US3584189A - Temperature stabilizer for integrated circuits - Google Patents

Temperature stabilizer for integrated circuits Download PDF

Info

Publication number
US3584189A
US3584189A US752331A US3584189DA US3584189A US 3584189 A US3584189 A US 3584189A US 752331 A US752331 A US 752331A US 3584189D A US3584189D A US 3584189DA US 3584189 A US3584189 A US 3584189A
Authority
US
United States
Prior art keywords
heater
jacks
housing
window
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US752331A
Inventor
Leo Marcoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3584189A publication Critical patent/US3584189A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/10Plug-in assemblages of components, e.g. IC sockets
    • H05K7/1092Plug-in assemblages of components, e.g. IC sockets with built-in components, e.g. intelligent sockets

Definitions

  • a self-regulating heater for integrated circuits and the like is removably carried in a connector assembly.
  • the connector assembly includes a housing which on one side is adapted to receive an integrated circuit unit or the like and which on the other side removably receives in a force fit a base plug which in turn is adapted to be plugged into a circuit board.
  • the heater includes a heating element composed of 0.06 0 09 n m 2 m E I IMHO,- n wn w zwww G m 3 222 m m H m N 9 I m M 1 S m u R m m 1.
  • Contacts are provided on the heating element which are in resilient spring connection with heater terminals mounted in the base plug. By reaction the heating element is pressed against a heater plate also carried within the connector assembly. A rim of the heater plate is supported upon the margin of an opening or window in the housing so that an integrated circuit unit or the like mounted on the housing is placed in heat-exchange relationship with the heater plate whereby the temperature of the integrated circuit unit or the like is stabilized. Interchange may readily be made between various heater elements to provide desired changes in the regulated temperature.
  • a temperature stabilizer is provided which is not a permanent part of the integrated circuit unit which it serves. Repeated connections and disconnections of an integrated circuit with a circuit board may readily be accomplished without involving complications in making heater connections. Changes in heatersmay also be easily made.
  • FIG. 1 is an exploded view in perspective of parts of the stabilizer, an integrated circuit unit being shown at the extreme left;
  • FIG. 2 is an inside face view of the base plug shown at the extreme right of FIG. 1;
  • FIG. 3 is a longitudinal section taken on line 3-3 of FIG. 2;
  • FIG. 4 is a plan view of the base plug without its electrical connectors
  • FIG. 5 is a front elevation of FIG. 4;
  • FIG. 6 is a cross section taken on line 6-6 of FIG. 4;
  • FIG. 7 is a plan view of the outside face of a housing
  • FIG. 8 is a cross section taken on line8-8 of FIG. 7;
  • FIG. 9 is a front elevation of FIG. 7;
  • FIG. 10 is a left end view ofFIGS. 7 and 9;
  • FIG. 11 is a longitudinal section taken on line 11-11 of FIG.
  • FIG. 12 is a plan view of a heating element including its contacts
  • FIG. 13 is a front elevation of FIG. 12;
  • FIG. 14 is a right end view of FIG. 12;
  • FIG. 15 is a plan view of the heating element of FIGS. 12- -14 nested in a dished heater plate to form a complete heater;
  • FIG. 16 is a cross section on line 16-16 of FIG. 15, the dished heater plate being shown in longitudinal section;
  • FIG. 17 is a face view of an assembly of the housing on the base and illustrating the exposure of the heater plate
  • FIG. 18 is a front elevation of FIG. 17;
  • FIG. 19 is a cross section (except for heater assembly TR) on line 19-19 of FIG. 17, parts being shown in elevation, and showing in addition the application of an integrated circuit unit, the temperature of which is regulated; and
  • FIG. 20 is an enlarged view of an individual spring terminal and jack, showing in solid lines the shape in which it is manufactured and in phantom its sprung shape as assembled with the base.
  • FIG. 1 there is shown at the extreme left a conventional so-called 14-pin dual in-line integrated circuit unit C. This has opposite lines of terminal pins 1.
  • a base plug P composed of a body 2 of insulating material from which extend two heater terminals 3 and fourteen operating terminals 5, further details of which will be described below.
  • the number of operating terminals is arbitrary.
  • housing H composed of insulating material and formed for removable force-fit assembly with the body 2 of plug P.
  • Housing H has an opening or window 7 defined by flanges 43 and flanked by rows of openings 9 for receiving the pins 1 of the integrated circuit unit.
  • a heater element R composed of a bar 11 of semiconductive material having the above-mentioned PTC anomaly. It has terminal contacts 13 soldered thereto.
  • a heater plate T having a dished portion 15 for the reception of the heater. It is flanged as shown at 17.
