US3584389A - Print drying - Google Patents

Print drying Download PDF

Info

Publication number
US3584389A
US3584389A US795897A US3584389DA US3584389A US 3584389 A US3584389 A US 3584389A US 795897 A US795897 A US 795897A US 3584389D A US3584389D A US 3584389DA US 3584389 A US3584389 A US 3584389A
Authority
US
United States
Prior art keywords
temperature
paper
ink
drying
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US795897A
Inventor
Kenneth Hilton
Sidney Hirst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRST MICROWAVE HEATING Ltd
Original Assignee
HIRST MICROWAVE HEATING Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRST MICROWAVE HEATING Ltd filed Critical HIRST MICROWAVE HEATING Ltd
Application granted granted Critical
Publication of US3584389A publication Critical patent/US3584389A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/788Arrangements for continuous movement of material wherein an elongated material is moved by applying a mechanical tension to it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0486Particular types of dryers
    • B41F23/0493Microwave dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0066Heating devices using lamps for industrial applications for photocopying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/046Microwave drying of wood, ink, food, ceramic, sintering of ceramic, clothes, hair

Definitions

  • the invention relates to method and apparatus for heating a dielectric member, such as for drying printing ink on paper, in which both microwave and infra-red radiation are used for heating. This enables a uniform rise in the temperature of the surface of the member, e.g. the coating up to the required temperature, e.g. the ink drying temperature, to be achieved.
  • This invention relates to heating dielectric members such as for drying a coating, e.g. printing ink, on a member, e.g. paper, which has an appreciable water content.
  • the evaporation of the water from the paper takes place at the paper/ ink interface, and not only holds the ink temperature down until evaporation is complete, but also tends to reduce the adhesion of the ink on the paper surface.
  • This problem may exist in any situation in which it is desired to heat the surface of or a coating on the surface of a member to a temperature higher than the temperature to which it is desired to raise inner portions of the member.
  • the present invention proposes to solve the problem by a method and apparatus in which both microwave heating and infra-red heating are utilised.
  • FIGS. 1 and 2 are respectively a schematic side elevation and a schematic plan view of apparatus accord-ing to the invention
  • FIG. 3 is a graph representing the consumption of power, in a known print-drying apparatus, by a freshly printed moisture-containing sheet, and
  • FIG. 4 is a graph representing the consumption of a CC power, by a similar sheet, in print-drying apparatus according to the invention.
  • the illustrated embodiment of print-drying apparatus comprises two serpentine slotted waveguides 11 and 12, each fed at both ends by a pair of magnetrons 13, 14 and 15, 16 respectively, as described in our co-pending application No. 710,804.
  • a web 17 of printed paper on which the print is to be dried passes, from left to right in FIGS. 1 and 2, through these slotted waveguides in succession, and thereafter passes under three infra-red heaters 18, 19 and 20 disposed, as shown in FIG. 2, to span the whole width of the web 17.
  • each infra-red heater comprises a parabolic reflector 21 and a linear heater element 22 disposed along the focal axis of the reflector, and the part of the web 17 under a given heater at any moment is thus subjected to substantially uniform radiation per unit area.
  • FIG. 3 shows schematically the effect of heating, with microwave energy only, and at constant power, a sheet of moisture-containing paper carrying undried printing ink whose dry-ing temperature is above 100 C. Initially, and until a temperature of about C. is reached, the temperature of the paper and of the ink rises linearly, proportional to the power absorbed (mostly by the paper, the ink being heated principally by conduction). Between 80 C. and C., the ink and paper temperature rises much more slowly, since much of the absorbed power is used in vaporising water contained in the paper, and 100 C. is reached only when virtually all the water has been vaporised.
  • the temperature of the ink and of the paper again rises at a steeper rate (not necessarily the same as the rate below 80 C.), proportional to the absorption of power, until the temperature at which the ink dries is reached.
  • the power is then shut off, and the temperature of the dried ink and paper falls again.
  • the relative flatness of the portion of the curve between 80 C. and 100 C. represents waste of power in removing water from the paper.
