US3576394A - Apparatus for display duration modulation - Google Patents

Apparatus for display duration modulation Download PDF

Info

Publication number
US3576394A
US3576394A US742365A US3576394DA US3576394A US 3576394 A US3576394 A US 3576394A US 742365 A US742365 A US 742365A US 3576394D A US3576394D A US 3576394DA US 3576394 A US3576394 A US 3576394A
Authority
US
United States
Prior art keywords
light
selectively
time period
during
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US742365A
Inventor
Ray H Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3576394A publication Critical patent/US3576394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/12Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by switched stationary formation of lamps, photocells or light relays

Definitions

  • the display state of a light element may be modulated by a video signal in a system that includes a storage device for transforming the video signal, which is available only during a writing time of short duration, to a display signal.
  • a writing circuit for the light element includes the storage device and provides a writing equivalent circuit having a time constant short in comparison to the length of the writing time.
  • a holding circuit also includes the storage device in an equivalent circuit that has a time constant long in comparison to one frame time.
  • One frame time equals the time spacing between subsequent addressing of one light element in a dis play consisting of a plurality of such light elements.
  • a halftone display can be effected if the display duration of each element in an array of such elements is video modulated by means of the writing circuit and the holding circuit.
  • This invention relates to a halftone display, and more particularly to a system for modulating the display duration of a light element to produce a halftone display.
  • the cathode-ray tube displays have their limitation especially when producing color pictures. Screen sizes larger than 25-inch diagonalmeasurement produce a picture that lacks brightness as well as being difficult to handle (too bulky) and smaller than a 2l-inch diagonal measurement suffers in resolution on account of tolerance requirements.
  • the addressing scheme for such light elements provides ameans for modulat- "ing the display duration with a video signal.
  • the writing circuit for each light element includes a storage device for extending the short time the video signal is available during a writing time into a much longer time display signal. Display signals of sufficient energy change the light element from one light state to a second light state and maintain the second state at the termination of the writing time.
  • a holding circuit controls the display duration of the light element by slowly removing the display signal from the storage device.
  • the display duration is proportional to the magnitude of the video signal, but in no case longer than one frame time.
  • a dis- 4 play consists of a plurality of light elements with each light eleconfiguration with the storage capacitor and provides an equivalent circuit having a time constant long in comparison to one frame time (i.e., the time between subsequent addressing of one light element).
  • an object of this invention to provide a writing and holding circuit for the light element. Another object of this invention is to provide display duration modulation of a light element by means of a writing circuit having a time constant short in comparison to the writing time. A further object of this invention is to provide display duration modulation of a light element by means of a holding circuit having a time constant long in comparison to one frame time. Still another object of this invention is to provide a display of light elements each individually display duration modulated. An additional object of this invention is to provide a display wherein a plurality of light elements are individually cycled between one of two light states by means of a writing and holding circuit.
  • FIG. 1 illustrates a picture-receiving system employing a plurality of light elements coupled to an address scanner in accordance with the present invention
  • FIG. 2 is an enlarged view in perspective of a typical bistable light valve that may be employed inthe panel illustrated in FIG. 1;
  • FIG. 3 schematically illustrates the writing equivalent circuit for addressing the individual light elements in the panel illustrated in FIG. 1;
  • FIG. 4 illustrates schematically the holding equivalent circuit for an individual light element
  • FIG. 5 is a schematic of an addressing scheme for an individual light element
  • FIG. 6 is a schematic of an addressing scheme for light elements arrange in a row of configuration.
  • FIG. 7 is a schematic of an addressing scheme for a matrix panel array.
  • a light source 20 produces a light beam 22 columnated by a lens 24.
  • a light panel may also be employed as a light source replacing the source 20 and the lens 24. This panel would match the size of the panel 10.
  • the address scanner 12 may be programmed from any one of many sources other than the receiver 14.
  • a computer can be employed to program the address scanner 12 to produce simulated environmental conditions, such as might be encountered in space travel, to observer 18. 6
  • Light elements that are used to make up the panel 10 may be any one of those that are classified as having some drivelight linearity, or bistable (on-off) elements, or those light elements which have highly nonlinear characteristics. Included within the group having some drive-light linearity are the El cells (electroluminescence cell), light bulbs, and light emitting diodes or the like. The nonlinear light elements include the gas discharge bulb and regional gaseous discharge elements or the like. Although any of these may be used in the panel 10, the invention will be described with reference to a bistable element such as disclosed in the copending application of Ray H. Lee, Ser. No. 7 1 3,503, filed Mar. l5, 1968 and assigned to the assignee of the present invention. Such a light element, as shown in FIG.
  • the light valve illustrated further includes a housing having sidewalls 34 and 36 along with front and back walls all of a reflective opaque material either electrically conductive, such as aluminum, or electrically insulating and covered with a conductive coating.
  • An insulating layer (not shown) covers the conductive coating to electrically isolate the housing walls from the shutters.
  • the housing or conductive coating is grounded by means of a lead 38 to provide electrostatic shielding, thereby eliminating electrostatic forces in the housing interior generated externally thereof.
  • the light valve uses the well-known electroscope principle with each of the leaf shutters 28 and 30 considered one plate of a capacitor, with the respect of sidewall 34 or 36 forming the second plate.
  • a charge is uniformly distributed, neglecting edge effects, over the facing surfaces, resulting in a uniformly distributed load on the leaf shutters and setting them in motion against both the inertia and elastic properties of the shutter material.
  • V pull-in voltage
  • valve described in the above-identified patent application has a measure of storage capability, to produce a halftone display with a plurality of such elements requires additional storage.
  • This additional storage capability is provided for by means of an addressing scheme in the address scanner 12 which includes a writing circuit and a holding circuit. These circuits control the display duration of each valve in an array.
  • FIGS. 3 and 4 there is shown an equivalent writing and holding circuit for each of the light elements of the panel 10.
  • a capacitor 42 parallels the light element 40 and provides a means for storing a drive signal to maintain the light element in one of two light states.
  • the writing equivalent circuit of FIG. 3 includes a resistor 44 in series with a signal source 46 coupled to the capacitor 42.
  • a resistor 48 in the holding equivalent circuit shown in FIG. 4 forms an RC circuit configuration with the capacitor 42.