  • the dished portion 15 of the heater plate fits into the window 7 of the housing H. Its flanged portion 17 rests upon the inside margins of the window 7.
  • the heater R Upon assembly under force-fit of the housing H with body 2 of the plug P, the heater R becomes nested in the dish 15 of the heater plate T. This nested assembly becomes a heater unit sandwiched between the housing H and the body 2. The dished portion 15 of the plate T becomes exposed in the window 7 and the heater R becomes connected with the heater terminals. The friction provided by the force-fit is sufficient to prevent separation under action of springs 23 but not enough to prevent manual separation when desired.
  • FIGS. 2-6 illustrate details of the plug P. It has a flat wall 19 through which the heater terminals 3 extend, as shown in FIGS. 2 and 3. To insure a secure connection heater terminals 3 may be staked to body 2. The insides of these terminals are located in a pocket 2] and on shoulders 22 support light compression springs 23. The longitudinal sidewalls 25 of the pocket 21 are formed exteriorly with ribs 26 notched as shown at 27 (FIGS. 4-6). The walls 25 are formed with flared recesses 29 connected with the notches 27. The notches as described are for the reception of spring clips 31, such as illustrated in greatly enlarged form in FIG. 20. Each springy strip is composed of conductive material such as copper. Its unsprung V-shape is as indicated in solid lines in FIG. 20.
  • This V-shape is adapted to have its side portions sprung together as shown by the phantom lines 33 in FIG. 20.
  • the sides are formed with loops 30 and flared ends 32.
  • each such operating terminal will then have a neck portion 35 thereof for springing placement in a notch 27.
  • FIGS. 4-6 the body portion 2 of the plug P is shown without any terminal or jack parts in place, whereas in FIGS. 1-3 the terminals 5 and jacks 37 are shown in assembled position.
  • housing H has sidewalls 36 the insides of which fit flush with the outsides of the walls 25 and the outside edges of the jacks 37, thus preventing escape of the spring terminal and jack parts 5 and 37.
  • the housing H also has end walls 39 which frictionally fit into notches 41 at the ends of body 2.
  • the sidewalls 36 of housing H are inwardly flanged as shown at 43 to form the window 7.
  • the openings 9 are located in these flanges and are flared on their outsides as at 44 so as to form entry guides for the rows of pins 1 of the integrated circuit unit C.
  • FIGS. 12-14 are shown details of the heater element R.
  • This comprises the bar 11 composed of semiconductive material having the PTC anomaly, such as doped barium titanate (BaTio barium strontium titanate (BaSrTiO,), barium lead titanate (BaPbTiO or the like.
  • Each material provides a self-regulated temperature under the constant voltage of the heater circuit of the circuit board.
  • the barium lead titanate provides the highest temperature of the three noted.
  • Each contact 13 is formed with a contact pad 45 on one face and an extending side strip 47. These are soldered to the bar 11.
  • the contacts 45 are near the ends of the bar 11 for contact with the conductive springs 23 of the heater terminals 3.
  • the contacts 45 and side strips 47 supply voltage across the bar, which due to the PTC anomaly maintains a substantially constant temperature.
  • FIGS. 15 and 16 Shown in FIGS. 15 and 16 is the heater plate T composed of black anodized aluminum which provides it with an insulated surface.
  • the bar 11 is adhered in the dished part 15 by suitable means such as epoxy resin.
  • the flanged portions 17 engage the inside margins of the window as illustrated in FIGS. 17-19.
  • the contact pads 45 engage the springs to maintain this engagement and to deliver heating voltage and current from the heating circuit in the circuit board.
  • the bar 11 will become resistance heated to and maintain substantially a constant temperature because of its PTC anomaly.
  • the integrated circuit unit C is plugged in
  • FIG. 19 is diagrammatically shown the integrated circuit connections 51 between opposite pins 1.
  • One pin 1 shown in one jack 37 is il lustrated by dotted lines in FIG. 19. Others have not been illustrated to avoid confusion in the longitudinal section.
  • the assembled device as shown in FIG. 18 may be plugged into and out of an appropriate circuit board.
  • the base P when plugged into the board may be permanently soldered into place.
  • the device may still be disassembled for substitution of one heater or another having the desired regulated temperature characteristic.
  • the circuit board may be either of the operational type or test type.
  • the device prevents temperature variations in the connected integrated circuitry caused by ambient temperature changes.
  • the device may be used for so-called burning-in" of newly manufactured integrated circuits, which means subjecting them for a period of time to a certain temperature to stabilize them.
  • the device may also be used as a heat test socket for testing circuit parameters of various integrated circuits.
