi-stage flash evaporator, means for withdrawing the spent cooking liquor from the pulping zone and for feeding said liquor at the operating temperature and pressure of said digester into said multi-stage flash evaporator, means for recovering from said multi-stage evaporator a condensate enriched in said aqueous volatile organic component and a residual liquid low in said aqueous volatile organic component, means for recirculating said condensate enriched in said aqueous volatile organic component to said digester, means for allowing said residual liquid low in said aqueous volatile organic component to separate by specific gravity and means for separately recovering the two phases thus obtained.
In a further embodiment thereof the present invention comprises an apparatus for carrying out the process described, said apparatus comprising a vertical elongated cylindrical digester having means for continuously introducing thereinto subdivided fibrous plant material against the digester pressure at the top of the digester, means for continuously withdrawing the pulp produced in a partly Washed and cooled state at the bottom of the digester, this digester having strainer rings for continuously introducing and withdrawing pulping liquor to provide liquor upflow in two temperature stages With circulation and heating means for the liquor between these two stages, the uppermost strainer ring being used to withdraw spent pulping liquor for recovery and also to provide a constant liquor level in the digester with a small vapor phase above connected to release means, the outlet of the digester for the spent pulping liquor being connected to a multistage flash evaporator, means for Withdrawing the condensates from said evaporator, the last body of said evaporator discharging the remaining liquor into a separation tank having withdrawing means for separately recovering the water insoluble highly plasticized lignin portions of relatively high specific gravity and the solution of the water soluble components of low specific gravity, the vapor phase of the last body being connected to a fractionating condenser column, having means for continuously releasing separately, permanent gases, water, and the aqueous condensate containing volatile organic solvents, means for adjusting concentration and temperature of said condensates and means for recycling said condensates into the bottom strainer of the digester.
The new organosolv pulping and recovery process of the present invention will now be further described in more detail with reference to the following non-limiting example and to the accompanying drawing the single figure of which represents a schematic illustration thereof.
EXAMPLE Commercial aspen chips of about inch length are continuously introduced into chip bin 1 from which they enter low-pressure steaming vessel 3 through low-pressure rotary valve 2. While being transported through vessel 3 by screw conveyor 4, the chips are treated by a countercurrent flow of low-pressure steam (1.2 kg./cm. supplied to vessel 3 through pipe 5 and withdrawn through exhaust pipe 6 connected to rotary valve 2 and fractionating condenser column 23. The spent steam contains small amounts of ethanol leaking from the digester through high-pressure rotary valve 7, and after being withdrawn through exhaust pipe 6, it is subjsected to fractionated condensation first in condenser column 23 and then in condenser column 21 connected by pipe 20.
The chips, steam-treated in vessel 3, are -fed continuously through high-pressure rotary valve 7 into vertical, cylindrical digester 8. Digester '8 is equipped with a series of strainer rings 9, 10, 11, 12, namely, strainer rings 9 and 10 for introducing liquor and strainer rings 11 and 12, for withdrawing liquor from the digester.
Freshly recovered aqueous ethanol of about 45.8% ethanol content having a pH of 4 and a temperature of C. and additional re-cycled liquor of similar composition and temperature, recovered from the partially washed pulp in the screw press 13 is forced into digester 8 by means of the rotary pump 28 via pipes 67 and 29 and strainer ring 9. A major portion of this liquor mixture flows in the digester upwards countercurrently to the pulp while partly washing and cooling it, and another portion of the liquor mixture flows concurrently with the cooled pulp through conduit 30 into the screw press 13, where the pressed pulp is discharged from the pressurized system of the digester. The liquor portions of relatively low temperature which, after being introduced into the digester through strainer ring 9, flow upwards countercurrently to the pulp are withdrawn through strainer ring 11. This liquor is re-cycled from strainer ring 11 to strainer ring 10 by rotary pump 15 via pipe 14, heater 16 and pipe 17. In this manner, the liquor is heated up to maximum pulping temperature C.) before being re-introduced into the digester. While the liquor again flows upwards in the digester between strainer rings 10 and 12 countercurrently to the plant material, pulping takes place at maximum temperature 180 C.) in liquid phase with solubilization of major portions of the noncellulosic components. Time of exposure of the plant material to the liquor at maximum temperature is about 30 minutes. Through strainer ring 12, the spent pulping liquor containing about 10% by weight of solubilized non-cellulosic portions of the Wood is continuously withdrawn from the digester via pipe 31 directly into body 32, the first body of the five-stage flash evaporator 66 consisting of bodies 32, 33, 34, 35, 36 and fractionating column 37 which operates at atmospheric pressure. By means of strainer ring 12, a constant level of the pulping liquor is maintained in digester 8 and a small vapor phase is formed above the liquor level in the top section of the digester.
Chips presteamed in vessel 3, containing appreciable amounts of water (50% and even more) enter the digester through the high-pressure rotary valve 7 and pile up for a brief period of time on top of the chip column. Thus, these chips are briefly exposed to a vapor phase considerably richer in ethanol content than the corresponding hquor. In this way, the chips are not only rapidly heated to pulping temperature but concurrently are also impregnated with aqueous ethanol according to the ethanolwater vapour-phase liquid-phase equilibrium at pulping temperature. Thus, the chips when subsequently submerged mto the liquor are at cooking conditions, so that pulping starts immediately.
The vapor phase in the top section of the digester is connected via pipe 18 and release valve 19 for continuously releasing sufi'icient amounts of the vapor mixture in order to remove permanent gases such as air and carbon dioxide accumulating in the vapor phase during pulping. In this way also, water portions are removed from the digesting system. Valve 19 is connected via pipe 20 to the fractionating condenser column 21 for recovery of aqueous ethanol from said withdrawn vapor. In the fractionating condenser column 21 also, the ethanol-water vapors partially enriched in ethanol in condenser column 23 are further subjected to fractionated condensation. The total of the aqueous ethanol recovered in fractionating condenser column 21 flows via pipe 65 by means of the rotary pump 22 into the liquor make-up tank 27 for re-use. Non-condensable gases (air and carbon dioxide) are released from the fractionating condenser column 21 through pipe 64. The water is withdrawn from fractionating condenser column 21 through pipe 62 together with some condensed volatiles derived from the Wood in some cases, such as terpenes.
The partly washed and cooled pulp together with portions of the liquor are fed by the digester pressure through conduit into the screw press 13. Liquor squeezed out from the pulp in this screw press is re-cycled via pipe 67 by rotary pump 28 and via pipe 29 into strainer ring 9 and enters the digester together with fresh liquor from liquor make-up tank 27 also supplied by rotary pump 28 via pipe 29. For further washing of the pulp and recovery of residual ethanol, the pulp is treated in washer 24 in a countercurrent flow of weak aqueous sodium hydroxide (3-6 g. NaOH per liter) solution at 90-100" C. entering through pipe 25 and being withdrawn through pipe 26 for recovering the ethanol portions by fractionated distillation. The pulp is recovered for further treatment by the screw press 60 and the liquor thus removed is re-cycled into washer 24 via pipes 68 and 25.
The properties of the Washed and screened pulp obtained are listed in Table I.
TABLE I Pulp yield calculated on CD. wood54.0%
Lignin content of the pulp-1.9%
0.5% CED viscosity of the pulp determined by TAPPI Standard Method T230 sm50, calculated on the alphacellulose portions, free of lignin50 cps.
Unbeaten pulp at 540 CSF:
Tear factor-72 Breaking length7260 m. Pulp beaten to 300 CSF:
Tear factor-75.
Breaking length12,000 m.
The spent pulping liquor withdrawn from the digester through strainer ring 12 at digester temperature (180 C.) and pressure (17.4 kg.-cm. contains per 100 kg., about 41.6 kg. ethanol, 48.4 kg. Water and 10 kg. noncellulosic solids solubilized from the wood during pulping. This liquor enters via pipe 31 into the first body 32 of the five-stage fiash evaporator 66, consisting of the bodies 32, 33, 34, 35, 36 and fractionation column 37, and operating at falling pressures and temperatures. While Residual liquor (1:51.)
From separation tank 38 the plasticized lignin is withdrawn through valve 39 whereas the aqueous phase is carried through pipe 73 into the fractionating column 40 for stripping off the ethanol portions. These portions are recovered in condenser 41 and are ultimately withdrawn through pipe 55 and re-cycled into the liquor make-up tank 27 via pipes 55 and 57 by means of rotary pump 58. The residual aqueous solution containing sugars and other components is withdrawn through valve 59.