  • the writing equivalent circuit including the resistor 44 and the capacitor 42 has a time constant short in comparison to the writing time, as discussed previously.
  • the holding equivalent circuit including the resistor 48 and the capacitor 42 has a circuit time constant long in comparison to one frame time, again as discussed previously.
  • the light element 40 is a bistable device as illustrated in FIG. 2, then it has two steady states, which may be denoted as state and 1.
  • state corresponds to that condition when the leaf shutters 28 and 30 pass light through the housing
  • the 1 state corresponds to that condition when the leaf shutters are attracted to the housing walls and block light from passing therethrough.
  • V pull-in voltage
  • the light element 40 changes instantaneously from state 0 to state 1.
  • the element remains in state 1 until the voltage across the capacitor 42 and consequently the element 40, reduces to the release voltage V,, where V, is less than or equal to V,,.
  • the release voltage V At the release voltage level, the light element 40 'rtTfmsinstantaneously to thestateQ WitIralightelement of the type illustrated in FIG. 2, and with most light elements, the release voltage V, will be somewhat less than the pull-in voltage V, as the result of hysteresis. For elements without hysteresis, the release voltage V, will equal the pull-in voltage V,,.
  • the system described herein may be used with light elements with or without hysteresis.
  • the light element 40 is a purely voltage device that does not affect the operation of the writing or holding circuit. Proceeding from this assumption, it can be shown that the voltage across the capacitor 42 alone determines the light element output. Within a writing time and starting from a discharge condition, the voltage buildup across the capacitor 42 takes place in accordance with the formula:
  • V(W) a constant value of the video signal occurring within a writing time W. Since the writing time W is usually short in comparison with the video content, the assumption is made that V(W) remains constant throughout the writing time. For a writing time W, the voltage across the capacitor 42 will be given by:
  • V(W)+V represent the voltage of the source 46 and includes a bias voltage V,, equal to the pullin voltage of the light element 40.
  • the holding circuit takes over and the capacitor 42 begins to discharge through the resistor 48.
  • the voltage decay across the capacitor 42 will be in accordance with the expresston:
  • the display duration of the light element 40 in the state 1 can be made proportional to the magnitude of the video signal.
  • the voltage e,(W) is less than or equal to the pull-in voltage V then the light element 40 remains in state 0 at the completion of a writing time and the term D/Rc equals zero.
  • the voltage e (W) is equal to or greater than V, then the light element 40 changes from the initial state 0 to the second state 1 and the display duration will be calculated in accordance with the approximation at (6
  • the change between the two states can be summarized as:
  • FIG. 5 there is shown an addressing scheme including a writing and holding circuit for a light element 50.
  • the holding circuit includes a resistor 52 and a capacitor 54 which is connected across the light element 50.
  • the writing circuit includes the capacitor 54 and a resistor 56 in series with a signal source 58.
  • a single-pole single-throw switch 60 controls the addressing of the light element 50.
  • the switch 60 is closed thereby connecting the source 58 to the capacitor 54 through the resistor 56.
  • This circuit has a time constant short enough to ensure that the capacitor 54 will be charged to the level of the signal from a source 58 in the time allotted.
  • the capacitor 54 discharges through the resistor 52.
  • This RC circuit has a time constant long compared to one frame time. The frame time being the time interval between subsequent closings of the switch 60.
  • the display duration of the element 50 is determined by the magnitude of the source voltage, the value of the resistor 52, and the value of the capacitor 54.
  • Each light element branch includes: a light element 62, a storage capacitor 64 and a holding resistor 66, all in a parallel arrangement.
  • the individual branches are coupled to a voltage source 68 through a writing resistor 70 by means of single-pole single-throw switches 72.
  • the switch 72 associated with this branch is closed, thereby charging the capacitor 64 with the voltage from the source 68.
  • the switches for the remaining branches in the row are open.
  • the switch for branch 2 is closed for the writing time of this branch. This operation continues with one switch being closed at any given time.
  • the holding circuit of resistor 66 and capacitor 64 controls the duration of the display element 62.
  • the time between subsequent closings of the switch 72 for each branch is one frame time.
  • each element branch includes a light element 78, a storage capacitor 80, and a holding resistor 82.
  • each branch includes a diode 84 to eliminate the so called crossimage effect. Assume the switch in column a and the switch in row b are closed. Although only one branch is coupled to both terminals of the source 74, all the branches in column a and all the branches in row 12 are coupled to one side or the other of the source. The diode 84, however, in all the branches except that one coupled to both terminals of the source 74, will be reverse biased thereby isolating these branches.
  • a display system comprising in combination:
  • an address scanner responsive to said video signal source for scanning said light valve panel along its X and Y axis and for intensity modulating said light valve panel along its Z axis;
  • a plurality of second circuit means respectively connected in parallel to said storage members for effectively maintaining the charge on said storage members during a second preselected time period; wherein h. said address scanner selectively connects each of said first an second circuit means to its respective storage member respectively during said first and second preselected time periods; whereby i. during said first preselected time period each of said storage members selectively pass light to the other side of said panel; and whereby j. during said second preselected time period of said storage members are selectively maintained in their light passing condition.
  • each of said valves have a light blocking and light passing state, and wherein each of said light valves are in their passing state when their respective storage member is charged above a threshold valve and in their light blocking state when their respective storage member is discharged below threshold valve.
  • each of said storage members in combination with their respective first circuit means has a time constant that is relatively short with respect to said first preselected time period.
  • each of said storage members in combination with their respective second circuit means has a time constant relatively large with respect to the time required for said address scanner to scan said light valve panel.
  • each of said storage members includes a capacitor that is selectively connected in series with a first resistor during said, first preselected time period, and selectively connected in parallel to respective second resistors during said second preselected time period.
  • said light valves are selectively connected in rows and columns to form said panel; and wherein b. said address scanner scans said light valves by row and column and selectively couples said video signal to said storage members for selectively changing their light trans mitting characteristics.
  • Apparatus for selectively varying the display state of a matrix of light elements of the type having light transmitting and light restraining states comprising in combination:
  • scanning means responsive to said video signal for selectively scanning said light elements of said matrix by row and column;
  • charging means selectively connected in series with a respective one of said storage means in response to said scanning means during a first preselected time period for selectively changing its respective light element from one of its states to its other state;