  • FIG. 4 shows schematically the different situation which obtains when ink carried on a similar moisture-containing sheet is dried in accordance with the present invention.
  • the paper and ink are heated, at substantially constant rate, to a temperature of about 80 C. by means of the slotted waveguides 11 and 12.
  • the power output of the magnetrons 13, 14 and 15, 16, or of the speed at which the web 17 is passed through the waveguides it can be arranged that the web emerges from the waveguide 12 with the desired temperature of about 80 C.
  • the infra-red radiation from the heaters 18, 19 and 20 is absorbed principally by the ink rather than by the lighter coloured paper, in which also the infra-red penetration depth is small, with the result that the paper temperature does not rise substantially above 80 C., whereas the ink temperature continues to rise steeply so that it achieves the drying temperature of the ink before emerging from under the infra-red heaters.
  • the ink has been dried without substantial consumption of energy to remove water from the paper, though the total drying time has been minimised by initial rapid microwave heating of the ink and paper up to 80 C.
  • the improved drying obtained by use of the invention may be exemplified by reference to the drying of paper, 36 inches wide and weighing about 52 grammes per square meter, printed with four colours simultaneously on one side.
  • the drying were eltected by means of infra-red heating alone, at 12 kw., the maximum permissible speed of the web through the heater would be less than 5 0 feet per minute. If the drying were by means of microwave energy alone, at 20 kw., the maximum permissible speed of the web through the microwave heater would be about 500 feet per minute. If the two heating means are combined according to the invention, however, so that the web is subjected first to a 20 kw. microwave heating and then immediately to a 12 kw. infra-red heater, a web speed through the heaters of as much as 1000 feet per minute is possible. It may be remarked, in this connection, that 20 kw. and 12 kw. approximate to 3:2, which is found in practice to be the optimum ratio of microwave power to infra-red power; though the optimum ratio may depend to some extent on the inks and papers used, and in particular on the water content of the paper.
  • Apparatus for heating a dielectric member having liquid absorbed therein comprising a conductive walled vessel for receiving the member, a microwave generator connected to the vessel for supplying microwaves thereto to heat the member, and a device for producing infra-red radiation, the vessel and the device being arranged to define a path along which the member can move and being disposed, with respect to the path, such that the member is heated sequentially by microwaves and infrared radiation, and means for moving said member along said path at a speed such that said microwaves heat inner and outer zones to said member substantially uniformly up to a temperature at which said absorbed liquid may begin substantial vaporization and said infra-red radiation heats outer zones of said member beyond said temperature.
  • a method of heating a dielectric member having liquid absorbed therein comprising subjecting the member to microwave energy for a period suflicient to heat the member substantially uniformly in inner zones and sur- 4 face zones to a temperature in the region of that at which substantial vaporization of said liquid may occur, thereupon discontinuing the subjecting of the member to said microwave energy and thereafter subjecting the member to infra-red radiation to continue the heating of the surface zones of said member beyond said temperature.
  • a method of drying a liquid coating provided on a dielectric member having moisture absorbed therein comprising subjecting the member with the coating thereon to microwave energy for a time sufficient to heat the member and the coating to a temperature in the region of that at which substantial evaporation of said moisture may begin and thereafter subjecting said member to infra-red radiation to continue the heating of said coating to a higher temperature.
  • a method of drying a coating printed upon a web of dielectric material containing moisture absorbed therein, said coating having a drying temperature higher than the temperature at which said moisture evaporates said method comprising subjecting the web with the coating thereon to microwave energy to heat the web and the coating to a temperature in the region of that at which substantial evaporation of said moisture from said web may begin to occur, thereupon terminating the subjecting of said web with the coating thereon to said microwave energy and thereafter subjecting said web with said coating thereon to infra-red radiation to continue the heating of said coating to said drying temperature.