Pipes 42, 43, 44 and 45 connect the vapor phase of bodies 32, 33, 34 and 35 to the condenser-heater elements of the subsequent bodies 33, 34, 35 and 36, respectively. Pipe 46 connects the vapor phase of body 36 to the fractionating condenser column 37. Pipes 47, 48, 49 and 50 carry the residual liquor from the first body 32 to the subsequent bodies 33, 34, 35 and 36. Pipes 51, 52, 53, 54, 55, 56 and 57 feed the condensates of aqueous ethanol recovered from the bodies 33, 34, 35, 36 and from the fractionating column 37 and condenser 41 via pipe 57 into the liquor make-up tank 27 by means of the rotary pump 58. Pipes 51, 52, 53 and 54 are equipped with cooling devices for the condensates (not shown in the drawing) to reduce the temperature of the corresponding condensates to a temperature level not substantially higher than about 100 C. Valves 61, 62 and 63 indicate the water outlets from the fractionating condenser columns 37, 21 and 23 respectively. Liquor make-up tank 27 is equipped with known means (not shown in the drawing) for cooling or heating the recovered mixture of the pulping agent, and also with other means (not shown) for adjusting the resulting mixture to the desired level of concentration and temperature for re-use in pulping and introduction into digester by means of rotary pump 28 via pipe 29 and strainer ring 9.
Table II shows the approximate amounts and composition of the residual liquor leaving the bodies 32, 33, 34, 35 and 36 of the five-stage flash evaporator 66, and those of the ethanol-water vapors formed in these bodies, and also the corresponding vapor pressures, assuming that all the vapors have been condensed.
TABLE 11 Ethanol-water vapor Ethanol Water Total Ethanol Pressure Body Ethanol Water Total (kg) (kg) (kg) (percent) (kg/emfi) 32 33. 3 44. 8 78. 1 8. 3 3. G 11. 9 70 6. 5 33 21. 8 39. 4 61. 2 11. 5 5. 2 16. 7 69 3. 5 34 10. 1 33. 4 43. 5 11. 6 (i. 3 17. 9 2. 3 35 2. 6 25. 2 27. 8 7. 6 8. 2 15. 8 48. 1 1. 4 36 (l. 6 17. 2 17. 8 2. 0 8. 0 10. 0 20. 0 1. 1
the residual liquor flows from body 32 through bodies 33, 34, 35 into body 36 partial evaporation of aqueous ethanol of relatively high ethanol content takes place in each body partly by the differences of the heat contents of the liquor in the various bodies, and partly by the condensation heats of the vapors from each preceding body used as heating medium in the condenser-heater elements resulting in condensation of the vapors. From body 36 the residual liquor is withdrawn into the separation tank 38 where the water-insoluble, molten phase of highly plasticized lignin of relatively high specific gravity separates from the aqueous layer of lower specific gravity and accumulates in the lower part of tank 38. The vapors formed in body 36 undergo fractionated condensation in the fractionating condenser column 37 which operates at atmospheric pressure.
Fractions of non-condensed vapor which may contain some permanent gases are carried through connecting pipes '69, 70 and 71 into the condenser-heater elements of the next body. Vapor flow in these pipes 69, 70 and 71 is controlled by valves not shown in the drawing. Pipe 72 conducts residual vapor and any permanent gas present from the condenser-heater element of body 36 to the fractionating column 37, from which the permanent gases are expelled through outlet 74.
The residual liquor (27.8 kg.) withdrawn from body 36 contains about 10 kg. non-cellulosic solids solubilized from the wood during pulping. In separation tank 38 this liquor separates easily into a non-aqueous, dark-brown, quasi molten phase of highly plasticized lignin (about 4.5- 5 kg. calculated on kg. of the initial spent pulping liquor) of about 1.5 specific gravity and an aqueous phase (22.823.3 kg.) of about 1.1-1.2 specific gravity containing about 5-5 .5 kg. monomer sugars, oligosaccharides and also acetic acid derived from the Wood. From this aqueous fraction withdrawn from the separation tank 38 into the fractionating column 40 residual ethanol and methanol split off from the wood during pulping can be recovered in vessel 41 and withdrawn therefrom through pipe 55 for further use. The aqueous fraction stripped of ethanol and methanol in this way is withdrawn from column 40 through valve 59. This fraction contains up to about 2% acetic acid calculated on the initial wood which can be recovered by extraction with isopropyl ether or butyl acetate.
The aqueous solution of the wood sugars and oligosaccharides, preferably after hydrolysis of the oligosaccharides, can be used as a nutrient for microorganisms in fermentation processes or for biological production of proteins. After removal of the water, the solids of the residue can be used as a fodder for stall-feeding cattle, pigs, etc.
The highly plasticized lignin phase, after recovering the small amounts of ethanol and methanol retained, preferably by steam stripping, can be used directly in the production of plastic materials or as raw material in the organic industry for chemical conversion such as hydrogenation, oxidation, sulfonation, etc.
The above example describes the flash-evaporation recovery of aqueous ethanol as representative of the aqueous volatile organic pulping agents used according to the present invention. However, as will be apparent to persons skilled in the art of flash evaporation, the first body of the flash evaporator can be equipped with heating elements for partly steam heating the liquor withdrawn from the digester. In this case, an increased amount of heat is available in the first body for liquor evaporation than without this additional heating. This first body can then be of reduced size, and also the number of bodies can be reduced from five to four.
It will be understood that the above description of the present invention is susceptible to various modifications, changes, and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
I claim:
1. A continuous method for digesting subdivided fibrous plant material in a digester at an elevated digesting pressure and at an elevated digesting temperature without preimpregnation of pulping agent which consists essentially of (a) feeding said subdivided fibrous plant material to an inlet of said digester and moving said fibrous plant material through the digester to a fibrous plant material outlet remote from said inlet;
(b) introducing a liquid pulping agent into said digester at a point intermediate the fibrous plant material inlet and the fibrous plant material outlet, said pulping agent being at a temperature corresponding essentially to said digesting temperature, and being an aqueous mixture of a member selected from the group consisting of a lower aliphatic alcohol, a lower aliphatic ketone and their mixtures and containing about 20-75 weight percent of said member;
(c) flowing said pulping agent in countercurrent contact with said fibrous plant material, heating said fibrous plant material to substantially said elevated digesting temperature substantially immediately on its being fed into said digester, and dissolving noncellulosic water-soluble components of said fibrous plant material in said pulping agent on its being contacted with said pulping agent;
(d) withdrawing pulping agent containing said noncellulosic components from said digester at a point adjacent said subdivided fibrous plant material inlet, said withdrawn pulping agent having a temperature corresponding substantially to said elevated digesting temperature so that no appreciable cooling of the Withdraw-n pluping agent occurs; and
(e) withdrawing digested fibrous plant material from said digester through said fibrous plant material outlet.
2. The continuous method of claim 1 which includes passing said pulping agent withdrawn from -(d) above through a plurality of successive flash expansion stages, thereby producing a condensate enriched in the alcohol or ketone component of the pulping agent and a residue comprising water-insoluble plasticized lignin and said noncellulosic water-soluble components.
3. The continuous method of claim 2 which includes separating said residue into a water-insoluble plasticized lignin fraction and a non-cellulosic Water-soluble component fraction.
4. The continuous method of claim 1 wherein said elevated digesting temperature ranges between about 200" C.
5. The continuous method of claim 4 wherein the temperature ranges between -495 C.
6. The continuous method of claim 1 wherein said pulping agent is an aqueous ethanol mixture.
7. The continuous method of claim 1 wherein the pulping agent has a pH ranging between about 4-l0u 8. The continuous method of claim 1 wherein the fibrous plant material fed to said digester in (a) moves downwardly therethrough and the liquid pulping agent introduced into said digester in (b) for countercurrent contact in (c) with said fibrous plant material flows upwardly therethrough.