Abstract

The display state of a light element may be modulated by a video signal in a system that includes a storage device for transforming the video signal, which is available only during a writing time of short duration, to a display signal. A writing circuit for the light element includes the storage device and provides a writing equivalent circuit having a time constant short in comparison to the length of the writing time. A holding circuit also includes the storage device in an equivalent circuit that has a time constant long in comparison to one frame time. One frame time equals the time spacing between subsequent addressing of one light element in a display consisting of a plurality of such light elements. Inasmuch as the brightness of a light element is measured by the light integral of the element over one frame time, a halftone display can be effected if the display duration of each element in an array of such elements is video modulated by means of the writing circuit and the holding circuit.

Description

United States Patent [72] Inventor RayH.Lee
Richardson, Tex. [21] Appl. No. 742,365 [22] Filed July 3,1968 [45] Patented Apr. 27, 1971 [73] Assignee Texas Instruments, Incorporated Dallas,Tex.
[54] APPARATUS FOR DISPLAY DURATION MODULATION 8 Claims, 7 Drawing Figs.
[52] U.S.Cl 178/7.3 [5|] Int.Cl H04n3/02 [50] FieldofSearch I 178/7.3
(D), 7.5 (D), 7.3 (E), 7.5 (E), 6
[56] References Cited UNITED STATES PATENTS 1,848,888 3/1932 Kendall 178/7.3D 1,964,062 6/1934 Jenkins l78/7.3D 1,972,492 9/1934 Nicolson..... l78/7.3D 2,058,882 10/1936 Ivesetal 178/6 3,166,635 1/1965 Todt..... l78/7.3D 3,210,757 10/1965 Jacob l78/7.5D
ADDRESS SCANNER Primary Examiner-Richard Murray Assistant Examiner-Alfred H. Eddleman Attorneys-Samuel M. Mims, Jr., James 0 Dixon, Andrew M. Hassell, Harold Levine, Melvin Sharp, Gerald B. Epstein, John E. Vandigriff and Richards, Harris and Hubbard ABSTRACT: The display state of a light element may be modulated by a video signal in a system that includes a storage device for transforming the video signal, which is available only during a writing time of short duration, to a display signal. A writing circuit for the light element includes the storage device and provides a writing equivalent circuit having a time constant short in comparison to the length of the writing time. A holding circuit also includes the storage device in an equivalent circuit that has a time constant long in comparison to one frame time. One frame time equals the time spacing between subsequent addressing of one light element in a dis play consisting of a plurality of such light elements. Inasmuch as the brightness of a light element is measured by the light integral of the element over one frame time, a halftone display can be effected if the display duration of each element in an array of such elements is video modulated by means of the writing circuit and the holding circuit.
RECEIVER APPARATUS FOR DISPLAY DURATION MODULATION This invention relates to a halftone display, and more particularly to a system for modulating the display duration of a light element to produce a halftone display.
During the early development of television in the latter part of the last century, a picture was generated on the retina of the eye of an observer by the rapid movement and intensity fluctuation of a narrow light beam. Because of persistence of vi-- sion of the human eye, a picture was in fact generated although of a very low quality. Basically, such displays require two matching integral parts: addressing and a light element. Addressing must be able to perform XY scanning as well as intensity modulation for a particular light element located at any XY location at the proper writing time. The lightelement, located in. any XY position, must'be able to respond to the writing and to effect a display.
As a result of inferior picture quality due to an inadequate addressing scheme and an operable light element, earlier efforts for producing a picture by means of light elements were abandoned in favor of its electron counterpart, the cathode ray tube. However, it is now realized that the cathode-ray tube displays have their limitation especially when producing color pictures. Screen sizes larger than 25-inch diagonalmeasurement produce a picture that lacks brightness as well as being difficult to handle (too bulky) and smaller than a 2l-inch diagonal measurement suffers in resolution on account of tolerance requirements.
Toovercome the brightness limitation imposed by the existing phosphers, various schemes have been proposed and developed for large screen display. Basically, these schemes rely on a modulatable-type light valve to be used in conjunction with an intense light source for projection, and for direct or projected viewing The light elements proposed include light emissive, light reflective, light refractive, light absorbing and light transmitting elements.
In accordance with. the present invention, the addressing scheme for such light elements provides ameans for modulat- "ing the display duration with a video signal. The writing circuit for each light element includes a storage device for extending the short time the video signal is available during a writing time into a much longer time display signal. Display signals of sufficient energy change the light element from one light state to a second light state and maintain the second state at the termination of the writing time. A holding circuit controls the display duration of the light element by slowly removing the display signal from the storage device. The display duration is proportional to the magnitude of the video signal, but in no case longer than one frame time.
y In accordance with another aspect of this invention, a dis- 4 play consists of a plurality of light elements with each light eleconfiguration with the storage capacitor and provides an equivalent circuit having a time constant long in comparison to one frame time (i.e., the time between subsequent addressing of one light element).
To modulate the display duration of a light element, it is an object of this invention to provide a writing and holding circuit for the light element. Another object of this invention is to provide display duration modulation of a light element by means of a writing circuit having a time constant short in comparison to the writing time. A further object of this invention is to provide display duration modulation of a light element by means of a holding circuit having a time constant long in comparison to one frame time. Still another object of this invention is to provide a display of light elements each individually display duration modulated. An additional object of this invention is to provide a display wherein a plurality of light elements are individually cycled between one of two light states by means of a writing and holding circuit.
A more complete understanding of the invention and it advantages will be apparent from the specification and claims and from the accompanying drawings illustrative of the invention.
Referring to the Drawings:
FIG. 1 illustrates a picture-receiving system employing a plurality of light elements coupled to an address scanner in accordance with the present invention;
FIG. 2 is an enlarged view in perspective of a typical bistable light valve that may be employed inthe panel illustrated in FIG. 1;
FIG. 3 schematically illustrates the writing equivalent circuit for addressing the individual light elements in the panel illustrated in FIG. 1;
FIG. 4 illustrates schematically the holding equivalent circuit for an individual light element;
FIG. 5 is a schematic of an addressing scheme for an individual light element;
FIG. 6 is a schematic of an addressing scheme for light elements arrange in a row of configuration; and
FIG. 7 is a schematic of an addressing scheme for a matrix panel array. A video receiver 14, coupled to an antenna 16,
provides a video signal for the operation of the address scanner 12 in the usual manner of present day video-receiving systems. To generate the visual display for an observer 18 on the panel 10, a light source 20 produces a light beam 22 columnated by a lens 24. A light panel may also be employed as a light source replacing the source 20 and the lens 24. This panel would match the size of the panel 10. By selectively opening and closing each light valve in the panel in accordance with the video signal received by the antenna 16, the observer 18 sees a picture displayed.
Although this description will proceed to emphasize a television system, it is not intended to be so limited. The address scanner 12 may be programmed from any one of many sources other than the receiver 14. For example, a computer can be employed to program the address scanner 12 to produce simulated environmental conditions, such as might be encountered in space travel, to observer 18. 6