  • housing and plug parts H and P for substitution of heaters are a desirable feature, if separability is not desired, they may be permanently joined as with a suitable adhesive, or by integral molding around the heater assembly.
  • the heating element exhibits moderate conductivity at temperatures below its stabilized temperature. As the temperature approaches the stabilized temperature, the conductivity of element 11 decreases rapidly.
  • the application of a substantially fixed voltage to the heater results'in fast warmup with no temperature override. This is due to the marked conductivity change in the control temperature. For example, in one form of the device, warming up from -5$ C. ambient, the device will draw about 6 watts for 30 seconds at 24 volts. it will stabilize in about 2% minutes, reducing its power requirement to about 1 55 watts steady-state at -55 C.
  • the device adjusts its steady-state requirement as dissipation conditions change. Steady-state power, for instance, decreases linearly with increasing ambient to about 0.3 watts at 60 C. ambient.
  • a temperature stabilizer for circuit devices having conductive leads comprising plug means, a PTC anomaly heater. in the plug means, said heater having an exposed heating surface, said plug means including heater terminals extending therefrom, said heater terminals being connected to said heater, springs electrically and removably connecting the heater terminals with said heater, means for removably mounting circuit devices including jacks in the plug means, additional terminals connected to said jacks respectively and extending from the plug means, said jacks being arranged adjacent to the exposed heating surface for the reception of circuit device leads and to removably place a circuit device having said leads in heat-exchange relationship with the exposed portions of said heater.
  • a temperature stabilizer for pin-type integrated circuits comprising a plug element, an enclosing housing connected therewith forming an assembly, said housing formed with, a window therein, a PTC anomaly heater located in the assembly and having a heating surface disposed at said window, heater terminals extending from said plug element and electrically connected with said heater, jacks located in the assembly, operating terminals extending from said jacks respectively to the exterior of the plug element, said housing having openings for receiving and directing pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said portions of the heater exposed in said window.
  • a temperature stabilizer according to claim 2 wherein there is a separable connection between the housing and the plug element whereby .they may be separated and reassembled for effecting heater substitutions.
  • a temperature stabilizer for multiple-pin, dual in-line integrated circuits comprising a hollow rectangular plug element, a rectangular housing connected therewith, said housing forming a rectangular window, a PTC anomaly heater located between the housing and the plug element and having a rectangular heated surface extending through said window, heater terminals extending from said plug element, springs electrically connecting the heater terminals with said heater, rows of jacks located between the housing and the plug dually aligned on opposite sides of the heater, operating terminals extending from said jacks and dually aligned on the exterior of the plug element, said housing having dually aligned openings on opposite sides of said heated surface for guiding pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said exposed portions of the heater.
  • a temperature stabilizer according to claim 6 wherein there is an openable force-tit between the housing and the plug whereby they may be'separated and reassembled for effecting heater substitutions.
  • a temperature stabilizer for integrated circuits comprising an insulating base, heater terminals and operating terminals extending from said insulating base for plugging into a circuit board, an insulating body connected with said base, said operating terminals being formed within the body as jacks, a PTC heater element within the body, said heater element having contacts engaged through springs with said heater terminals, said body having a window, a dished and flanged heater plate having at least a part of its dished portion extending through said window and its flanged portion engaging the inside margin of the window, said heater element being nested in said dished portion of the heater plate, said body having openings aligned with said jacks for the reception of pins of an integrated circuit and their direction into said jacks, said heater plate being in close heat-exchange relationship with the integrated circuit when its pins are applied to the jacks through said openings.
  • a temperature stabilizer made according to claim 9 wherein the base, the body and the heater element are separable for replacement of the heater element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Resistance Heating (AREA)