References Cited UNITED STATES PATENTS 1,856,567 5/1932 Kleinert et a1. 162--45 3,097,987 7/1963 Slowman l62l9 3,176,756 4/1965 Dukelow 15947WL 3,294,623 12/ 1966 Brinkley et al. l62l9 3,428,107 2/1969 Backteman 159-47WL S. LEON BASHORE, Primary Examiner T. G. SCAVONE, Assistant Examiner US. Cl. X.R. 159-47; 162-32, 77
US748320A 1968-07-29 1968-07-29 Organosolv pulping and recovery process Expired - Lifetime US3585104A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74832068A 1968-07-29 1968-07-29

Publications (1)

Publication Number Publication Date
US3585104A true US3585104A (en) 1971-06-15

Family

ID=25008968

Family Applications (1)

Application Number Title Priority Date Filing Date
US748320A Expired - Lifetime US3585104A (en) 1968-07-29 1968-07-29 Organosolv pulping and recovery process

Country Status (1)

Country Link
US (1) US3585104A (en)

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517204A (en) * 1974-07-09 1976-01-21 Nippon Kami Pulp Kenkyusho Kagakuparupuno seizoho
JPS5149905A (en) * 1974-10-22 1976-04-30 Nippon Kami Pulp Kenkyusho Hankagakuparupuno seizoho
JPS51116204A (en) * 1975-04-04 1976-10-13 Babcock Hitachi Kk Process and apparatus for recovering natrium chloride in black solution recovery boiler
DE2637449A1 (en) * 1975-10-24 1977-05-05 Cp Associates Ltd SOLVENT EXTRACTION PROCESS FOR PRODUCING CELLULOSE PULP
JPS5361702A (en) * 1976-09-30 1978-06-02 Saelzle Erich Continuous digestion of plant fiber substance to produce cellulose while recovering digesting agent
DE2920731A1 (en) * 1978-11-27 1980-05-29 Thermoform Bau Forschung Chemical pulping of lignocellulose - by digestion with aq. lower alcohol contg. catalyst, pref. alkaline earth salt, to reduce cellulose degradation
DE2855052A1 (en) * 1978-12-20 1980-06-26 Nicolaus Md Papier METHOD AND DEVICE FOR CONTINUOUSLY UNLOCKING PLANT FIBER MATERIAL
DE3227843A1 (en) * 1981-08-06 1983-02-24 Chemiefaser Lenzing AG, 4860 Lenzing, Oberösterreich Process for producing pulps of low lignin content
US4409032A (en) * 1977-08-31 1983-10-11 Thermoform Bau-Und Forschungsgesellschaft Organosolv delignification and saccharification process for lignocellulosic plant materials
EP0090969A1 (en) * 1982-04-06 1983-10-12 MD-Organocell Gesellschaft für Zellstoff- und Umwelttechnik mbH Process and reactor for the continuous digestion of fibrous plant material
US4425433A (en) 1979-10-23 1984-01-10 Neves Alan M Alcohol manufacturing process
US4470851A (en) * 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
US4520105A (en) * 1977-08-17 1985-05-28 Bau- Und Forschungsgesellschaft Thermoform Ag Process for production of sugars and optionally cellulose and lignin from lignocellulosic raw materials
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4597830A (en) * 1983-06-20 1986-07-01 The University Of Alabama Method and pulping composition for the selective delignification of lignocellulosic materials with an aqueous amine-alcohol mixture in the presence of a catalyst
EP0224721A1 (en) * 1985-11-05 1987-06-10 Repap Technologies Inc. Recovery of lignin
US4764596A (en) * 1985-11-05 1988-08-16 Repap Technologies Inc. Recovery of lignin
US4941944A (en) * 1984-07-13 1990-07-17 Pierre A. Tonachel Method for continuous countercurrent ogranosolv saccharification of comminuted lignocellulosic materials
EP0420771A1 (en) * 1989-09-27 1991-04-03 Eastman Kodak Company Isolation of lignin from solvent pulping liquors
WO1992013849A1 (en) * 1991-02-01 1992-08-20 Alcell Technologies Inc. Pulping of lignocellulosic materials and recovery of resultant by-products
WO1993015261A1 (en) * 1992-01-29 1993-08-05 Allcell Technologies Inc. Pulping of fibrous plant materials and recovery of resultant by-products
US5252183A (en) * 1991-09-13 1993-10-12 Abb Lummus Crest Inc. Process of pulping and bleaching fibrous plant material with tert-butyl alcohol and tert-butyl peroxide
WO1993020279A1 (en) * 1992-04-06 1993-10-14 A. Ahlstrom Corporation Method of producing pulp
DE2857039C2 (en) * 1977-08-31 1994-01-13 Thermoform Bau Forschung Process for converting lignocellulose
US5338405A (en) * 1989-09-28 1994-08-16 Stora Feldmuhle Aktiengesellschaft Production of fiber pulp by impregnating the lignocellulosic material with an aqueous alcoholic SO2 solution prior to defibration
US5470433A (en) * 1991-02-06 1995-11-28 Brodersen; Karl-Heinz Process for the delignification of cellulose fiber raw materials using alcohol and alkali
US5730837A (en) * 1994-12-02 1998-03-24 Midwest Research Institute Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
US5788812A (en) * 1985-11-05 1998-08-04 Agar; Richard C. Method of recovering furfural from organic pulping liquor
US6409883B1 (en) 1999-04-16 2002-06-25 Kimberly-Clark Worldwide, Inc. Methods of making fiber bundles and fibrous structures
US20020166134A1 (en) * 1999-06-18 2002-11-07 Field Loren J. Cardiomyocytes with enhanced proliferative potenial, and methods for preparing and using same
US6503233B1 (en) 1998-10-02 2003-01-07 Kimberly-Clark Worldwide, Inc. Absorbent article having good body fit under dynamic conditions
US6562192B1 (en) 1998-10-02 2003-05-13 Kimberly-Clark Worldwide, Inc. Absorbent articles with absorbent free-flowing particles and methods for producing the same
US20030116290A1 (en) * 2001-12-20 2003-06-26 3M Innovative Properties Company Continuous process for controlled evaporation of black liquor
US20030121380A1 (en) * 2001-11-30 2003-07-03 Cowell Christine M. System for aperturing and coaperturing webs and web assemblies
US6610173B1 (en) 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
US6667424B1 (en) 1998-10-02 2003-12-23 Kimberly-Clark Worldwide, Inc. Absorbent articles with nits and free-flowing particles
WO2004005608A1 (en) * 2002-07-02 2004-01-15 Andritz, Inc. Solvent pulping of biomass
US6701637B2 (en) 2001-04-20 2004-03-09 Kimberly-Clark Worldwide, Inc. Systems for tissue dried with metal bands
US20040062907A1 (en) * 2002-10-01 2004-04-01 Kimberly-Clark Worldwide, Inc. Tissue with semi-synthetic cationic polymer
US20040101704A1 (en) * 2002-11-27 2004-05-27 Kimberly-Clark Worldwide,Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US20040102752A1 (en) * 1998-10-02 2004-05-27 Fung-Jou Chen Absorbent article with center fill performance
US20040115431A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US20040121158A1 (en) * 2002-12-20 2004-06-24 Kimberly-Clark Worldwide, Inc. Wiping products having a low coefficient of friction in the wet state and process for producing same
US20040118541A1 (en) * 2002-12-20 2004-06-24 Kimberly-Clark Worldwide, Inc. Strength additives for tissue products
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040118530A1 (en) * 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Nonwoven products having a patterned indicia
US20040118545A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040200590A1 (en) * 2003-04-10 2004-10-14 Kimberly-Clark Worldwide, Inc. Embossed tissue product with improved bulk properties
US6869501B2 (en) 2001-12-20 2005-03-22 3M Innovative Properties Company Continuous process for controlled concentration of colloidal solutions
US20050067125A1 (en) * 2003-09-26 2005-03-31 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US20050161178A1 (en) * 2002-11-27 2005-07-28 Hermans Michael A. Rolled tissue products having high bulk, softness and firmness
US20060135026A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Composite cleaning products having shape resilient layer
US20060130988A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Multiple ply tissue products having enhanced interply liquid capacity
US20060159305A1 (en) * 2004-12-23 2006-07-20 Asml Netherlands B.V. Imprint lithography
US20060254733A1 (en) * 2001-09-24 2006-11-16 Dunn Jerry P Method to lower the release of hazardous air pollutants from Kraft recovery process
US20070044928A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Rolled bath tissue product for children
US20070045334A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Pop-up bath tissue product
US20070079944A1 (en) * 2004-04-20 2007-04-12 The Research Foundation Of The State University Of New York Product and processes from an integrated forest biorefinery
US20070131366A1 (en) * 2005-12-13 2007-06-14 Kimberly-Clark Worldwide, Inc. Tissue products having enhanced cross-machine directional properties
US20070137813A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Embossed tissue products
US20070137809A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Tissue products containing a polymer dispersion
US20070137811A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Premoistened tissue products
US20070137808A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Treated tissue products having increased strength