In a typical television system in accordance with present day NTSC (National Television Systems Committee) regulations, the panel 10 includes 525 scanning lines, a bandwidth chosen for equal area resolution with an aspect ratio of 4:3, and there would be two interlaced fields in one frame having a frame rate of 30 frames per second. Accordingly, in order to fully utilize the NTSC information, the panel 10 has 525X(4/ 3X525)= I light units (one light valve per unit for a monochrome display, two light valves per unit for a bicolor display, and three light valves per unit for a tricolor display. In terms of light units, the video information received at the antenna 16 comes in at a rate of 0.0906 microseconds per unit (roughly 0.1 microsecond). Thus, for sequential addressing each valve in the panel 10 must be able to be addressed within a writing time of 0.l microsecond and updated once per frame time. Each frame time has a duration of one-thirtieth second.
Light elements that are used to make up the panel 10 may be any one of those that are classified as having some drivelight linearity, or bistable (on-off) elements, or those light elements which have highly nonlinear characteristics. Included within the group having some drive-light linearity are the El cells (electroluminescence cell), light bulbs, and light emitting diodes or the like. The nonlinear light elements include the gas discharge bulb and regional gaseous discharge elements or the like. Although any of these may be used in the panel 10, the invention will be described with reference to a bistable element such as disclosed in the copending application of Ray H. Lee, Ser. No. 7 1 3,503, filed Mar. l5, 1968 and assigned to the assignee of the present invention. Such a light element, as shown in FIG. 2, has two chargeable leaf shutters 28, 30 connected to receive a video signal through the address scanner 12. The light valve illustrated further includes a housing having sidewalls 34 and 36 along with front and back walls all of a reflective opaque material either electrically conductive, such as aluminum, or electrically insulating and covered with a conductive coating. An insulating layer (not shown) covers the conductive coating to electrically isolate the housing walls from the shutters. The housing or conductive coating is grounded by means of a lead 38 to provide electrostatic shielding, thereby eliminating electrostatic forces in the housing interior generated externally thereof.
Operationally, the light valve uses the well-known electroscope principle with each of the leaf shutters 28 and 30 considered one plate of a capacitor, with the respect of sidewall 34 or 36 forming the second plate. A charge is uniformly distributed, neglecting edge effects, over the facing surfaces, resulting in a uniformly distributed load on the leaf shutters and setting them in motion against both the inertia and elastic properties of the shutter material. To completely shut off the transmission of light to the observer 18, the leaf shutters 28 and 30 must be deflected to their respective sidewalls. The voltage connected to the valve to deflect the shutters to this position is identified as the pull-in" voltage, V,,. To return the leaf shutters 28 and 30 to their light transmission position, the voltage to the valve must be reduced to the release voltage, V,.
Although the valve described in the above-identified patent application has a measure of storage capability, to produce a halftone display with a plurality of such elements requires additional storage. This additional storage capability is provided for by means of an addressing scheme in the address scanner 12 which includes a writing circuit and a holding circuit. These circuits control the display duration of each valve in an array.
This additional storage capability and the writing and holding circuits for each light element make up the address scanner 12. Referring to FIGS. 3 and 4, there is shown an equivalent writing and holding circuit for each of the light elements of the panel 10. A capacitor 42 parallels the light element 40 and provides a means for storing a drive signal to maintain the light element in one of two light states. The writing equivalent circuit of FIG. 3 includes a resistor 44 in series with a signal source 46 coupled to the capacitor 42. A resistor 48 in the holding equivalent circuit shown in FIG. 4, forms an RC circuit configuration with the capacitor 42. The writing equivalent circuit including the resistor 44 and the capacitor 42 has a time constant short in comparison to the writing time, as discussed previously. The holding equivalent circuit including the resistor 48 and the capacitor 42 has a circuit time constant long in comparison to one frame time, again as discussed previously.
If the light element 40 is a bistable device as illustrated in FIG. 2, then it has two steady states, which may be denoted as state and 1. With reference to the light element of FIG. 2, the 0 state corresponds to that condition when the leaf shutters 28 and 30 pass light through the housing, and the 1 state corresponds to that condition when the leaf shutters are attracted to the housing walls and block light from passing therethrough. Starting from a 0 initial state, the voltage across the capacitor 42 increases up to the pull-in voltage V,, at which point the light element 40 changes instantaneously from state 0 to state 1. The element remains in state 1 until the voltage across the capacitor 42 and consequently the element 40, reduces to the release voltage V,, where V, is less than or equal to V,,. At the release voltage level, the light element 40 'rtTfmsinstantaneously to thestateQ WitIralightelement of the type illustrated in FIG. 2, and with most light elements, the release voltage V, will be somewhat less than the pull-in voltage V, as the result of hysteresis. For elements without hysteresis, the release voltage V, will equal the pull-in voltage V,,. The system described herein may be used with light elements with or without hysteresis.
Assume that the light element 40 is a purely voltage device that does not affect the operation of the writing or holding circuit. Proceeding from this assumption, it can be shown that the voltage across the capacitor 42 alone determines the light element output. Within a writing time and starting from a discharge condition, the voltage buildup across the capacitor 42 takes place in accordance with the formula:
c( for t less than W, where e (t) the voltage across the capacitor 42,
r= the resistance value of the resistor 44,
c the value of the capacitor 42, and V(W) a constant value of the video signal occurring within a writing time W. Since the writing time W is usually short in comparison with the video content, the assumption is made that V(W) remains constant throughout the writing time. For a writing time W, the voltage across the capacitor 42 will be given by:
The term [V(W)+V,, in equation (2 represent the voltage of the source 46 and includes a bias voltage V,, equal to the pullin voltage of the light element 40. By design, if the term (W/rc) can be made large, than the linear transfer of the video signal V(t) can be made large, then the linear transfer of the video signal V(t) to the capacitor will take place in accordance with the approximation:
e,(W) V(W) +V,, (3) with an error of less than 5 percent with the term (W/rc) is larger than three.
At the termination of the writing time for a particular light element, the holding circuit takes over and the capacitor 42 begins to discharge through the resistor 48. With zero time considered as the start of the holding period, the voltage decay across the capacitor 42 will be in accordance with the expresston:
which will be meaningful only if e,(W) is equal to or greater than V,,. If e,(W), as given by the above expression, is less than V,,, at the end of a writing time, the light element remains at state 0 during the frame time. However, if e,(W) is greater than V,, at the end of a writing time, the light element 40 changes from the initial state 0 to state 1. The display duration for the light element to be in state 1 is given by the formula:
M e r where D the display duration, and R represents the resistance value of the resistor 48.
By design, if the term D/Rc is made small the following approximation can be written:
with an error less than 10 percent for D/Rc less than 0.2. This condition will be automatically satisfied by making F/Rc less than 0.2, where F is one frame time.