Abstract

THE INVENTION RELATES TO METHOD AND APPARATUS FOR HEATING A DIELECTRIC MEMBER, SUCH AS FOR DRYING PRINTING INK ON PAPER, IN WHICH BOTH MICROWAVE AND INFRA-RED RADIATION ARE USED FOR HEATING. THIS ENABLES A UNIFORM RISE IN THE TEMPERATURE OF THE SURFACE OF THE MEMBER, E.G. THE COATING UP TO THE REQUIRED TEMPERATURE, E.G. THE INK DRYING TEMPERATURE, TO BE ACHIEVED.

Description

June 15, 1971 HI ETAL 3,584,389
f PRINT DRYING Filed Feb. 3,.1969 2 Sheets-Sheet 1 June 15, 1971 HILTQN ETAL 3,584,389
PRINT DRYING Filed Feb. 5, 1969 2 Sheets-Sheet 2 United States Patent 3,584,389 PRINT DRYING Kenneth Hilton, Three Bridges, Crawley, and Sidney Hirst, Crawley, England, assignors to Hirst (Microwave Heating) Limited, Sussex, England Filed Feb. 3, 1969, Ser. No. 795,897 Int. Cl. B01k /00 U.S. Cl. 34-1 7 Claims ABSTRACT OF THE DISCLOSURE The invention relates to method and apparatus for heating a dielectric member, such as for drying printing ink on paper, in which both microwave and infra-red radiation are used for heating. This enables a uniform rise in the temperature of the surface of the member, e.g. the coating up to the required temperature, e.g. the ink drying temperature, to be achieved.
This invention relates to heating dielectric members such as for drying a coating, e.g. printing ink, on a member, e.g. paper, which has an appreciable water content.
It is known to dry printed matter on paper by means of microwave energy applied by passing the paper through a serpentine slotted waveguide as described in British patent specification No. 1,050,493, for example; and this is effective with inks which dry at temperatures not greater than about 80 C. However, other considerations than drying temperature have to be taken into account when formulating inks, and normal printing inks dry at temperatures above 100 C. If ink temperatures in excess of 100 C. are to be achieved solely by microwave heating of paper on which the ink is printed, the heating must first vaporise the water content of the paper, and this is disadvantageous for two reasons. Firstly, the substantially complete drying of the paper itself consumes energy which is wasted, inasmuch as it would be saved if the ink temperature could be raised above 100 C. without the paper temperature rising substantially above 80 C. Secondly, the evaporation of the water from the paper takes place at the paper/ ink interface, and not only holds the ink temperature down until evaporation is complete, but also tends to reduce the adhesion of the ink on the paper surface.
On the other hand, if the ink is dried by infra-red heating alone, a long drying time (and thus a long drier, if the printed paper being dried is being moved continuously through the drier) is required, partly because of the heat sink effect of the paper and partly because the exposed ink surface dries fastest and tends to become sealed, thus slowing down the release of solvents from within the ink.
This problem, although described with respect to drying print, may exist in any situation in which it is desired to heat the surface of or a coating on the surface of a member to a temperature higher than the temperature to which it is desired to raise inner portions of the member.
The present invention proposes to solve the problem by a method and apparatus in which both microwave heating and infra-red heating are utilised.
An embodiment of print-drying apparatus according to the invention is described below with reference to the accompanying drawings, in which:
FIGS. 1 and 2 are respectively a schematic side elevation and a schematic plan view of apparatus accord-ing to the invention,
FIG. 3 is a graph representing the consumption of power, in a known print-drying apparatus, by a freshly printed moisture-containing sheet, and
FIG. 4 is a graph representing the consumption of a CC power, by a similar sheet, in print-drying apparatus according to the invention.