Abstract

A self-regulating heater for integrated circuits and the like is removably carried in a connector assembly. The connector assembly includes a housing which on one side is adapted to receive an integrated circuit unit or the like and which on the other side removably receives in a force fit a base plug which in turn is adapted to be plugged into a circuit board. The heater includes a heating element composed of material having a positive temperature coefficient of resistance. Contacts are provided on the heating element which are in resilient spring connection with heater terminals mounted in the base plug. By reaction the heating element is pressed against a heater plate also carried within the connector assembly. A rim of the heater plate is supported upon the margin of an opening or window in the housing so that an integrated circuit unit or the like mounted on the housing is placed in heat-exchange relationship with the heater plate whereby the temperature of the integrated circuit unit or the like is stabilized. Interchange may readily be made between various heater elements to provide desired changes in the regulated temperature.

Description

United States Patent Primary Examiner-J. V. Trune Assistant ExaminerC. L. Albritton Attorneys-Harold Levine, Edward J. Connors, Jr., James P.
McAndrews, John A. Haug and Gerald B. Epstein m r m n I m l m mum Cm mfi h 8 Mt m .mflnu e P- A -T r 0. de m W e mum i v fla Im AFPA 11:11.. 2 I253 7 m in-Win 1 ABSTRACT: A self-regulating heater for integrated circuits and the like is removably carried in a connector assembly. The connector assembly includes a housing which on one side is adapted to receive an integrated circuit unit or the like and which on the other side removably receives in a force fit a base plug which in turn is adapted to be plugged into a circuit board. The heater includes a heating element composed of 0.06 0 09 n m 2 m E I IMHO,- n wn w zwww G m 3 222 m m H m N 9 I m M 1 S m u R m m 1. mm m 0 2 9 m W F m I m m m R m .MA mnnm E m m 1/ .n m U ""9 C "U c a ""3 S "Tm" m .m U mm mmmm F m U "u L n u "C BA "PM" u T m m Kc m mam S w m mwm d hohm m u n m R w cvcJ d U D m m.l.u T I1 189 D T N m mmm w666 AS m mu Uwwww m m Us wwww hf u to m 9739 E10 Mk 11. TC U IF 2 MUM 4 2 1o 6 5 D 5.5. 5 2333 material having a positive temperature coefficient of resistance. Contacts are provided on the heating element which are in resilient spring connection with heater terminals mounted in the base plug. By reaction the heating element is pressed against a heater plate also carried within the connector assembly. A rim of the heater plate is supported upon the margin of an opening or window in the housing so that an integrated circuit unit or the like mounted on the housing is placed in heat-exchange relationship with the heater plate whereby the temperature of the integrated circuit unit or the like is stabilized. Interchange may readily be made between various heater elements to provide desired changes in the regulated temperature.
i t a a &5
PATENTED JUN 8 zen SHEET 1 BF 3 TEMPERATURE STABILIZER FOR INTEGRATED CIRCUITS Integrated circuit performance is prone to be undesirably affected by ambient temperature variation. It has been the practice heretofore to build temperature-regulating devices within the cavities of integrated circuit units. This unduly burdened such units. Moreover, changes in controlled temperature could not be accomplished in any simple manner.
By means of the present invention a temperature stabilizer is provided which is not a permanent part of the integrated circuit unit which it serves. Repeated connections and disconnections of an integrated circuit with a circuit board may readily be accomplished without involving complications in making heater connections. Changes in heatersmay also be easily made.
Referring to the drawings,
FIG. 1 is an exploded view in perspective of parts of the stabilizer, an integrated circuit unit being shown at the extreme left;
FIG. 2 is an inside face view of the base plug shown at the extreme right of FIG. 1;
FIG. 3 is a longitudinal section taken on line 3-3 of FIG. 2;
FIG. 4 is a plan view of the base plug without its electrical connectors;
FIG. 5 is a front elevation of FIG. 4;
FIG. 6 is a cross section taken on line 6-6 of FIG. 4;
FIG. 7 is a plan view of the outside face of a housing;
FIG. 8 is a cross section taken on line8-8 of FIG. 7;
FIG. 9 is a front elevation of FIG. 7;
FIG. 10 is a left end view ofFIGS. 7 and 9;
FIG. 11 is a longitudinal section taken on line 11-11 of FIG.
FIG. 12 is a plan view of a heating element including its contacts;
FIG. 13 is a front elevation of FIG. 12;
FIG. 14 is a right end view of FIG. 12;
FIG. 15 is a plan view of the heating element of FIGS. 12- -14 nested in a dished heater plate to form a complete heater;
FIG. 16 is a cross section on line 16-16 of FIG. 15, the dished heater plate being shown in longitudinal section;
FIG. 17 is a face view of an assembly of the housing on the base and illustrating the exposure of the heater plate;
FIG. 18 is a front elevation of FIG. 17;
FIG. 19 is a cross section (except for heater assembly TR) on line 19-19 of FIG. 17, parts being shown in elevation, and showing in addition the application of an integrated circuit unit, the temperature of which is regulated; and
FIG. 20 is an enlarged view of an individual spring terminal and jack, showing in solid lines the shape in which it is manufactured and in phantom its sprung shape as assembled with the base.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings. The drawings are considerably enlarged over the sizes of the actually very small parts.
Referring to FIG. 1, there is shown at the extreme left a conventional so-called 14-pin dual in-line integrated circuit unit C. This has opposite lines of terminal pins 1. At the extreme right of FIG. 1 is shown a base plug P composed of a body 2 of insulating material from which extend two heater terminals 3 and fourteen operating terminals 5, further details of which will be described below. The number of operating terminals is arbitrary.