US20070137810A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Creping process and products made therefrom
US20070144697A1 (en) * 2005-12-15 2007-06-28 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
EP1815198A1 (en) * 2004-11-12 2007-08-08 Michigan Biotechnology Institute Process for treatment of biomass feedstocks
US20070259412A1 (en) * 2006-05-08 2007-11-08 Biojoule Limited Process for the production of biofuel from plant materials
US20080000598A1 (en) * 2005-12-15 2008-01-03 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20080000602A1 (en) * 2005-12-15 2008-01-03 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
EP1874997A1 (en) * 2005-03-31 2008-01-09 Metso Paper, Inc. Production of pulp using a gaseous organic agent as heating and reaction-accelerating media
US20080009586A1 (en) * 2006-07-06 2008-01-10 Dow Global Technologies Inc. Dispersions of olefin block copolymers
US20080041543A1 (en) * 2005-12-15 2008-02-21 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US20080073046A1 (en) * 2005-12-15 2008-03-27 Dyer Thomas J Process for increasing the basis weight of sheet materials
US20080076844A1 (en) * 2006-09-22 2008-03-27 The Dow Chemical Company Fibrillated polyolefin foam
US20080135195A1 (en) * 2006-12-07 2008-06-12 Michael Alan Hermans Process for producing tissue products
US20080138373A1 (en) * 2005-12-13 2008-06-12 Kou-Chang Liu Anti-Microbial Substrates With Peroxide Treatment
US20080176968A1 (en) * 2006-07-06 2008-07-24 Dow Global Technologies Inc. Blended polyolefin dispersions
US20080230196A1 (en) * 2007-03-22 2008-09-25 Kou-Chang Liu Softening compositions for treating tissues which retain high rate of absorbency
US20080295985A1 (en) * 2005-12-15 2008-12-04 Moncla Brad M Cellulose Articles Containing an Additve Composition
WO2008157132A1 (en) 2007-06-14 2008-12-24 Dow Global Technologies Inc. Additive compositions for treating various base sheets
US20090036015A1 (en) * 2007-07-31 2009-02-05 Kimberly-Clark Worldwide, Inc. Conductive Webs
US20090036850A1 (en) * 2007-07-31 2009-02-05 Davis-Dang Nhan Sensor products using conductive webs
US20090036012A1 (en) * 2007-07-31 2009-02-05 Kimberly-Clark Worldwide,Inc. Conductive webs
US20090057169A1 (en) * 2007-08-31 2009-03-05 Benjamin Joseph Kruchoski Spindle and Spindle Attachments for Coreless and Flexible Core Rolled Tissue Products
US20090057456A1 (en) * 2007-08-31 2009-03-05 Thomas Gerard Shannon Rolled Tissue Product Having a Flexible Core
US20090062516A1 (en) * 2006-05-08 2009-03-05 Biojoule Limited Lignin and other products isolated from plant material, methods for isolation and use, and compositions containing lignin and other plant-derived products
US20090069550A1 (en) * 2007-08-31 2009-03-12 Biojoule Limited Lignin and other products isolated from plant material, methods for isolation and use, and compositions containing lignin and other plant-derived products
WO2009066007A2 (en) * 2007-11-20 2009-05-28 Valtion Teknillinen Tutkimuskeskus Process for defibering a fibrous raw-material
US7588662B2 (en) 2007-03-22 2009-09-15 Kimberly-Clark Worldwide, Inc. Tissue products containing non-fibrous polymeric surface structures and a topically-applied softening composition
US20090321238A1 (en) * 2008-05-29 2009-12-31 Kimberly-Clark Worldwide, Inc. Conductive Webs Containing Electrical Pathways and Method For Making Same
US20100155006A1 (en) * 2008-12-22 2010-06-24 Kimberly-Clark Worldwide, Inc. Conductive Webs and Process For Making Same
US20100212849A1 (en) * 2005-12-15 2010-08-26 Megan Christine Hansen Smith Wiping product having enhanced oil absorbency
US7799968B2 (en) 2001-12-21 2010-09-21 Kimberly-Clark Worldwide, Inc. Sponge-like pad comprising paper layers and method of manufacture
US20100236735A1 (en) * 2009-03-20 2010-09-23 Kimberly-Clark Worldwide, Inc. Creped Tissue Sheets Treated With An Additive Composition According to A Pattern
US20100255207A1 (en) * 2007-09-28 2010-10-07 Dow Global Technologies Inc. Dispersions of higher crystallinity olefins
US20100279113A1 (en) * 2007-11-15 2010-11-04 Dow Global Technologies Inc. coating composition, a coated article, and method of forming such articles
US20110123584A1 (en) * 2009-11-20 2011-05-26 Jeffery Richard Seidling Temperature Change Compositions and Tissue Products Providing a Cooling Sensation
US20110123578A1 (en) * 2009-11-20 2011-05-26 Wenzel Scott W Cooling Substrates With Hydrophilic Containment Layer and Method of Making
WO2011061643A2 (en) 2009-11-20 2011-05-26 Kimberly-Clark Worldwide, Inc. Tissue products including a temperature change composition containing phase change components within a non-interfering molecular scaffold
WO2011139165A1 (en) * 2010-05-07 2011-11-10 Solray Energy Limited Biomasses for the production of alternative petrochemical feedstock
US20120136097A1 (en) * 2009-05-28 2012-05-31 Alex Berlin Resin compositions comprising lignin derivatives
WO2012054947A3 (en) * 2010-10-29 2012-08-23 Annikki Gmbh Method for production of lignin
EP2435456A4 (en) * 2009-05-28 2012-12-12 Lignol Innovations Ltd Derivatives of native lignin from hardwood feedstocks
WO2013005104A2 (en) 2011-07-03 2013-01-10 Lignin Polymer Limited Methods and systems for processing plants and converting cellulosic residue to crude bio-oils
US20130029406A1 (en) * 2011-07-28 2013-01-31 Greenfield Ethanol Inc. Two stage continuous pre-treatment of lignocellulosic biomass
WO2014055463A1 (en) 2012-10-01 2014-04-10 Georgia-Pacific Chemicals Llc Modified polyphenol binder compositions and methods for making and using same
US8859661B2 (en) 2007-11-15 2014-10-14 Dow Global Technologies Llc Coating composition, a coated article, and method of forming such articles
US8940323B2 (en) 2008-05-30 2015-01-27 Kimberly-Clark Worldwide, Inc. Tissue products having a cooling sensation when contacted with skin
US9163169B2 (en) 2012-03-13 2015-10-20 Georgia-Pacific Chemicals Llc Adhesive compositions having a reduced cure time and methods for making and using same
US9243365B2 (en) 2013-12-20 2016-01-26 Georgia-Pacific Chemicals Llc Release aids with adjustable cloud points for creping processes
US9243114B2 (en) 2013-03-14 2016-01-26 Georgia-Pacific Chemicals Llc Binder compositions and methods for making and using same
US9289520B2 (en) 2014-02-27 2016-03-22 Kimberly-Clark Worldwide, Inc. Method and system to clean microorganisms without chemicals
DE102014221238A1 (en) 2014-10-20 2016-04-21 Mpg Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V. Process for the precipitation of lignin from organosolv cooking liquors
WO2017009662A1 (en) 2015-07-16 2017-01-19 C-Tex Limited Shaped nanoporous bodies
US9587115B2 (en) 2014-04-02 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products
US9587114B2 (en) 2014-04-02 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products with oxidative binders and complexed metal catalyst
US9587077B2 (en) 2013-03-14 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making composite products containing lignocellulose substrates
US9586338B2 (en) 2012-10-01 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose containing composite products
US9617427B2 (en) 2014-04-02 2017-04-11 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products with oxidative binders and encapsulated catalyst
US9644317B2 (en) 2014-11-26 2017-05-09 International Paper Company Continuous digester and feeding system
WO2017079310A1 (en) 2015-11-03 2017-05-11 Kimberly-Clark Worldwide, Inc. Foamed composite web with low wet collapse
US9746135B2 (en) 2010-05-07 2017-08-29 Solray Holdings Limited System and process for equalization of pressure of a process flow stream across a valve
US9840621B2 (en) 2011-03-24 2017-12-12 Fibria Innovations Inc. Compositions comprising lignocellulosic biomass and organic solvent
US9982174B2 (en) 2010-02-15 2018-05-29 Fibria Innovations Inc. Binder compositions comprising lignin derivatives
WO2018114905A1 (en) * 2016-12-21 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Two-stage digestion method for chemical fractionation of lignocellulose
US10139050B2 (en) 2010-05-07 2018-11-27 Solray Holdings Limited System and process for equalization of pressure of a process flow stream across a valve
WO2019032448A1 (en) * 2017-08-08 2019-02-14 Kultevat, Inc. System and method for continuous stirred tank solvent extraction using feedstock
US10421212B2 (en) 2012-10-01 2019-09-24 Georgia-Pacific Chemicals Llc Methods for making lignocellulose containing composite products
WO2019183166A1 (en) 2018-03-20 2019-09-26 Auburn University Transparent and homogenous cellulose nanocrystal-lignin uv protection films
US10533030B2 (en) 2010-02-15 2020-01-14 Suzano Canada Inc. Carbon fibre compositions comprising lignin derivatives