From equation (7 it can be concluded that the display duration of the light element 40 in the state 1 can be made proportional to the magnitude of the video signal. In summary, if the voltage e,(W) is less than or equal to the pull-in voltage V then the light element 40 remains in state 0 at the completion of a writing time and the term D/Rc equals zero. However, if the voltage e (W) is equal to or greater than V,,, then the light element 40 changes from the initial state 0 to the second state 1 and the display duration will be calculated in accordance with the approximation at (6 For a light element with hysteresis, the change between the two states can be summarized as:
l state 0, for an increasing e equal to or greater than 0, but
less than or equal to V,,,
2. state 1, for an increasing e equal to or greater than V,,;
3. state 1, for a decreasing e, greater than V,; and
While only one embodiment of the invention, together with modifications thereof, has been described in detail herein and shown in the accompanying drawings, it will be evident that various further modifications are possible without departing 4. state 0, for a decreasing e equal or greater than 0, but 5 from the scope of the invention.
less than or equal to V,. Referring to FIG. 5, there is shown an addressing scheme including a writing and holding circuit for a light element 50.
The holding circuit includes a resistor 52 and a capacitor 54 which is connected across the light element 50. The writing circuit includes the capacitor 54 and a resistor 56 in series with a signal source 58. A single-pole single-throw switch 60 controls the addressing of the light element 50. During the writing time, the switch 60 is closed thereby connecting the source 58 to the capacitor 54 through the resistor 56. This circuit has a time constant short enough to ensure that the capacitor 54 will be charged to the level of the signal from a source 58 in the time allotted. During the holding time, the capacitor 54 discharges through the resistor 52. This RC circuit has a time constant long compared to one frame time. The frame time being the time interval between subsequent closings of the switch 60. The display duration of the element 50 is determined by the magnitude of the source voltage, the value of the resistor 52, and the value of the capacitor 54.
Referring to FIG. 6, there is illustrated an addressing scheme for a row of light elements 1, 2...n. Each light element branch includes: a light element 62, a storage capacitor 64 and a holding resistor 66, all in a parallel arrangement. The individual branches are coupled to a voltage source 68 through a writing resistor 70 by means of single-pole single-throw switches 72. During the writing time for branch 1, the switch 72 associated with this branch is closed, thereby charging the capacitor 64 with the voltage from the source 68. For this period, the switches for the remaining branches in the row are open. At the completion of the writing time for branch 1, the switch for branch 2 is closed for the writing time of this branch. This operation continues with one switch being closed at any given time. Between the closing cycle of the switch 72 for a particular branch, the holding circuit of resistor 66 and capacitor 64 controls the duration of the display element 62. The time between subsequent closings of the switch 72 for each branch is one frame time.
Referring to FIG. 7, there is shown an addressing scheme for a matrix of light elements arranged in rows b b ...b,,, and columns a,, a ...a,,, to be subsequently coupled to a video signal source 74 through a writing resistor 76 by means of single-pole single-throw switches. Each element branch includes a light element 78, a storage capacitor 80, and a holding resistor 82. In addition, each branch includes a diode 84 to eliminate the so called crossimage effect. Assume the switch in column a and the switch in row b are closed. Although only one branch is coupled to both terminals of the source 74, all the branches in column a and all the branches in row 12 are coupled to one side or the other of the source. The diode 84, however, in all the branches except that one coupled to both terminals of the source 74, will be reverse biased thereby isolating these branches.
In operation, during the writing time for each branch the switches in the appropriate row and column are closed, thereby charging the capacitor 80 to the value of the video signal from the source 74. At the completion of the writing time for a particular branch, the column switch will be open and the next column switch closed. At the completion of one row, both the column and row switch will be opened and the next switch closed. The first column switch is then closed and all the branches in the second row are sequentially connected to the video signal source 74. Between subsequent couplings of a particular branch to the video signal source 74, that branch is considered to be in a holding state and the condition of the light element will be determined by the magnitude of the video signal connected thereto during the writing time and the component values for the resistor 82 and capacitor 80.
lclaim:
l. A display system comprising in combination:
a. a panel of selectively positioned light valves having variable light transmitting characteristics;
b. a light source impinging upon one surface of said light valve panel;
c. a video signal source;
d. an address scanner responsive to said video signal source for scanning said light valve panel along its X and Y axis and for intensity modulating said light valve panel along its Z axis;
e. a lurality of storage members respectively connected in pafiallel to said light valves;
f. a plurality of first circuit means respectively connected between said address scanner and said storage members for selectively charging said storage members during a first preselected time period; and
g. a plurality of second circuit means respectively connected in parallel to said storage members for effectively maintaining the charge on said storage members during a second preselected time period; wherein h. said address scanner selectively connects each of said first an second circuit means to its respective storage member respectively during said first and second preselected time periods; whereby i. during said first preselected time period each of said storage members selectively pass light to the other side of said panel; and whereby j. during said second preselected time period of said storage members are selectively maintained in their light passing condition.
2. The display system of claim 1 wherein each of said valves have a light blocking and light passing state, and wherein each of said light valves are in their passing state when their respective storage member is charged above a threshold valve and in their light blocking state when their respective storage member is discharged below threshold valve.
3. The display system of claim 1 wherein each of said storage members in combination with their respective first circuit means has a time constant that is relatively short with respect to said first preselected time period.
4. The display system of claim 1 wherein each of said storage members in combination with their respective second circuit means has a time constant relatively large with respect to the time required for said address scanner to scan said light valve panel.
5. The display system of claim 2 and further including means for biasing said video signals slightly lower than the threshold level required to change said light valves from their light block state to their light passing state.
6. The display system of claim 1 wherein each of said storage members includes a capacitor that is selectively connected in series with a first resistor during said, first preselected time period, and selectively connected in parallel to respective second resistors during said second preselected time period.
7. The display system of claim 1 wherein:
a. said light valves are selectively connected in rows and columns to form said panel; and wherein b. said address scanner scans said light valves by row and column and selectively couples said video signal to said storage members for selectively changing their light trans mitting characteristics.
8. Apparatus for selectively varying the display state of a matrix of light elements of the type having light transmitting and light restraining states comprising in combination:
a. a video signal source;
b. scanning means responsive to said video signal for selectively scanning said light elements of said matrix by row and column;
c. a plurality of storage means respectively connected in parallel to said light elements;
d. charging means selectively connected in series with a respective one of said storage means in response to said scanning means during a first preselected time period for selectively changing its respective light element from one of its states to its other state; and
e. a plurality of holding and discharging means effectively connected in parallel with a respective one of said storage