At H is shown a housing composed of insulating material and formed for removable force-fit assembly with the body 2 of plug P. Housing H has an opening or window 7 defined by flanges 43 and flanked by rows of openings 9 for receiving the pins 1 of the integrated circuit unit. Within the body 2 is a heater element R composed of a bar 11 of semiconductive material having the above-mentioned PTC anomaly. It has terminal contacts 13 soldered thereto. Between the heater R and the housing H is located a heater plate T having a dished portion 15 for the reception of the heater. It is flanged as shown at 17. The dished portion 15 of the heater plate fits into the window 7 of the housing H. Its flanged portion 17 rests upon the inside margins of the window 7. Upon assembly under force-fit of the housing H with body 2 of the plug P, the heater R becomes nested in the dish 15 of the heater plate T. This nested assembly becomes a heater unit sandwiched between the housing H and the body 2. The dished portion 15 of the plate T becomes exposed in the window 7 and the heater R becomes connected with the heater terminals. The friction provided by the force-fit is sufficient to prevent separation under action of springs 23 but not enough to prevent manual separation when desired.
FIGS. 2-6 illustrate details of the plug P. It has a flat wall 19 through which the heater terminals 3 extend, as shown in FIGS. 2 and 3. To insure a secure connection heater terminals 3 may be staked to body 2. The insides of these terminals are located in a pocket 2] and on shoulders 22 support light compression springs 23. The longitudinal sidewalls 25 of the pocket 21 are formed exteriorly with ribs 26 notched as shown at 27 (FIGS. 4-6). The walls 25 are formed with flared recesses 29 connected with the notches 27. The notches as described are for the reception of spring clips 31, such as illustrated in greatly enlarged form in FIG. 20. Each springy strip is composed of conductive material such as copper. Its unsprung V-shape is as indicated in solid lines in FIG. 20. This V-shape is adapted to have its side portions sprung together as shown by the phantom lines 33 in FIG. 20. The sides are formed with loops 30 and flared ends 32. When sprung together each such operating terminal will then have a neck portion 35 thereof for springing placement in a notch 27. This holds each terminal part 5 in place and produces a jack portion 37 in each notch 27 in addition to forming a terminal 5. In FIGS. 4-6 the body portion 2 of the plug P is shown without any terminal or jack parts in place, whereas in FIGS. 1-3 the terminals 5 and jacks 37 are shown in assembled position.
Referring to FIGS. 7-11, details of the housing H are illustrated. It has sidewalls 36 the insides of which fit flush with the outsides of the walls 25 and the outside edges of the jacks 37, thus preventing escape of the spring terminal and jack parts 5 and 37. The housing H also has end walls 39 which frictionally fit into notches 41 at the ends of body 2. The sidewalls 36 of housing H are inwardly flanged as shown at 43 to form the window 7. The openings 9 are located in these flanges and are flared on their outsides as at 44 so as to form entry guides for the rows of pins 1 of the integrated circuit unit C.
In FIGS. 12-14 are shown details of the heater element R. This comprises the bar 11 composed of semiconductive material having the PTC anomaly, such as doped barium titanate (BaTio barium strontium titanate (BaSrTiO,), barium lead titanate (BaPbTiO or the like. Each material provides a self-regulated temperature under the constant voltage of the heater circuit of the circuit board. The barium lead titanate provides the highest temperature of the three noted.
Each contact 13 is formed with a contact pad 45 on one face and an extending side strip 47. These are soldered to the bar 11. The contacts 45 are near the ends of the bar 11 for contact with the conductive springs 23 of the heater terminals 3. The contacts 45 and side strips 47 supply voltage across the bar, which due to the PTC anomaly maintains a substantially constant temperature.
Shown in FIGS. 15 and 16 is the heater plate T composed of black anodized aluminum which provides it with an insulated surface. The bar 11 is adhered in the dished part 15 by suitable means such as epoxy resin. The flanged portions 17 engage the inside margins of the window as illustrated in FIGS. 17-19. The contact pads 45 engage the springs to maintain this engagement and to deliver heating voltage and current from the heating circuit in the circuit board. Thus, the bar 11 will become resistance heated to and maintain substantially a constant temperature because of its PTC anomaly.
As shown in FIGS. 17 and 18 when the housing H and the base plug P are assembled in force-fit frictional engagement,
as shown in FIG. 19, the integrated circuit unit C is plugged in,
its inner face 49 will engage the exposed part 15 of heater plate T as the pins 1 engage the jacks 37. In FIG. 19 is diagrammatically shown the integrated circuit connections 51 between opposite pins 1. One pin 1 shown in one jack 37 is il lustrated by dotted lines in FIG. 19. Others have not been illustrated to avoid confusion in the longitudinal section.
It is to be understood that the assembled device as shown in FIG. 18 may be plugged into and out of an appropriate circuit board. If desired, the base P when plugged into the board may be permanently soldered into place. In either case the device may still be disassembled for substitution of one heater or another having the desired regulated temperature characteristic. The circuit board may be either of the operational type or test type. In .the former case, the device prevents temperature variations in the connected integrated circuitry caused by ambient temperature changes. in the latter case the device may be used for so-called burning-in" of newly manufactured integrated circuits, which means subjecting them for a period of time to a certain temperature to stabilize them. The device may also be used as a heat test socket for testing circuit parameters of various integrated circuits.