The illustrated embodiment of print-drying apparatus, as shown in FIGS. 1 and 2, comprises two serpentine slotted waveguides 11 and 12, each fed at both ends by a pair of magnetrons 13, 14 and 15, 16 respectively, as described in our co-pending application No. 710,804. A web 17 of printed paper on which the print is to be dried passes, from left to right in FIGS. 1 and 2, through these slotted waveguides in succession, and thereafter passes under three infra- red heaters 18, 19 and 20 disposed, as shown in FIG. 2, to span the whole width of the web 17. As shown, each infra-red heater comprises a parabolic reflector 21 and a linear heater element 22 disposed along the focal axis of the reflector, and the part of the web 17 under a given heater at any moment is thus subjected to substantially uniform radiation per unit area.
FIG. 3 shows schematically the effect of heating, with microwave energy only, and at constant power, a sheet of moisture-containing paper carrying undried printing ink whose dry-ing temperature is above 100 C. Initially, and until a temperature of about C. is reached, the temperature of the paper and of the ink rises linearly, proportional to the power absorbed (mostly by the paper, the ink being heated principally by conduction). Between 80 C. and C., the ink and paper temperature rises much more slowly, since much of the absorbed power is used in vaporising water contained in the paper, and 100 C. is reached only when virtually all the water has been vaporised. Thereafter, the temperature of the ink and of the paper again rises at a steeper rate (not necessarily the same as the rate below 80 C.), proportional to the absorption of power, until the temperature at which the ink dries is reached. The power is then shut off, and the temperature of the dried ink and paper falls again. The relative flatness of the portion of the curve between 80 C. and 100 C. represents waste of power in removing water from the paper.
FIG. 4 shows schematically the different situation which obtains when ink carried on a similar moisture-containing sheet is dried in accordance with the present invention. Initially, the paper and ink are heated, at substantially constant rate, to a temperature of about 80 C. by means of the slotted waveguides 11 and 12. By suitable adjustment of the power output of the magnetrons 13, 14 and 15, 16, or of the speed at which the web 17 is passed through the waveguides, it can be arranged that the web emerges from the waveguide 12 with the desired temperature of about 80 C. The infra-red radiation from the heaters 18, 19 and 20 is absorbed principally by the ink rather than by the lighter coloured paper, in which also the infra-red penetration depth is small, with the result that the paper temperature does not rise substantially above 80 C., whereas the ink temperature continues to rise steeply so that it achieves the drying temperature of the ink before emerging from under the infra-red heaters. In this case, the ink has been dried without substantial consumption of energy to remove water from the paper, though the total drying time has been minimised by initial rapid microwave heating of the ink and paper up to 80 C.
The improved drying obtained by use of the invention may be exemplified by reference to the drying of paper, 36 inches wide and weighing about 52 grammes per square meter, printed with four colours simultaneously on one side.
If the drying were eltected by means of infra-red heating alone, at 12 kw., the maximum permissible speed of the web through the heater would be less than 5 0 feet per minute. If the drying were by means of microwave energy alone, at 20 kw., the maximum permissible speed of the web through the microwave heater would be about 500 feet per minute. If the two heating means are combined according to the invention, however, so that the web is subjected first to a 20 kw. microwave heating and then immediately to a 12 kw. infra-red heater, a web speed through the heaters of as much as 1000 feet per minute is possible. It may be remarked, in this connection, that 20 kw. and 12 kw. approximate to 3:2, which is found in practice to be the optimum ratio of microwave power to infra-red power; though the optimum ratio may depend to some extent on the inks and papers used, and in particular on the water content of the paper.