Claims (8)

1. A display system comprising in combination: a. a panel of selectively positioned light valves having Variable light transmitting characteristics; b. a light source impinging upon one surface of said light valve panel; c. a video signal source; d. an address scanner responsive to said video signal source for scanning said light valve panel along its X and Y axis and for intensity modulating said light valve panel along its Z axis; e. a plurality of storage members respectively connected in parallel to said light valves; f. a plurality of first circuit means respectively connected between said address scanner and said storage members for selectively charging said storage members during a first preselected time period; and g. a plurality of second circuit means respectively connected in parallel to said storage members for effectively maintaining the charge on said storage members during a second preselected time period; wherein h. said address scanner selectively connects each of said first an second circuit means to its respective storage member respectively during said first and second preselected time periods; whereby i. during said first preselected time period each of said storage members selectively pass light to the other side of said panel; and whereby j. during said second preselected time period of said storage members are selectively maintained in their light passing condition.
2. The display system of claim 1 wherein each of said valves have a light blocking and light passing state, and wherein each of said light valves are in their passing state when their respective storage member is charged above a threshold valve and in their light blocking state when their respective storage member is discharged below threshold valve.
3. The display system of claim 1 wherein each of said storage members in combination with their respective first circuit means has a time constant that is relatively short with respect to said first preselected time period.
4. The display system of claim 1 wherein each of said storage members in combination with their respective second circuit means has a time constant relatively large with respect to the time required for said address scanner to scan said light valve panel.
5. The display system of claim 2 and further including means for biasing said video signals slightly lower than the threshold level required to change said light valves from their light block state to their light passing state.
6. The display system of claim 1 wherein each of said storage members includes a capacitor that is selectively connected in series with a first resistor during said first preselected time period, and selectively connected in parallel to respective second resistors during said second preselected time period.
7. The display system of claim 1 wherein: a. said light valves are selectively connected in rows and columns to form said panel; and wherein b. said address scanner scans said light valves by row and column and selectively couples said video signal to said storage members for selectively changing their light transmitting characteristics.
8. Apparatus for selectively varying the display state of a matrix of light elements of the type having light transmitting and light restraining states comprising in combination: a. a video signal source; b. scanning means responsive to said video signal for selectively scanning said light elements of said matrix by row and column; c. a plurality of storage means respectively connected in parallel to said light elements; d. charging means selectively connected in series with a respective one of said storage means in response to said scanning means during a first preselected time period for selectively changing its respective light element from one of its states to its other state; and e. a plurality of holding and discharging means effectively connected in parallel with a respective one of said storage means in response to said scanning means during a second preselected time period for holding its respective lIght element in its selected state during said second preselected time period; f. during said first preselected period said light elements selectively transmit or restrain light from one side of said matrix to the other; and whereby. g. each of said light elements are maintained in their second light transmitting state for a time period larger than the time period required for said scanning means to scan said matrix by row and column.
US742365A 1968-07-03 1968-07-03 Apparatus for display duration modulation Expired - Lifetime US3576394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74236568A 1968-07-03 1968-07-03

Publications (1)

Publication Number Publication Date
US3576394A true US3576394A (en) 1971-04-27

Family

ID=24984539

Family Applications (1)

Application Number Title Priority Date Filing Date
US742365A Expired - Lifetime US3576394A (en) 1968-07-03 1968-07-03 Apparatus for display duration modulation

Country Status (1)