It is to be understood that, while the separability of the housing and plug parts H and P for substitution of heaters is a desirable feature, if separability is not desired, they may be permanently joined as with a suitable adhesive, or by integral molding around the heater assembly.
- It may be remarked that the heating element exhibits moderate conductivity at temperatures below its stabilized temperature. As the temperature approaches the stabilized temperature, the conductivity of element 11 decreases rapidly. The application of a substantially fixed voltage to the heater results'in fast warmup with no temperature override. This is due to the marked conductivity change in the control temperature. For example, in one form of the device, warming up from -5$ C. ambient, the device will draw about 6 watts for 30 seconds at 24 volts. it will stabilize in about 2% minutes, reducing its power requirement to about 1 55 watts steady-state at -55 C. The device adjusts its steady-state requirement as dissipation conditions change. Steady-state power, for instance, decreases linearly with increasing ambient to about 0.3 watts at 60 C. ambient.
In view of theabove, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in theaccompanying drawings shall be interpreted as illustrative and not in a limiting sense.
lclaim:
1. A temperature stabilizer for circuit devices having conductive leads, comprising plug means, a PTC anomaly heater. in the plug means, said heater having an exposed heating surface, said plug means including heater terminals extending therefrom, said heater terminals being connected to said heater, springs electrically and removably connecting the heater terminals with said heater, means for removably mounting circuit devices including jacks in the plug means, additional terminals connected to said jacks respectively and extending from the plug means, said jacks being arranged adjacent to the exposed heating surface for the reception of circuit device leads and to removably place a circuit device having said leads in heat-exchange relationship with the exposed portions of said heater.
2. A temperature stabilizer for pin-type integrated circuits, comprising a plug element, an enclosing housing connected therewith forming an assembly, said housing formed with, a window therein, a PTC anomaly heater located in the assembly and having a heating surface disposed at said window, heater terminals extending from said plug element and electrically connected with said heater, jacks located in the assembly, operating terminals extending from said jacks respectively to the exterior of the plug element, said housing having openings for receiving and directing pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said portions of the heater exposed in said window.
3. A temperature stabilizer according to claim 2 wherein there is a separable connection between the housing and the plug element whereby .they may be separated and reassembled for effecting heater substitutions.
4. A temperature stabilizer according to claim 3 wherein the connections between said heater terminals and-the heater are in the forms of springs which bias the heater towardsaid window.
5. A temperature stabilizer according to claim 4 wherein the heater is in the form of a bar of said PTC anomaly material nested in a heater plate having a heater surface fitting within said window and flanges internally engaging the margins of the window under pressure from said springs.
6. A temperature stabilizer for multiple-pin, dual in-line integrated circuits, comprising a hollow rectangular plug element, a rectangular housing connected therewith, said housing forming a rectangular window, a PTC anomaly heater located between the housing and the plug element and having a rectangular heated surface extending through said window, heater terminals extending from said plug element, springs electrically connecting the heater terminals with said heater, rows of jacks located between the housing and the plug dually aligned on opposite sides of the heater, operating terminals extending from said jacks and dually aligned on the exterior of the plug element, said housing having dually aligned openings on opposite sides of said heated surface for guiding pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said exposed portions of the heater.
7. A temperature stabilizer according to claim 6 wherein there is an openable force-tit between the housing and the plug whereby they may be'separated and reassembled for effecting heater substitutions.
8. A temperature stabilizer according to claim 7 wherein the heater is in the form of a dished plate with a bar of said PTC anomaly nested therein, said heater plate having flange means seating behind the margin of said window under pressure from said springs. t
9. A temperature stabilizer for integrated circuits, comprising an insulating base, heater terminals and operating terminals extending from said insulating base for plugging into a circuit board, an insulating body connected with said base, said operating terminals being formed within the body as jacks, a PTC heater element within the body, said heater element having contacts engaged through springs with said heater terminals, said body having a window, a dished and flanged heater plate having at least a part of its dished portion extending through said window and its flanged portion engaging the inside margin of the window, said heater element being nested in said dished portion of the heater plate, said body having openings aligned with said jacks for the reception of pins of an integrated circuit and their direction into said jacks, said heater plate being in close heat-exchange relationship with the integrated circuit when its pins are applied to the jacks through said openings.
10. A temperature stabilizer made according to claim 9 wherein the base, the body and the heater element are separable for replacement of the heater element.