It will be understood that, if the web is printed on both surfaces, extra infra-red heaters 23, shown in broken lines in FIG. 1, are provided for heating the ink on the second surface.
Furthermore a similar graph to that shown in FIG. 4 can be obtained for coatings other than ink on dielectrics other than paper, and for the surface and inner portions of a dielectric. In the latter case, the curve for the temperature of the surface would be similar to that shown for the ink in FIG. 4 and the curve for the temperature of the inner portion of the dielectric similar to that for the paper in FIG. 4.
Hence the term surface is used in the following claims to mean both the surface proper of a dielectric or a coating thereon, when provided.
What we claim is:
1. Apparatus for heating a dielectric member having liquid absorbed therein comprising a conductive walled vessel for receiving the member, a microwave generator connected to the vessel for supplying microwaves thereto to heat the member, and a device for producing infra-red radiation, the vessel and the device being arranged to define a path along which the member can move and being disposed, with respect to the path, such that the member is heated sequentially by microwaves and infrared radiation, and means for moving said member along said path at a speed such that said microwaves heat inner and outer zones to said member substantially uniformly up to a temperature at which said absorbed liquid may begin substantial vaporization and said infra-red radiation heats outer zones of said member beyond said temperature.
2. A method of heating a dielectric member having liquid absorbed therein comprising subjecting the member to microwave energy for a period suflicient to heat the member substantially uniformly in inner zones and sur- 4 face zones to a temperature in the region of that at which substantial vaporization of said liquid may occur, thereupon discontinuing the subjecting of the member to said microwave energy and thereafter subjecting the member to infra-red radiation to continue the heating of the surface zones of said member beyond said temperature.
3. A method of drying a liquid coating provided on a dielectric member having moisture absorbed therein, comprising subjecting the member with the coating thereon to microwave energy for a time sufficient to heat the member and the coating to a temperature in the region of that at which substantial evaporation of said moisture may begin and thereafter subjecting said member to infra-red radiation to continue the heating of said coating to a higher temperature.
4. A method of drying a coating printed upon a web of dielectric material containing moisture absorbed therein, said coating having a drying temperature higher than the temperature at which said moisture evaporates, said method comprising subjecting the web with the coating thereon to microwave energy to heat the web and the coating to a temperature in the region of that at which substantial evaporation of said moisture from said web may begin to occur, thereupon terminating the subjecting of said web with the coating thereon to said microwave energy and thereafter subjecting said web with said coating thereon to infra-red radiation to continue the heating of said coating to said drying temperature.
5. A method according to claim 4, wherein said coating is printing ink.
6. A method according to claim 5, wherein said web is paper.
7. A method according to claim 4, wherein the temperature of said coating increases at substantially the same rate during the subjecting of the web to the microwave radiation and to the infra-red radiation, and wherein said rate of increase is substantially uniform until the coating reaches said drying temperature.
References Cited UNITED STATES PATENTS 2,676,416 4/1954 Calosi et al. 341 3,474,544 10/1969 Holden, Jr. et a1. 34-18 CHARLES SUKALO, Primary Examiner
US795897A 1969-02-03 1969-02-03 Print drying Expired - Lifetime US3584389A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79589769A 1969-02-03 1969-02-03