Country Link
US (1) US3576394A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006298A (en) * 1975-05-20 1977-02-01 Gte Laboratories Incorporated Bistable matrix television display system
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5128660A (en) * 1989-02-27 1992-07-07 Texas Instruments Incorporated Pointer for three dimensional display
US5162787A (en) * 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5170156A (en) * 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5192946A (en) * 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5206629A (en) * 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5214419A (en) * 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5214420A (en) * 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5272473A (en) * 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5287096A (en) * 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5398041A (en) * 1970-12-28 1995-03-14 Hyatt; Gilbert P. Colored liquid crystal display having cooling
US5432526A (en) * 1970-12-28 1995-07-11 Hyatt; Gilbert P. Liquid crystal display having conductive cooling
US5446479A (en) * 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5506597A (en) * 1989-02-27 1996-04-09 Texas Instruments Incorporated Apparatus and method for image projection
US5808797A (en) * 1992-04-28 1998-09-15 Silicon Light Machines Method and apparatus for modulating a light beam
US5841579A (en) * 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US5982553A (en) * 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US6088102A (en) * 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6101036A (en) * 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) * 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US20010022382A1 (en) * 1998-07-29 2001-09-20 Shook James Gill Method of and apparatus for sealing an hermetic lid to a semiconductor die
US20020098610A1 (en) * 2001-01-19 2002-07-25 Alexander Payne Reduced surface charging in silicon-based devices
US20020186448A1 (en) * 2001-04-10 2002-12-12 Silicon Light Machines Angled illumination for a single order GLV based projection system
US20020196492A1 (en) * 2001-06-25 2002-12-26 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US20030025984A1 (en) * 2001-08-01 2003-02-06 Chris Gudeman Optical mem device with encapsulated dampening gas
US20030035189A1 (en) * 2001-08-15 2003-02-20 Amm David T. Stress tuned blazed grating light valve
US20030035215A1 (en) * 2001-08-15 2003-02-20 Silicon Light Machines Blazed grating light valve
US20030103194A1 (en) * 2001-11-30 2003-06-05 Gross Kenneth P. Display apparatus including RGB color combiner and 1D light valve relay including schlieren filter
US20030208753A1 (en) * 2001-04-10 2003-11-06 Silicon Light Machines Method, system, and display apparatus for encrypted cinema
US20030223675A1 (en) * 2002-05-29 2003-12-04 Silicon Light Machines Optical switch
US20030235932A1 (en) * 2002-05-28 2003-12-25 Silicon Light Machines Integrated driver process flow
US20040001257A1 (en) * 2001-03-08 2004-01-01 Akira Tomita High contrast grating light valve
US20040001264A1 (en) * 2002-06-28 2004-01-01 Christopher Gudeman Micro-support structures
US20040008399A1 (en) * 2001-06-25 2004-01-15 Trisnadi Jahja I. Method, apparatus, and diffuser for reducing laser speckle
US20040057101A1 (en) * 2002-06-28 2004-03-25 James Hunter Reduced formation of asperities in contact micro-structures
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US20040113159A1 (en) * 2001-05-02 2004-06-17 Dwayne Burns Pixel circuit and operating method
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6865346B1 (en) 2001-06-05 2005-03-08 Silicon Light Machines Corporation Fiber optic transceiver
US6872984B1 (en) 1998-07-29 2005-03-29 Silicon Light Machines Corporation Method of sealing a hermetic lid to a semiconductor die at an angle
US6922272B1 (en) 2003-02-14 2005-07-26 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US6922273B1 (en) 2003-02-28 2005-07-26 Silicon Light Machines Corporation PDL mitigation structure for diffractive MEMS and gratings
US6927891B1 (en) 2002-12-23 2005-08-09 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
US6928207B1 (en) 2002-12-12 2005-08-09 Silicon Light Machines Corporation Apparatus for selectively blocking WDM channels
US6934070B1 (en) 2002-12-18 2005-08-23 Silicon Light Machines Corporation Chirped optical MEM device
US6947613B1 (en) 2003-02-11 2005-09-20 Silicon Light Machines Corporation Wavelength selective switch and equalizer
US6956995B1 (en) 2001-11-09 2005-10-18 Silicon Light Machines Corporation Optical communication arrangement
US6987600B1 (en) * 2002-12-17 2006-01-17 Silicon Light Machines Corporation Arbitrary phase profile for better equalization in dynamic gain equalizer
US6991953B1 (en) 2001-09-13 2006-01-31 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US7027202B1 (en) 2003-02-28 2006-04-11 Silicon Light Machines Corp Silicon substrate as a light modulator sacrificial layer
US7042611B1 (en) 2003-03-03 2006-05-09 Silicon Light Machines Corporation Pre-deflected bias ribbons
US7054515B1 (en) 2002-05-30 2006-05-30 Silicon Light Machines Corporation Diffractive light modulator-based dynamic equalizer with integrated spectral monitor
US7057795B2 (en) 2002-08-20 2006-06-06 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
US7057819B1 (en) 2002-12-17 2006-06-06 Silicon Light Machines Corporation High contrast tilting ribbon blazed grating
US7068372B1 (en) 2003-01-28 2006-06-27 Silicon Light Machines Corporation MEMS interferometer-based reconfigurable optical add-and-drop multiplexor
US7286764B1 (en) 2003-02-03 2007-10-23 Silicon Light Machines Corporation Reconfigurable modulator-based optical add-and-drop multiplexer
US7391973B1 (en) 2003-02-28 2008-06-24 Silicon Light Machines Corporation Two-stage gain equalizer
US20080212035A1 (en) * 2006-12-12 2008-09-04 Christensen Robert R System and method for aligning RGB light in a single modulator projector
US20080259988A1 (en) * 2007-01-19 2008-10-23 Evans & Sutherland Computer Corporation Optical actuator with improved response time and method of making the same
US20090002644A1 (en) * 2007-05-21 2009-01-01 Evans & Sutherland Computer Corporation Invisible scanning safety system
US20090168186A1 (en) * 2007-09-07 2009-07-02 Forrest Williams Device and method for reducing etendue in a diode laser
US20090219491A1 (en) * 2007-10-18 2009-09-03 Evans & Sutherland Computer Corporation Method of combining multiple Gaussian beams for efficient uniform illumination of one-dimensional light modulators
US20090322740A1 (en) * 2008-05-23 2009-12-31 Carlson Kenneth L System and method for displaying a planar image on a curved surface
US8077378B1 (en) 2008-11-12 2011-12-13 Evans & Sutherland Computer Corporation Calibration system and method for light modulation device
US8702248B1 (en) 2008-06-11 2014-04-22 Evans & Sutherland Computer Corporation Projection method for reducing interpixel gaps on a viewing surface
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1848888A (en) * 1929-08-20 1932-03-08 kendall
US1964062A (en) * 1930-01-24 1934-06-26 Rca Corp Electrooptical device
US1972492A (en) * 1932-07-01 1934-09-04 Communications Patents Inc Elastic wave television system
US2058882A (en) * 1927-11-12 1936-10-27 Bell Telephone Labor Inc Electrooptical image production
US3166635A (en) * 1961-09-25 1965-01-19 Joachim H Todt Thin film magnetic shutter display panel
US3210757A (en) * 1962-01-29 1965-10-05 Carlyle W Jacob Matrix controlled light valve display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2058882A (en) * 1927-11-12 1936-10-27 Bell Telephone Labor Inc Electrooptical image production
US1848888A (en) * 1929-08-20 1932-03-08 kendall
US1964062A (en) * 1930-01-24 1934-06-26 Rca Corp Electrooptical device
US1972492A (en) * 1932-07-01 1934-09-04 Communications Patents Inc Elastic wave television system
US3166635A (en) * 1961-09-25 1965-01-19 Joachim H Todt Thin film magnetic shutter display panel
US3210757A (en) * 1962-01-29 1965-10-05 Carlyle W Jacob Matrix controlled light valve display apparatus