Claims (10)

1. A temperature stabilizer for circuit devices having conductive leads, comprising plug means, a PTC anomaly heater in the plug means, said heater having an exposed heating surface, said plug means including heater terminals extending therefrom, said heater terminals being connected to said heater, springs electrically and removably connecting the heater terminals with said heater, means for removably mounting circuit devices including jacks in the plug means, additional terminals connected to said jacks respectively and extending from the plug means, said jacks being arranged adjacent to the exposed heating surface for the reception of circuit device leads and to removably place a circuit device having said leads in heat-exchange relationship with the exposed portions of said heater.
2. A temperature stabilizer for pin-type integrated circuits, comprising a plug element, an enclosing housing connected therewith forming an assembly, said housing formed with a window therein, a PTC anomaly heater located in the assembly and having a heating surface disposed at said window, heater terminals extending from said plug element and electrically connected with said heater, jacks located in the assembly, operating terminals extending from said jacks respectively to the exterior of the plug element, said housing having openings for receiving and directing pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said portions of the heater exposed in said window.
3. A temperature stabilizer according to claim 2 wherein there is a separable connection between the housing and the plug element whereby they may be separated and reassembled for effecting heater substitutions.
4. A temperature stabilizer according to claim 3 wherein the connections between said heater terminals and the heater are in the forms of springs which bias the heater toward said window.
5. A temperature stabilizer according to claim 4 wherein the heater is in the form of a bar of said PTC anomaly material nested in a heater plate having a heater surface fitting within said window and flanges internally engaging the margins of the window under pressure from said springs.
6. A temperature stabilizer for multiple-pin, dual in-line integrated circuits, comprising a hollow rectangular plug element, a rectangular housing connected theRewith, said housing forming a rectangular window, a PTC anomaly heater located between the housing and the plug element and having a rectangular heated surface extending through said window, heater terminals extending from said plug element, springs electrically connecting the heater terminals with said heater, rows of jacks located between the housing and the plug dually aligned on opposite sides of the heater, operating terminals extending from said jacks and dually aligned on the exterior of the plug element, said housing having dually aligned openings on opposite sides of said heated surface for guiding pins of an integrated circuit into said jacks, whereby an integrated circuit may be brought into heat-exchange relationship with said exposed portions of the heater.
7. A temperature stabilizer according to claim 6 wherein there is an openable force-fit between the housing and the plug whereby they may be separated and reassembled for effecting heater substitutions.
8. A temperature stabilizer according to claim 7 wherein the heater is in the form of a dished plate with a bar of said PTC anomaly nested therein, said heater plate having flange means seating behind the margin of said window under pressure from said springs.
9. A temperature stabilizer for integrated circuits, comprising an insulating base, heater terminals and operating terminals extending from said insulating base for plugging into a circuit board, an insulating body connected with said base, said operating terminals being formed within the body as jacks, a PTC heater element within the body, said heater element having contacts engaged through springs with said heater terminals, said body having a window, a dished and flanged heater plate having at least a part of its dished portion extending through said window and its flanged portion engaging the inside margin of the window, said heater element being nested in said dished portion of the heater plate, said body having openings aligned with said jacks for the reception of pins of an integrated circuit and their direction into said jacks, said heater plate being in close heat-exchange relationship with the integrated circuit when its pins are applied to the jacks through said openings.
10. A temperature stabilizer made according to claim 9 wherein the base, the body and the heater element are separable for replacement of the heater element.
US752331A 1968-08-13 1968-08-13 Temperature stabilizer for integrated circuits Expired - Lifetime US3584189A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75233168A 1968-08-13 1968-08-13

Publications (1)

Publication Number Publication Date
US3584189A true US3584189A (en) 1971-06-08

Family

ID=25025853

Family Applications (1)

Application Number Title Priority Date Filing Date
US752331A Expired - Lifetime US3584189A (en) 1968-08-13 1968-08-13 Temperature stabilizer for integrated circuits

Country Status (1)

Country Link
US (1) US3584189A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662150A (en) * 1971-01-18 1972-05-09 Hughes Aircraft Co Controlled temperature circuit package
FR2216696A2 (en) * 1973-02-06 1974-08-30 Amp Inc
US3940591A (en) * 1974-07-01 1976-02-24 Texas Instruments Incorporated Self-regulating electric heater
US3976854A (en) * 1974-07-31 1976-08-24 Matsushita Electric Industrial Co., Ltd. Constant-temperature heater
US3989331A (en) * 1974-08-21 1976-11-02 Augat, Inc. Dual-in-line socket
US3996447A (en) * 1974-11-29 1976-12-07 Texas Instruments Incorporated PTC resistance heater
US4050755A (en) * 1976-04-02 1977-09-27 E. I. Du Pont De Nemours And Company Electrical connector
US4626666A (en) * 1983-11-18 1986-12-02 Matsushita Electric Works, Ltd. Self-regulating electric heater
US4777434A (en) * 1985-10-03 1988-10-11 Amp Incorporated Microelectronic burn-in system
US5539186A (en) * 1992-12-09 1996-07-23 International Business Machines Corporation Temperature controlled multi-layer module
US5688424A (en) * 1949-03-12 1997-11-18 Murata Manufacturing Co., Ltd. PTC thermistor
US6114674A (en) * 1996-10-04 2000-09-05 Mcdonnell Douglas Corporation Multilayer circuit board with electrically resistive heating element
US7034259B1 (en) 2004-12-30 2006-04-25 Tom Richards, Inc. Self-regulating heater assembly and method of manufacturing same
US20100140245A1 (en) * 2008-12-05 2010-06-10 Hyundai Motor Company Positive Temperature Coefficient (PTC) Rod Assembly and PTC Heater Using the Same
US20100140253A1 (en) * 2008-12-05 2010-06-10 Hyundai Motor Company Positive Temperature Coefficient (PTC) Rod Assembly
US7959463B1 (en) * 2010-05-17 2011-06-14 Sno-Way International, Inc. Heated connector for snow plow lighting system
US11224098B2 (en) * 2018-11-01 2022-01-11 General Electric Company Systems and methods for passive heating of temperature-sensitive electronic components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938099A (en) * 1957-07-05 1960-05-24 Bulova Watch Co Inc Crystal ovens
US3002117A (en) * 1959-07-16 1961-09-26 Gunther A Vogt Crystal ovens
US3387113A (en) * 1964-07-09 1968-06-04 Charbonnier Roger Electronic assembly
US3444399A (en) * 1965-09-24 1969-05-13 Westinghouse Electric Corp Temperature controlled electronic devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938099A (en) * 1957-07-05 1960-05-24 Bulova Watch Co Inc Crystal ovens
US3002117A (en) * 1959-07-16 1961-09-26 Gunther A Vogt Crystal ovens
US3387113A (en) * 1964-07-09 1968-06-04 Charbonnier Roger Electronic assembly
US3444399A (en) * 1965-09-24 1969-05-13 Westinghouse Electric Corp Temperature controlled electronic devices