US10584185B2 (en) 2017-08-08 2020-03-10 Kultevat, Inc. Rubber and by-product extraction systems and methods
US20210245392A1 (en) * 2020-02-11 2021-08-12 RF Kettle Company, LLC Ethanol-Based Extraction of Soluble Wood Components
US11118017B2 (en) 2019-11-13 2021-09-14 American Process International LLC Process for the production of bioproducts from lignocellulosic material
US11306113B2 (en) 2019-11-13 2022-04-19 American Process International LLC Process for the production of cellulose, lignocellulosic sugars, lignosulfonate, and ethanol
US11306264B2 (en) 2018-02-16 2022-04-19 A.P. Møller—Mærsk A/S Biofuel composition comprising lignin
ES2915174A1 (en) * 2020-12-18 2022-06-20 Instituto Nac De Investigacion Y Tecnologia Agraria Y Alimentaria Inia Procedure for obtaining reinforced packaging (Machine-translation by Google Translate, not legally binding)
US11512173B2 (en) 2016-10-31 2022-11-29 University Of Tennessee Research Foundation Method of producing carbon fibers and carbon fiber composites from plant derived lignin and its blends
WO2023020752A1 (en) * 2021-08-17 2023-02-23 Kat2Biz Ab Method of producing lignin oil and dissolving cellulose from lignocellulosic biomass feedstock
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint
WO2024063970A2 (en) 2022-09-09 2024-03-28 Holcim Technology Ltd Rubber roofing membranes with lignin

Cited By (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738720B2 (en) * 1974-07-09 1982-08-17
JPS517204A (en) * 1974-07-09 1976-01-21 Nippon Kami Pulp Kenkyusho Kagakuparupuno seizoho
JPS5149905A (en) * 1974-10-22 1976-04-30 Nippon Kami Pulp Kenkyusho Hankagakuparupuno seizoho
JPS51116204A (en) * 1975-04-04 1976-10-13 Babcock Hitachi Kk Process and apparatus for recovering natrium chloride in black solution recovery boiler
DE2637449A1 (en) * 1975-10-24 1977-05-05 Cp Associates Ltd SOLVENT EXTRACTION PROCESS FOR PRODUCING CELLULOSE PULP
US4100016A (en) * 1975-10-24 1978-07-11 C P Associates Limited Solvent pulping process
JPS5361702A (en) * 1976-09-30 1978-06-02 Saelzle Erich Continuous digestion of plant fiber substance to produce cellulose while recovering digesting agent
US4520105A (en) * 1977-08-17 1985-05-28 Bau- Und Forschungsgesellschaft Thermoform Ag Process for production of sugars and optionally cellulose and lignin from lignocellulosic raw materials
DE2857039C2 (en) * 1977-08-31 1994-01-13 Thermoform Bau Forschung Process for converting lignocellulose
US4409032A (en) * 1977-08-31 1983-10-11 Thermoform Bau-Und Forschungsgesellschaft Organosolv delignification and saccharification process for lignocellulosic plant materials
DE2920731A1 (en) * 1978-11-27 1980-05-29 Thermoform Bau Forschung Chemical pulping of lignocellulose - by digestion with aq. lower alcohol contg. catalyst, pref. alkaline earth salt, to reduce cellulose degradation
EP0012960A1 (en) * 1978-12-20 1980-07-09 MD Papier GmbH & Co. KG Process and apparatus for the continuous cooking of fibrous plant material
DE2855052A1 (en) * 1978-12-20 1980-06-26 Nicolaus Md Papier METHOD AND DEVICE FOR CONTINUOUSLY UNLOCKING PLANT FIBER MATERIAL
US4425433A (en) 1979-10-23 1984-01-10 Neves Alan M Alcohol manufacturing process
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4470851A (en) * 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
DE3227843A1 (en) * 1981-08-06 1983-02-24 Chemiefaser Lenzing AG, 4860 Lenzing, Oberösterreich Process for producing pulps of low lignin content
EP0090969A1 (en) * 1982-04-06 1983-10-12 MD-Organocell Gesellschaft für Zellstoff- und Umwelttechnik mbH Process and reactor for the continuous digestion of fibrous plant material
US4597830A (en) * 1983-06-20 1986-07-01 The University Of Alabama Method and pulping composition for the selective delignification of lignocellulosic materials with an aqueous amine-alcohol mixture in the presence of a catalyst
US4941944A (en) * 1984-07-13 1990-07-17 Pierre A. Tonachel Method for continuous countercurrent ogranosolv saccharification of comminuted lignocellulosic materials
EP0224721A1 (en) * 1985-11-05 1987-06-10 Repap Technologies Inc. Recovery of lignin
US4764596A (en) * 1985-11-05 1988-08-16 Repap Technologies Inc. Recovery of lignin
US5788812A (en) * 1985-11-05 1998-08-04 Agar; Richard C. Method of recovering furfural from organic pulping liquor
EP0420771A1 (en) * 1989-09-27 1991-04-03 Eastman Kodak Company Isolation of lignin from solvent pulping liquors
WO1991005104A1 (en) * 1989-09-27 1991-04-18 Eastman Kodak Company Isolation of lignin from solvent pulping liquors
US5338405A (en) * 1989-09-28 1994-08-16 Stora Feldmuhle Aktiengesellschaft Production of fiber pulp by impregnating the lignocellulosic material with an aqueous alcoholic SO2 solution prior to defibration
WO1992013849A1 (en) * 1991-02-01 1992-08-20 Alcell Technologies Inc. Pulping of lignocellulosic materials and recovery of resultant by-products
US5470433A (en) * 1991-02-06 1995-11-28 Brodersen; Karl-Heinz Process for the delignification of cellulose fiber raw materials using alcohol and alkali
US5252183A (en) * 1991-09-13 1993-10-12 Abb Lummus Crest Inc. Process of pulping and bleaching fibrous plant material with tert-butyl alcohol and tert-butyl peroxide
WO1993015261A1 (en) * 1992-01-29 1993-08-05 Allcell Technologies Inc. Pulping of fibrous plant materials and recovery of resultant by-products
WO1993020279A1 (en) * 1992-04-06 1993-10-14 A. Ahlstrom Corporation Method of producing pulp
US5730837A (en) * 1994-12-02 1998-03-24 Midwest Research Institute Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
US7265258B2 (en) 1998-10-02 2007-09-04 Kimberly-Clark Worldwide, Inc. Absorbent articles with nits and free-flowing particles
US6695827B2 (en) 1998-10-02 2004-02-24 Kimberly-Clark Worldwide, Inc. Absorbent article having good body fit under dynamic conditions
US6503233B1 (en) 1998-10-02 2003-01-07 Kimberly-Clark Worldwide, Inc. Absorbent article having good body fit under dynamic conditions
US6562192B1 (en) 1998-10-02 2003-05-13 Kimberly-Clark Worldwide, Inc. Absorbent articles with absorbent free-flowing particles and methods for producing the same
US20040102752A1 (en) * 1998-10-02 2004-05-27 Fung-Jou Chen Absorbent article with center fill performance
US7429689B2 (en) 1998-10-02 2008-09-30 Kimberly-Clark Worldwide, Inc. Absorbent article with center fill performance
US20040054331A1 (en) * 1998-10-02 2004-03-18 Hamilton Wendy L. Absorbent articles with nits and free-flowing particles
US6667424B1 (en) 1998-10-02 2003-12-23 Kimberly-Clark Worldwide, Inc. Absorbent articles with nits and free-flowing particles
US6409883B1 (en) 1999-04-16 2002-06-25 Kimberly-Clark Worldwide, Inc. Methods of making fiber bundles and fibrous structures
US20020166134A1 (en) * 1999-06-18 2002-11-07 Field Loren J. Cardiomyocytes with enhanced proliferative potenial, and methods for preparing and using same
US20040020614A1 (en) * 2000-11-03 2004-02-05 Jeffrey Dean Lindsay Three-dimensional tissue and methods for making the same
US6610173B1 (en) 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
US6998017B2 (en) 2000-11-03 2006-02-14 Kimberly-Clark Worldwide, Inc. Methods of making a three-dimensional tissue
US6701637B2 (en) 2001-04-20 2004-03-09 Kimberly-Clark Worldwide, Inc. Systems for tissue dried with metal bands
US20060254733A1 (en) * 2001-09-24 2006-11-16 Dunn Jerry P Method to lower the release of hazardous air pollutants from Kraft recovery process
US20030121380A1 (en) * 2001-11-30 2003-07-03 Cowell Christine M. System for aperturing and coaperturing webs and web assemblies
US6837956B2 (en) 2001-11-30 2005-01-04 Kimberly-Clark Worldwide, Inc. System for aperturing and coaperturing webs and web assemblies
US6869501B2 (en) 2001-12-20 2005-03-22 3M Innovative Properties Company Continuous process for controlled concentration of colloidal solutions
US20030116290A1 (en) * 2001-12-20 2003-06-26 3M Innovative Properties Company Continuous process for controlled evaporation of black liquor
US7799968B2 (en) 2001-12-21 2010-09-21 Kimberly-Clark Worldwide, Inc. Sponge-like pad comprising paper layers and method of manufacture
US20040060673A1 (en) * 2002-07-02 2004-04-01 Andritz Inc. Solvent pulping of biomass
WO2004005608A1 (en) * 2002-07-02 2004-01-15 Andritz, Inc. Solvent pulping of biomass
US20040062907A1 (en) * 2002-10-01 2004-04-01 Kimberly-Clark Worldwide, Inc. Tissue with semi-synthetic cationic polymer
US6911114B2 (en) 2002-10-01 2005-06-28 Kimberly-Clark Worldwide, Inc. Tissue with semi-synthetic cationic polymer
US20050161179A1 (en) * 2002-11-27 2005-07-28 Hermans Michael A. Rolled single ply tissue product having high bulk, softness, and firmness
US7497926B2 (en) 2002-11-27 2009-03-03 Kimberly-Clark Worldwide, Inc. Shear-calendering process for producing tissue webs