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432526A (en) * 1970-12-28 1995-07-11 Hyatt; Gilbert P. Liquid crystal display having conductive cooling
US5398041A (en) * 1970-12-28 1995-03-14 Hyatt; Gilbert P. Colored liquid crystal display having cooling
US4006298A (en) * 1975-05-20 1977-02-01 Gte Laboratories Incorporated Bistable matrix television display system
US5170156A (en) * 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5162787A (en) * 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5192946A (en) * 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5206629A (en) * 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5214419A (en) * 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5214420A (en) * 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5272473A (en) * 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5287096A (en) * 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5128660A (en) * 1989-02-27 1992-07-07 Texas Instruments Incorporated Pointer for three dimensional display
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5446479A (en) * 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5506597A (en) * 1989-02-27 1996-04-09 Texas Instruments Incorporated Apparatus and method for image projection
US5808797A (en) * 1992-04-28 1998-09-15 Silicon Light Machines Method and apparatus for modulating a light beam
US5841579A (en) * 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US5982553A (en) * 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US6088102A (en) * 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US6101036A (en) * 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) * 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US20010022382A1 (en) * 1998-07-29 2001-09-20 Shook James Gill Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6872984B1 (en) 1998-07-29 2005-03-29 Silicon Light Machines Corporation Method of sealing a hermetic lid to a semiconductor die at an angle
US6764875B2 (en) 1998-07-29 2004-07-20 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US20020098610A1 (en) * 2001-01-19 2002-07-25 Alexander Payne Reduced surface charging in silicon-based devices
US7177081B2 (en) 2001-03-08 2007-02-13 Silicon Light Machines Corporation High contrast grating light valve type device
US20040001257A1 (en) * 2001-03-08 2004-01-01 Akira Tomita High contrast grating light valve
US20020186448A1 (en) * 2001-04-10 2002-12-12 Silicon Light Machines Angled illumination for a single order GLV based projection system
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US20030208753A1 (en) * 2001-04-10 2003-11-06 Silicon Light Machines Method, system, and display apparatus for encrypted cinema
US20040113159A1 (en) * 2001-05-02 2004-06-17 Dwayne Burns Pixel circuit and operating method
US7515127B2 (en) * 2001-05-02 2009-04-07 Microemissive Displays Limited Pixel circuit and operating method
US6865346B1 (en) 2001-06-05 2005-03-08 Silicon Light Machines Corporation Fiber optic transceiver
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US20040008399A1 (en) * 2001-06-25 2004-01-15 Trisnadi Jahja I. Method, apparatus, and diffuser for reducing laser speckle
US20020196492A1 (en) * 2001-06-25 2002-12-26 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US20030025984A1 (en) * 2001-08-01 2003-02-06 Chris Gudeman Optical mem device with encapsulated dampening gas
US20030223116A1 (en) * 2001-08-15 2003-12-04 Amm David T. Blazed grating light valve
US6829092B2 (en) * 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US20030035215A1 (en) * 2001-08-15 2003-02-20 Silicon Light Machines Blazed grating light valve
US20030035189A1 (en) * 2001-08-15 2003-02-20 Amm David T. Stress tuned blazed grating light valve
US7049164B2 (en) 2001-09-13 2006-05-23 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US6991953B1 (en) 2001-09-13 2006-01-31 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US6956995B1 (en) 2001-11-09 2005-10-18 Silicon Light Machines Corporation Optical communication arrangement
US20030103194A1 (en) * 2001-11-30 2003-06-05 Gross Kenneth P. Display apparatus including RGB color combiner and 1D light valve relay including schlieren filter
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US20030235932A1 (en) * 2002-05-28 2003-12-25 Silicon Light Machines Integrated driver process flow
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US20030223675A1 (en) * 2002-05-29 2003-12-04 Silicon Light Machines Optical switch
US7054515B1 (en) 2002-05-30 2006-05-30 Silicon Light Machines Corporation Diffractive light modulator-based dynamic equalizer with integrated spectral monitor
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US20040057101A1 (en) * 2002-06-28 2004-03-25 James Hunter Reduced formation of asperities in contact micro-structures
US6908201B2 (en) 2002-06-28 2005-06-21 Silicon Light Machines Corporation Micro-support structures
US20040001264A1 (en) * 2002-06-28 2004-01-01 Christopher Gudeman Micro-support structures
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US7057795B2 (en) 2002-08-20 2006-06-06 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6928207B1 (en) 2002-12-12 2005-08-09 Silicon Light Machines Corporation Apparatus for selectively blocking WDM channels
US7057819B1 (en) 2002-12-17 2006-06-06 Silicon Light Machines Corporation High contrast tilting ribbon blazed grating
US6987600B1 (en) * 2002-12-17 2006-01-17 Silicon Light Machines Corporation Arbitrary phase profile for better equalization in dynamic gain equalizer
US6934070B1 (en) 2002-12-18 2005-08-23 Silicon Light Machines Corporation Chirped optical MEM device
US6927891B1 (en) 2002-12-23 2005-08-09 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
US7068372B1 (en) 2003-01-28 2006-06-27 Silicon Light Machines Corporation MEMS interferometer-based reconfigurable optical add-and-drop multiplexor
US7286764B1 (en) 2003-02-03 2007-10-23 Silicon Light Machines Corporation Reconfigurable modulator-based optical add-and-drop multiplexer
US6947613B1 (en) 2003-02-11 2005-09-20 Silicon Light Machines Corporation Wavelength selective switch and equalizer
US6922272B1 (en) 2003-02-14 2005-07-26 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US7027202B1 (en) 2003-02-28 2006-04-11 Silicon Light Machines Corp Silicon substrate as a light modulator sacrificial layer
US6922273B1 (en) 2003-02-28 2005-07-26 Silicon Light Machines Corporation PDL mitigation structure for diffractive MEMS and gratings
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US7391973B1 (en) 2003-02-28 2008-06-24 Silicon Light Machines Corporation Two-stage gain equalizer
US7042611B1 (en) 2003-03-03 2006-05-09 Silicon Light Machines Corporation Pre-deflected bias ribbons
US20080212035A1 (en) * 2006-12-12 2008-09-04 Christensen Robert R System and method for aligning RGB light in a single modulator projector
US7891818B2 (en) 2006-12-12 2011-02-22 Evans & Sutherland Computer Corporation System and method for aligning RGB light in a single modulator projector
US20080259988A1 (en) * 2007-01-19 2008-10-23 Evans & Sutherland Computer Corporation Optical actuator with improved response time and method of making the same
US20090002644A1 (en) * 2007-05-21 2009-01-01 Evans & Sutherland Computer Corporation Invisible scanning safety system
US20090168186A1 (en) * 2007-09-07 2009-07-02 Forrest Williams Device and method for reducing etendue in a diode laser
US20090219491A1 (en) * 2007-10-18 2009-09-03 Evans & Sutherland Computer Corporation Method of combining multiple Gaussian beams for efficient uniform illumination of one-dimensional light modulators
US20090322740A1 (en) * 2008-05-23 2009-12-31 Carlson Kenneth L System and method for displaying a planar image on a curved surface
US8358317B2 (en) 2008-05-23 2013-01-22 Evans & Sutherland Computer Corporation System and method for displaying a planar image on a curved surface
US8702248B1 (en) 2008-06-11 2014-04-22 Evans & Sutherland Computer Corporation Projection method for reducing interpixel gaps on a viewing surface
US8077378B1 (en) 2008-11-12 2011-12-13 Evans & Sutherland Computer Corporation Calibration system and method for light modulation device
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface
US10110876B1 (en) 2011-10-06 2018-10-23 Evans & Sutherland Computer Corporation System and method for displaying images in 3-D stereo

Similar Documents

Publication Publication Date Title
US3576394A (en) Apparatus for display duration modulation
US3553364A (en) Electromechanical light valve
US4843381A (en) Field sequential color liquid crystal display and method
US5272472A (en) Apparatus for addressing data storage elements with an ionizable gas excited by an AC energy source
US3590156A (en) Flat panel display system with time-modulated gray scale
US4864290A (en) Display device
EP0666009B1 (en) Matrix display systems and methods of operating such systems
US5528262A (en) Method for line field-sequential color video display
EP0478186B1 (en) Display device
US3037189A (en) Visual display system
CN100573634C (en) Display device and driving method thereof
US3647958A (en) Flat-panel image display with plural display devices at each image point
US3700802A (en) Matrix-type image display with light-guide addressing system
WO1992009065A1 (en) Deformable mirror device driving circuit and method
US4707638A (en) Luminance adjusting system for a flat matrix type cathode-ray tube
US4259690A (en) Multi-picture tuning scheme of television receiver
US4627004A (en) Color image recording system and method for computer-generated displays
JPH0215294A (en) Optical data display device
CA1207004A (en) Ac plasma panel
US6166490A (en) Field emission display of uniform brightness independent of column trace-induced signal deterioration
US2727941A (en) Color television system
US5381252A (en) Opposed scanning electron beams light source for projection LCD
US3277333A (en) Storage tube system and method
US3142819A (en) Matrix cross-point scanning system
US2925525A (en) Image reproducing device