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688424A (en) * 1949-03-12 1997-11-18 Murata Manufacturing Co., Ltd. PTC thermistor
US3662150A (en) * 1971-01-18 1972-05-09 Hughes Aircraft Co Controlled temperature circuit package
FR2216696A2 (en) * 1973-02-06 1974-08-30 Amp Inc
US3940591A (en) * 1974-07-01 1976-02-24 Texas Instruments Incorporated Self-regulating electric heater
US3976854A (en) * 1974-07-31 1976-08-24 Matsushita Electric Industrial Co., Ltd. Constant-temperature heater
US3989331A (en) * 1974-08-21 1976-11-02 Augat, Inc. Dual-in-line socket
US3996447A (en) * 1974-11-29 1976-12-07 Texas Instruments Incorporated PTC resistance heater
US4050755A (en) * 1976-04-02 1977-09-27 E. I. Du Pont De Nemours And Company Electrical connector
US4626666A (en) * 1983-11-18 1986-12-02 Matsushita Electric Works, Ltd. Self-regulating electric heater
US4777434A (en) * 1985-10-03 1988-10-11 Amp Incorporated Microelectronic burn-in system
US5539186A (en) * 1992-12-09 1996-07-23 International Business Machines Corporation Temperature controlled multi-layer module
US6114674A (en) * 1996-10-04 2000-09-05 Mcdonnell Douglas Corporation Multilayer circuit board with electrically resistive heating element
US7034259B1 (en) 2004-12-30 2006-04-25 Tom Richards, Inc. Self-regulating heater assembly and method of manufacturing same
US20100140245A1 (en) * 2008-12-05 2010-06-10 Hyundai Motor Company Positive Temperature Coefficient (PTC) Rod Assembly and PTC Heater Using the Same
US20100140253A1 (en) * 2008-12-05 2010-06-10 Hyundai Motor Company Positive Temperature Coefficient (PTC) Rod Assembly
US8872075B2 (en) 2008-12-05 2014-10-28 Hyundai Motor Company Positive temperature coefficient (PTC) rod assembly
US8895898B2 (en) * 2008-12-05 2014-11-25 Hyundai Motor Company Positive temperature coefficient (PTC) rod assembly and PTC heater using the same
US7959463B1 (en) * 2010-05-17 2011-06-14 Sno-Way International, Inc. Heated connector for snow plow lighting system
CN102324666A (en) * 2010-05-17 2012-01-18 Sno-Way国际公司 The heated connector of illuminator is used to sweep away snow
CN102324666B (en) * 2010-05-17 2016-05-18 Sno-Way国际公司 For snow plow lighting system can heated connector
US11224098B2 (en) * 2018-11-01 2022-01-11 General Electric Company Systems and methods for passive heating of temperature-sensitive electronic components

Similar Documents

Publication Publication Date Title
US3584189A (en) Temperature stabilizer for integrated circuits
US4045763A (en) Sealed thermostatic heater
US4331860A (en) Electrical resistance heating element
US5854471A (en) Apparatus using a thermistor with a positive temperature coefficient
US2606986A (en) Resistance unit
GB2146488A (en) A ptc resistor device
US3720807A (en) Food warming apparatus
ES462533A1 (en) Electrical heating element comprising a helix of wire wound on at least one insulating plate
US5270521A (en) Heating apparatus comprising a plate-shaped PTC thermistor accommodated in an insulating spacer and terminal plates in snap-engagement with the spacer
US4626666A (en) Self-regulating electric heater
US2829359A (en) Electronic tube connector
US3794949A (en) Solid state motor starting apparatus
EP0288129B1 (en) Branding device
US3713062A (en) Snap disc thermal sequencer
US3925748A (en) Resistance device for use in energizing the starting winding of a split phase induction motor
GB2075251A (en) Fluorescent lamp assemblies
US3836824A (en) Mounting arrangement for flexible circuit
US4267635A (en) Method of making a solid state electrical switch
US2410041A (en) Piezoelectric crystal cabinet
US4730103A (en) Compact PTC resistance heater
JPH04258982A (en) Heater of fixing device for copying machine
US3573717A (en) Connector assembly
US3553632A (en) Electrical connector
US1755564A (en) Circuit-controlling device
US4791272A (en) PTC hair roller