Publications (1)

Publication Number Publication Date
US3584389A true US3584389A (en) 1971-06-15

Family

ID=25166730

Family Applications (1)

Application Number Title Priority Date Filing Date
US795897A Expired - Lifetime US3584389A (en) 1969-02-03 1969-02-03 Print drying

Country Status (1)

Country Link
US (1) US3584389A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733709A (en) * 1971-05-06 1973-05-22 Sun Chemical Corp Reflector and cooling means therefor
US3927291A (en) * 1973-06-29 1975-12-16 Raytheon Co Reduced speed compensator for microwave heating applicator
US3934500A (en) * 1973-12-21 1976-01-27 Chromax Limited Machine for printing on cylindrical or frusto-conical containers with ultra-violet-light-setting ink
US4184060A (en) * 1976-11-25 1980-01-15 Hoechst Aktiengesellschaft Process for developing a two-component diazotype material on a non-metallic carrier, which material can be developed by the influence of heat
US4407651A (en) * 1982-02-05 1983-10-04 The Continental Group, Inc. Hybrid reheating system and method for polymer preforms
US5410283A (en) * 1993-11-30 1995-04-25 Xerox Corporation Phase shifter for fine tuning a microwave applicator
US5422463A (en) * 1993-11-30 1995-06-06 Xerox Corporation Dummy load for a microwave dryer
EP0678784A1 (en) * 1994-01-24 1995-10-25 Agfa-Gevaert N.V. Method and device for the rejuvenating of a polyester film base and method of drying a processed photographic material
US5631685A (en) * 1993-11-30 1997-05-20 Xerox Corporation Apparatus and method for drying ink deposited by ink jet printing
US20050068396A1 (en) * 2003-09-29 2005-03-31 Jordi Ferran Ink drying system for printer
US20080063806A1 (en) * 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Processes for curing a polymeric coating composition using microwave irradiation
US20080155766A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080157442A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions
US20080156427A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US20080156428A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US20080155764A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20090165223A1 (en) * 2007-12-27 2009-07-02 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US7568251B2 (en) 2006-12-28 2009-08-04 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
JP2010125781A (en) * 2008-11-28 2010-06-10 Mimaki Engineering Co Ltd Inkjet printer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733709A (en) * 1971-05-06 1973-05-22 Sun Chemical Corp Reflector and cooling means therefor
US3927291A (en) * 1973-06-29 1975-12-16 Raytheon Co Reduced speed compensator for microwave heating applicator
US3934500A (en) * 1973-12-21 1976-01-27 Chromax Limited Machine for printing on cylindrical or frusto-conical containers with ultra-violet-light-setting ink
US4184060A (en) * 1976-11-25 1980-01-15 Hoechst Aktiengesellschaft Process for developing a two-component diazotype material on a non-metallic carrier, which material can be developed by the influence of heat
US4407651A (en) * 1982-02-05 1983-10-04 The Continental Group, Inc. Hybrid reheating system and method for polymer preforms
US5410283A (en) * 1993-11-30 1995-04-25 Xerox Corporation Phase shifter for fine tuning a microwave applicator
US5422463A (en) * 1993-11-30 1995-06-06 Xerox Corporation Dummy load for a microwave dryer
US5631685A (en) * 1993-11-30 1997-05-20 Xerox Corporation Apparatus and method for drying ink deposited by ink jet printing
EP0678784A1 (en) * 1994-01-24 1995-10-25 Agfa-Gevaert N.V. Method and device for the rejuvenating of a polyester film base and method of drying a processed photographic material
US20050068396A1 (en) * 2003-09-29 2005-03-31 Jordi Ferran Ink drying system for printer
US7137694B2 (en) * 2003-09-29 2006-11-21 Hewlett-Packard Development Company, L.P. Ink drying system for printer
US20080063806A1 (en) * 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Processes for curing a polymeric coating composition using microwave irradiation
US20080155766A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080157442A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions
US20080156427A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US20080156428A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US20080155764A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7568251B2 (en) 2006-12-28 2009-08-04 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20090165223A1 (en) * 2007-12-27 2009-07-02 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
JP2010125781A (en) * 2008-11-28 2010-06-10 Mimaki Engineering Co Ltd Inkjet printer

Similar Documents

Publication Publication Date Title
US3584389A (en) Print drying
US5423260A (en) Device for heating a printed web for a printing press
US5634402A (en) Coating heater system
JPS6452897A (en) Method and apparatus for pressing and dehydrating paper web
FI77320C (en) Ways to dry wood products.
US3775860A (en) Method for drying materials with microwave energy
EP0036632A3 (en) Drying system
GB1592464A (en) Process for the uniform pre-drying of textile material webs
JPS57209819A (en) Preparation of active alumina pellet supporting cerium uniformly
CA2046912A1 (en) Drying
KR900702333A (en) Hot Melt Ink Printing System
JPS5793193A (en) Manufacture of recording sheet
ES8104874A1 (en) Process of pourable materials
CA1038458A (en) Microwave paint dryer
JP2001341285A (en) Method for drying water-based ink in gravure printing, and water-based gravure printing press
Resch Drying of incense cedar pencil slats by microwave power
SE9003032D0 (en) PROCEDURE FOR CONTACT-DRYING A PAPER OR CARTON COAT
JPS55107490A (en) Water ink drying method
JP2572182B2 (en) Far infrared heating device
KR970068877A (en) How to make rice cake
JPS6475886A (en) Straightening drier for molded cotton
JPS59125752A (en) Plate material for lithographic printing without requiring water and using method thereof
JPS6147584B2 (en)
JPH0621580Y2 (en) Wood coating film drying equipment
GB2001746A (en) Apparatus for curing decorated cylindrical objects