US20040140076A1 (en) * 2002-11-27 2004-07-22 Hermans Michael Alan Rolled tissue products having high bulk, softness, and firmness
US7497925B2 (en) 2002-11-27 2009-03-03 Kimberly-Clark Worldwide, Inc. Shear-calendering processes for making rolled tissue products having high bulk, softness and firmness
US20040101704A1 (en) * 2002-11-27 2004-05-27 Kimberly-Clark Worldwide,Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US20050161178A1 (en) * 2002-11-27 2005-07-28 Hermans Michael A. Rolled tissue products having high bulk, softness and firmness
US6887348B2 (en) 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US6893535B2 (en) 2002-11-27 2005-05-17 Kimberly-Clark Worldwide, Inc. Rolled tissue products having high bulk, softness, and firmness
US20040115431A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US7994079B2 (en) 2002-12-17 2011-08-09 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20060081349A1 (en) * 2002-12-19 2006-04-20 Bakken Andrew P Non-woven through air dryer and transfer fabrics for tissue making
US6878238B2 (en) 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20060011316A1 (en) * 2002-12-19 2006-01-19 Kimberly-Clark Worldwide, Inc. Nonwoven products having a patterned indicia
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040118530A1 (en) * 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Nonwoven products having a patterned indicia
US7294238B2 (en) 2002-12-19 2007-11-13 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20040118545A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040118541A1 (en) * 2002-12-20 2004-06-24 Kimberly-Clark Worldwide, Inc. Strength additives for tissue products
US6994770B2 (en) 2002-12-20 2006-02-07 Kimberly-Clark Worldwide, Inc. Strength additives for tissue products
US7147751B2 (en) 2002-12-20 2006-12-12 Kimberly-Clark Worldwide, Inc. Wiping products having a low coefficient of friction in the wet state and process for producing same
US20040121158A1 (en) * 2002-12-20 2004-06-24 Kimberly-Clark Worldwide, Inc. Wiping products having a low coefficient of friction in the wet state and process for producing same
US20040200590A1 (en) * 2003-04-10 2004-10-14 Kimberly-Clark Worldwide, Inc. Embossed tissue product with improved bulk properties
US6896767B2 (en) 2003-04-10 2005-05-24 Kimberly-Clark Worldwide, Inc. Embossed tissue product with improved bulk properties
US7141142B2 (en) 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20050067125A1 (en) * 2003-09-26 2005-03-31 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US9273431B2 (en) 2004-04-20 2016-03-01 The Research Foundation For The State University Of New York Product and processes from an integrated forest biorefinery
US8940133B2 (en) 2004-04-20 2015-01-27 The Research Foundation For The State University Of New York Product and processes from an integrated forest biorefinery
US8668806B2 (en) 2004-04-20 2014-03-11 The Research Foundation Of The State University Of New York Product and processes from an integrated forest biorefinery
US20070079944A1 (en) * 2004-04-20 2007-04-12 The Research Foundation Of The State University Of New York Product and processes from an integrated forest biorefinery
US9683329B2 (en) 2004-04-20 2017-06-20 The Research Foundation For The State University Of New York Methods of producing a paper product
US9945073B2 (en) 2004-04-20 2018-04-17 The Research Foundation For The State University Of New York Methods of producing a paper product
EP1815198A4 (en) * 2004-11-12 2014-01-15 Michigan Biotech Inst Process for treatment of biomass feedstocks
EP1815198A1 (en) * 2004-11-12 2007-08-08 Michigan Biotechnology Institute Process for treatment of biomass feedstocks
US7524399B2 (en) 2004-12-22 2009-04-28 Kimberly-Clark Worldwide, Inc. Multiple ply tissue products having enhanced interply liquid capacity
US20090183846A1 (en) * 2004-12-22 2009-07-23 Michael Alan Hermans Multiple Ply Tissue Products Having Enhanced Interply Liquid Capacity
WO2006071287A1 (en) 2004-12-22 2006-07-06 Kimberly-Clark Worldwide, Inc. Multiple ply tissue products having enhanced interply liquid capacity
US20060130988A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Multiple ply tissue products having enhanced interply liquid capacity
US20060135026A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Composite cleaning products having shape resilient layer
US7828932B2 (en) 2004-12-22 2010-11-09 Kimberly-Clark Worldwide, Inc. Multiple ply tissue products having enhanced interply liquid capacity
US20060159305A1 (en) * 2004-12-23 2006-07-20 Asml Netherlands B.V. Imprint lithography
EP1874997A1 (en) * 2005-03-31 2008-01-09 Metso Paper, Inc. Production of pulp using a gaseous organic agent as heating and reaction-accelerating media
US20090014138A1 (en) * 2005-03-31 2009-01-15 Metso Paper, Inc. Production of Pulp Using a Gaseous Organic Agent as Heating and Reaction-Accelerating Media
EP1874997A4 (en) * 2005-03-31 2010-12-29 Metso Paper Inc Production of pulp using a gaseous organic agent as heating and reaction-accelerating media
US9200406B2 (en) * 2005-03-31 2015-12-01 Valmet Technologies, Inc. Production of pulp using a gaseous organic agent as heating and reaction-accelerating media
US20070044928A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Rolled bath tissue product for children
US20070045334A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Pop-up bath tissue product
US8418879B2 (en) 2005-08-31 2013-04-16 Kimberly-Clark Worldwide, Inc. Pop-up bath tissue product
US20080138373A1 (en) * 2005-12-13 2008-06-12 Kou-Chang Liu Anti-Microbial Substrates With Peroxide Treatment
US7972474B2 (en) 2005-12-13 2011-07-05 Kimberly-Clark Worldwide, Inc. Tissue products having enhanced cross-machine directional properties
US8778386B2 (en) 2005-12-13 2014-07-15 Kimberly-Clark Worldwide, Inc. Anti-microbial substrates with peroxide treatment
US20070131366A1 (en) * 2005-12-13 2007-06-14 Kimberly-Clark Worldwide, Inc. Tissue products having enhanced cross-machine directional properties
WO2007070124A1 (en) 2005-12-13 2007-06-21 Kimberly - Clark Worldwide, Inc. Tissue products having enhanced cross-machine directional properties
US8282776B2 (en) 2005-12-15 2012-10-09 Kimberly-Clark Worldwide, Inc. Wiping product having enhanced oil absorbency
US20080000598A1 (en) * 2005-12-15 2008-01-03 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US8512515B2 (en) 2005-12-15 2013-08-20 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
US8444811B2 (en) 2005-12-15 2013-05-21 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US20070137811A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Premoistened tissue products
US20070137809A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Tissue products containing a polymer dispersion
US20070137810A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Creping process and products made therefrom
US20080041543A1 (en) * 2005-12-15 2008-02-21 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US8177939B2 (en) 2005-12-15 2012-05-15 Dow Global Technologies Llc Cellulose articles containing an additive composition
US8029646B2 (en) 2005-12-15 2011-10-04 Dow Global Technologies Llc Cellulose articles containing an additive composition
US20070137813A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Embossed tissue products
US20080295985A1 (en) * 2005-12-15 2008-12-04 Moncla Brad M Cellulose Articles Containing an Additve Composition
US20070144697A1 (en) * 2005-12-15 2007-06-28 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20070137808A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Treated tissue products having increased strength
US20110129645A1 (en) * 2005-12-15 2011-06-02 Kimberly-Clark Worldwide, Inc. Wiping Products Having Enhanced Cleaning Abilities
US7883604B2 (en) 2005-12-15 2011-02-08 Kimberly-Clark Worldwide, Inc. Creping process and products made therefrom
US7879190B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Tissue products with controlled lint properties
US20080000602A1 (en) * 2005-12-15 2008-01-03 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
US7879188B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20100212849A1 (en) * 2005-12-15 2010-08-26 Megan Christine Hansen Smith Wiping product having enhanced oil absorbency
US7879189B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20080073046A1 (en) * 2005-12-15 2008-03-27 Dyer Thomas J Process for increasing the basis weight of sheet materials
US7879191B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
US7807023B2 (en) 2005-12-15 2010-10-05 Kimberly-Clark Worldwide, Inc. Process for increasing the basis weight of sheet materials
US20080073045A1 (en) * 2005-12-15 2008-03-27 Dyer Thomas J Tissue products with controlled lint properties
US7820010B2 (en) 2005-12-15 2010-10-26 Kimberly-Clark Worldwide, Inc. Treated tissue products having increased strength
US7842163B2 (en) 2005-12-15 2010-11-30 Kimberly-Clark Worldwide, Inc. Embossed tissue products
US7837831B2 (en) 2005-12-15 2010-11-23 Kimberly-Clark Worldwide, Inc. Tissue products containing a polymer dispersion
US20100136642A1 (en) * 2006-05-08 2010-06-03 Biojoule Limited Recovery of lignin and water soluble sugars from plant materials
EP2479341A1 (en) 2006-05-08 2012-07-25 Vertichem Corporation Process for the production of biofuel from plant material
US20090062516A1 (en) * 2006-05-08 2009-03-05 Biojoule Limited Lignin and other products isolated from plant material, methods for isolation and use, and compositions containing lignin and other plant-derived products
US20070259412A1 (en) * 2006-05-08 2007-11-08 Biojoule Limited Process for the production of biofuel from plant materials
US7649086B2 (en) 2006-05-08 2010-01-19 Biojoule Ltd. Integrated processing of plant biomass
US8822657B2 (en) 2006-05-08 2014-09-02 Vertichem Corporation Recovery of lignin and water soluble sugars from plant materials
US7985847B2 (en) 2006-05-08 2011-07-26 Biojoule Ltd. Recovery of lignin and water soluble sugars from plant materials
US20080176968A1 (en) * 2006-07-06 2008-07-24 Dow Global Technologies Inc. Blended polyolefin dispersions
US8785531B2 (en) 2006-07-06 2014-07-22 Dow Global Technologies Llc Dispersions of olefin block copolymers
US20080009586A1 (en) * 2006-07-06 2008-01-10 Dow Global Technologies Inc. Dispersions of olefin block copolymers
US8916640B2 (en) 2006-07-06 2014-12-23 Dow Global Technologies Llc Blended polyolefin dispersions
US20080076844A1 (en) * 2006-09-22 2008-03-27 The Dow Chemical Company Fibrillated polyolefin foam
US8476326B2 (en) 2006-09-22 2013-07-02 Dow Global Technologies Llc Fibrillated polyolefin foam
US7785443B2 (en) 2006-12-07 2010-08-31 Kimberly-Clark Worldwide, Inc. Process for producing tissue products
US20080135195A1 (en) * 2006-12-07 2008-06-12 Michael Alan Hermans Process for producing tissue products
US8262857B2 (en) 2006-12-07 2012-09-11 Kimberly-Clark Worldwide, Inc. Process for producing tissue products
US7588662B2 (en) 2007-03-22 2009-09-15 Kimberly-Clark Worldwide, Inc. Tissue products containing non-fibrous polymeric surface structures and a topically-applied softening composition
US20080230196A1 (en) * 2007-03-22 2008-09-25 Kou-Chang Liu Softening compositions for treating tissues which retain high rate of absorbency
WO2008157132A1 (en) 2007-06-14 2008-12-24 Dow Global Technologies Inc. Additive compositions for treating various base sheets
US8697934B2 (en) 2007-07-31 2014-04-15 Kimberly-Clark Worldwide, Inc. Sensor products using conductive webs
US20090036015A1 (en) * 2007-07-31 2009-02-05 Kimberly-Clark Worldwide, Inc. Conductive Webs
US20090036850A1 (en) * 2007-07-31 2009-02-05 Davis-Dang Nhan Sensor products using conductive webs
US20090036012A1 (en) * 2007-07-31 2009-02-05 Kimberly-Clark Worldwide,Inc. Conductive webs
US8372766B2 (en) 2007-07-31 2013-02-12 Kimberly-Clark Worldwide, Inc. Conductive webs
US8058194B2 (en) 2007-07-31 2011-11-15 Kimberly-Clark Worldwide, Inc. Conductive webs
US20090057456A1 (en) * 2007-08-31 2009-03-05 Thomas Gerard Shannon Rolled Tissue Product Having a Flexible Core
US20090069550A1 (en) * 2007-08-31 2009-03-12 Biojoule Limited Lignin and other products isolated from plant material, methods for isolation and use, and compositions containing lignin and other plant-derived products
US8053566B2 (en) 2007-08-31 2011-11-08 Vertichem Corporation Methods for isolating and harvesting lignin and isolated lignin preparations produced using the methods
US20090057169A1 (en) * 2007-08-31 2009-03-05 Benjamin Joseph Kruchoski Spindle and Spindle Attachments for Coreless and Flexible Core Rolled Tissue Products
US20100255207A1 (en) * 2007-09-28 2010-10-07 Dow Global Technologies Inc. Dispersions of higher crystallinity olefins
US8318257B2 (en) 2007-09-28 2012-11-27 Dow Global Technologies Llc Dispersions of higher crystallinity olefins
EP2543690A2 (en) 2007-09-28 2013-01-09 Dow Global Technologies LLC Fiber coated with a dispersion of higher crystallinity olefin
EP2543764A2 (en) 2007-09-28 2013-01-09 Dow Global Technologies LLC Cellulose-based article with dispersion of higher crystallinity olefin
EP2543763A2 (en) 2007-09-28 2013-01-09 Dow Global Technologies LLC Fibrous structure impregnated with a dispersion of higher crystallinity olefin
EP2543691A2 (en) 2007-09-28 2013-01-09 Dow Global Technologies LLC Method to make a long fiber concentrate with a dispersion of higher crystallinity olefin
EP2543393A2 (en) 2007-09-28 2013-01-09 Dow Global Technologies LLC Foam produced from a dispersion of higher crystallinity olefins
US8859661B2 (en) 2007-11-15 2014-10-14 Dow Global Technologies Llc Coating composition, a coated article, and method of forming such articles
EP2568023A1 (en) 2007-11-15 2013-03-13 Dow Global Technologies LLC A coated article, and method of forming such articles
US20100279113A1 (en) * 2007-11-15 2010-11-04 Dow Global Technologies Inc. coating composition, a coated article, and method of forming such articles
US10793738B2 (en) 2007-11-15 2020-10-06 Dow Global Technologies Llc Coating composition, a coated article, and method of forming such articles
WO2009066007A2 (en) * 2007-11-20 2009-05-28 Valtion Teknillinen Tutkimuskeskus Process for defibering a fibrous raw-material
WO2009066007A3 (en) * 2007-11-20 2009-10-22 Valtion Teknillinen Tutkimuskeskus Process for defibering a fibrous raw-material
US8334226B2 (en) 2008-05-29 2012-12-18 Kimberly-Clark Worldwide, Inc. Conductive webs containing electrical pathways and method for making same
US20090321238A1 (en) * 2008-05-29 2009-12-31 Kimberly-Clark Worldwide, Inc. Conductive Webs Containing Electrical Pathways and Method For Making Same
US8940323B2 (en) 2008-05-30 2015-01-27 Kimberly-Clark Worldwide, Inc. Tissue products having a cooling sensation when contacted with skin
US20100155006A1 (en) * 2008-12-22 2010-06-24 Kimberly-Clark Worldwide, Inc. Conductive Webs and Process For Making Same
US8172982B2 (en) 2008-12-22 2012-05-08 Kimberly-Clark Worldwide, Inc. Conductive webs and process for making same
US8568561B2 (en) 2009-03-20 2013-10-29 Kimberly-Clark Worldwide, Inc. Creped tissue sheets treated with an additive composition according to a pattern
US20100236735A1 (en) * 2009-03-20 2010-09-23 Kimberly-Clark Worldwide, Inc. Creped Tissue Sheets Treated With An Additive Composition According to A Pattern
US8105463B2 (en) 2009-03-20 2012-01-31 Kimberly-Clark Worldwide, Inc. Creped tissue sheets treated with an additive composition according to a pattern
US9267027B2 (en) * 2009-05-28 2016-02-23 Fibria Innovations Inc. Resin compositions comprising lignin derivatives
US10435562B2 (en) 2009-05-28 2019-10-08 Fibria Innovations Inc. Derivatives of native lignin, lignin-wax compositions, their preparation, and uses thereof
US9708490B2 (en) 2009-05-28 2017-07-18 Fibria Innovations Inc. Derivatives of native lignin
EP2435456A4 (en) * 2009-05-28 2012-12-12 Lignol Innovations Ltd Derivatives of native lignin from hardwood feedstocks
US20120136097A1 (en) * 2009-05-28 2012-05-31 Alex Berlin Resin compositions comprising lignin derivatives
EP2435453B1 (en) * 2009-05-28 2022-03-02 Suzano Canada Inc. Derivatives of native lignin
US20110123578A1 (en) * 2009-11-20 2011-05-26 Wenzel Scott W Cooling Substrates With Hydrophilic Containment Layer and Method of Making
US8795717B2 (en) 2009-11-20 2014-08-05 Kimberly-Clark Worldwide, Inc. Tissue products including a temperature change composition containing phase change components within a non-interfering molecular scaffold
WO2011061641A2 (en) 2009-11-20 2011-05-26 Kimberly-Clark Worldwide, Inc. Cooling substrates with hydrophilic containment layer and method of making
US20110124769A1 (en) * 2009-11-20 2011-05-26 Helen Kathleen Moen Tissue Products Including a Temperature Change Composition Containing Phase Change Components Within a Non-Interfering Molecular Scaffold
US20110123584A1 (en) * 2009-11-20 2011-05-26 Jeffery Richard Seidling Temperature Change Compositions and Tissue Products Providing a Cooling Sensation
US9181465B2 (en) 2009-11-20 2015-11-10 Kimberly-Clark Worldwide, Inc. Temperature change compositions and tissue products providing a cooling sensation
WO2011061643A2 (en) 2009-11-20 2011-05-26 Kimberly-Clark Worldwide, Inc. Tissue products including a temperature change composition containing phase change components within a non-interfering molecular scaffold
US8480852B2 (en) 2009-11-20 2013-07-09 Kimberly-Clark Worldwide, Inc. Cooling substrates with hydrophilic containment layer and method of making
US9545365B2 (en) 2009-11-20 2017-01-17 Kimberly-Clark Worldwide, Inc. Temperature change compositions and tissue products providing a cooling sensation
US8894814B2 (en) 2009-11-20 2014-11-25 Kimberly-Clark Worldwide, Inc. Cooling substrates with hydrophilic containment layer and method of making
US10533030B2 (en) 2010-02-15 2020-01-14 Suzano Canada Inc. Carbon fibre compositions comprising lignin derivatives
US9982174B2 (en) 2010-02-15 2018-05-29 Fibria Innovations Inc. Binder compositions comprising lignin derivatives
US10139050B2 (en) 2010-05-07 2018-11-27 Solray Holdings Limited System and process for equalization of pressure of a process flow stream across a valve
US9746135B2 (en) 2010-05-07 2017-08-29 Solray Holdings Limited System and process for equalization of pressure of a process flow stream across a valve
WO2011139165A1 (en) * 2010-05-07 2011-11-10 Solray Energy Limited Biomasses for the production of alternative petrochemical feedstock
WO2012054947A3 (en) * 2010-10-29 2012-08-23 Annikki Gmbh Method for production of lignin
US9840621B2 (en) 2011-03-24 2017-12-12 Fibria Innovations Inc. Compositions comprising lignocellulosic biomass and organic solvent
WO2013005104A2 (en) 2011-07-03 2013-01-10 Lignin Polymer Limited Methods and systems for processing plants and converting cellulosic residue to crude bio-oils
US9255189B2 (en) * 2011-07-28 2016-02-09 Greenfield Specialty Alcohols Inc. Ethanol production with two stage continuous steam pre-treatment of lignocellulosic biomass
US20130029406A1 (en) * 2011-07-28 2013-01-31 Greenfield Ethanol Inc. Two stage continuous pre-treatment of lignocellulosic biomass
US9163169B2 (en) 2012-03-13 2015-10-20 Georgia-Pacific Chemicals Llc Adhesive compositions having a reduced cure time and methods for making and using same
WO2014055463A1 (en) 2012-10-01 2014-04-10 Georgia-Pacific Chemicals Llc Modified polyphenol binder compositions and methods for making and using same
US9586338B2 (en) 2012-10-01 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose containing composite products
US10421212B2 (en) 2012-10-01 2019-09-24 Georgia-Pacific Chemicals Llc Methods for making lignocellulose containing composite products
US9587077B2 (en) 2013-03-14 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making composite products containing lignocellulose substrates
US9243114B2 (en) 2013-03-14 2016-01-26 Georgia-Pacific Chemicals Llc Binder compositions and methods for making and using same
US9243365B2 (en) 2013-12-20 2016-01-26 Georgia-Pacific Chemicals Llc Release aids with adjustable cloud points for creping processes
US9289520B2 (en) 2014-02-27 2016-03-22 Kimberly-Clark Worldwide, Inc. Method and system to clean microorganisms without chemicals
US9617427B2 (en) 2014-04-02 2017-04-11 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products with oxidative binders and encapsulated catalyst
US9587114B2 (en) 2014-04-02 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products with oxidative binders and complexed metal catalyst
US9587115B2 (en) 2014-04-02 2017-03-07 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products
WO2016062676A1 (en) 2014-10-20 2016-04-28 Max Planck Gesellschaft Zur Förderung Der Wissenschaft E.V. Method for precipitating lignin from organosolv pulping liquors
DE102014221238A1 (en) 2014-10-20 2016-04-21 Mpg Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V. Process for the precipitation of lignin from organosolv cooking liquors
US9644317B2 (en) 2014-11-26 2017-05-09 International Paper Company Continuous digester and feeding system
WO2017009662A1 (en) 2015-07-16 2017-01-19 C-Tex Limited Shaped nanoporous bodies
US10773234B2 (en) 2015-07-16 2020-09-15 Neoteryx, Llc Shaped nanoporous bodies
EP4159918A1 (en) 2015-11-03 2023-04-05 Kimberly-Clark Worldwide, Inc. Foamed composite web with low wet collapse
WO2017079310A1 (en) 2015-11-03 2017-05-11 Kimberly-Clark Worldwide, Inc. Foamed composite web with low wet collapse
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint
US11512173B2 (en) 2016-10-31 2022-11-29 University Of Tennessee Research Foundation Method of producing carbon fibers and carbon fiber composites from plant derived lignin and its blends
WO2018114905A1 (en) * 2016-12-21 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Two-stage digestion method for chemical fractionation of lignocellulose
US10584185B2 (en) 2017-08-08 2020-03-10 Kultevat, Inc. Rubber and by-product extraction systems and methods
US11033833B2 (en) 2017-08-08 2021-06-15 Kultevat, Inc. System and method for continuous stirred tank solvent extraction using feedstock
US11833448B2 (en) 2017-08-08 2023-12-05 Kultevat, Inc. System and method for continuous stirred tank solvent extraction using feedstock
US11230613B2 (en) 2017-08-08 2022-01-25 Kultevat, Inc. Rubber and by-product extraction systems and methods
WO2019032448A1 (en) * 2017-08-08 2019-02-14 Kultevat, Inc. System and method for continuous stirred tank solvent extraction using feedstock
US11566086B2 (en) 2017-08-08 2023-01-31 Kultevat, Inc. Rubber and by-product extraction systems and methods
US11565195B2 (en) 2017-08-08 2023-01-31 Kultevat, Inc. System and method for continuous stirred tank solvent extraction using feedstock
US11306264B2 (en) 2018-02-16 2022-04-19 A.P. Møller—Mærsk A/S Biofuel composition comprising lignin
US10829602B2 (en) 2018-03-20 2020-11-10 Auburn University Transparent and homogenous cellulose nanocrystal-lignin UV protection films
US11807727B2 (en) 2018-03-20 2023-11-07 Auburn University Transparent and homogenous cellulose nanocrystal-lignin UV protection films
WO2019183166A1 (en) 2018-03-20 2019-09-26 Auburn University Transparent and homogenous cellulose nanocrystal-lignin uv protection films
US11306113B2 (en) 2019-11-13 2022-04-19 American Process International LLC Process for the production of cellulose, lignocellulosic sugars, lignosulfonate, and ethanol
US11118017B2 (en) 2019-11-13 2021-09-14 American Process International LLC Process for the production of bioproducts from lignocellulosic material
US20210245392A1 (en) * 2020-02-11 2021-08-12 RF Kettle Company, LLC Ethanol-Based Extraction of Soluble Wood Components
WO2022129653A1 (en) * 2020-12-18 2022-06-23 Consejo Superior De Investigaciones Cientificas (Csic) Method for obtaining reinforced packaging paper
ES2915174A1 (en) * 2020-12-18 2022-06-20 Instituto Nac De Investigacion Y Tecnologia Agraria Y Alimentaria Inia Procedure for obtaining reinforced packaging (Machine-translation by Google Translate, not legally binding)
WO2023020752A1 (en) * 2021-08-17 2023-02-23 Kat2Biz Ab Method of producing lignin oil and dissolving cellulose from lignocellulosic biomass feedstock
WO2024063970A2 (en) 2022-09-09 2024-03-28 Holcim Technology Ltd Rubber roofing membranes with lignin

Similar Documents

Publication Publication Date Title
US3585104A (en) Organosolv pulping and recovery process
US4668340A (en) Method of countercurrent acid hydrolysis of comminuted cellulosic fibrous material
US5788812A (en) Method of recovering furfural from organic pulping liquor
US4100016A (en) Solvent pulping process
US4174997A (en) Method and apparatus for continuous hydrolysis of cellulosic fiber material
FI99149C (en) High-sulphidity boil for pulp using black liquor sulfonization of steamed chips
EP0569526A1 (en) Pulping of lignocellulosic materials and recovery of resultant by-products
US20020069987A1 (en) Integrated processing of biomass and liquid effluents
AU676829B2 (en) Pulping of fibrous plant materials and recovery of resultantby-products
FI69130C (en) REQUIREMENTS FOR CONTAINING CONTAINER UPPSLUTNING AV VAEXTFIBERMATERIAL
US2675311A (en) Paper pulp process and apparatus
CS230564B2 (en) Production method of chemical pulp
NO152869B (en) Hexagonal hexagonal box with lid in extension of the sidewalls
AU779714B2 (en) Process for treating biomass fibrous material
FI75879B (en) FOERFARANDE OCH APPARATUR FOER FOERBEHANDLING AV LIGNOCELLULOSAMATERIAL VID KONTINUERLIG UPPSLUTNING AV LIGNOCELLULOSAMATERIAL TILL CELLULOSAMASSA.
US4595456A (en) Pulp washing process
NO863018L (en) PROCEDURE FOR DRAINAGE OF LIGNOCELLULOSE.
US3764462A (en) Recovery of furfural and methanol from spent pulping liquors
US3165436A (en) Continuous impregnating and pulping process
US3764461A (en) Recovery and separation of chemicals produced during kraft pulping operations
US7351306B2 (en) Cooking of cellulose pulp in a cooking liquor containing pre-evaporated black liquor
FI129729B (en) A method and an apparatus for recovering furfural
US2801206A (en) Process of recovering alcohol from waste sulphite liquor
US3969184A (en) Digestion odor control
US1852011A (en) Method and apparatus for producing cellulose from lignified material