Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3576394 A
Publication typeGrant
Publication date27 Apr 1971
Filing date3 Jul 1968
Priority date3 Jul 1968
Publication numberUS 3576394 A, US 3576394A, US-A-3576394, US3576394 A, US3576394A
InventorsLee Ray H
Original AssigneeTexas Instruments Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for display duration modulation
US 3576394 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [72] Inventor RayH.Lee

Richardson, Tex. [21] Appl. No. 742,365 [22] Filed July 3,1968 [45] Patented Apr. 27, 1971 [73] Assignee Texas Instruments, Incorporated Dallas,Tex.

[54] APPARATUS FOR DISPLAY DURATION MODULATION 8 Claims, 7 Drawing Figs.

[52] U.S.Cl 178/7.3 [5|] Int.Cl H04n3/02 [50] FieldofSearch I 178/7.3

(D), 7.5 (D), 7.3 (E), 7.5 (E), 6

[56] References Cited UNITED STATES PATENTS 1,848,888 3/1932 Kendall 178/7.3D 1,964,062 6/1934 Jenkins l78/7.3D 1,972,492 9/1934 Nicolson..... l78/7.3D 2,058,882 10/1936 Ivesetal 178/6 3,166,635 1/1965 Todt..... l78/7.3D 3,210,757 10/1965 Jacob l78/7.5D

ADDRESS SCANNER Primary Examiner-Richard Murray Assistant Examiner-Alfred H. Eddleman Attorneys-Samuel M. Mims, Jr., James 0 Dixon, Andrew M. Hassell, Harold Levine, Melvin Sharp, Gerald B. Epstein, John E. Vandigriff and Richards, Harris and Hubbard ABSTRACT: The display state of a light element may be modulated by a video signal in a system that includes a storage device for transforming the video signal, which is available only during a writing time of short duration, to a display signal. A writing circuit for the light element includes the storage device and provides a writing equivalent circuit having a time constant short in comparison to the length of the writing time. A holding circuit also includes the storage device in an equivalent circuit that has a time constant long in comparison to one frame time. One frame time equals the time spacing between subsequent addressing of one light element in a dis play consisting of a plurality of such light elements. Inasmuch as the brightness of a light element is measured by the light integral of the element over one frame time, a halftone display can be effected if the display duration of each element in an array of such elements is video modulated by means of the writing circuit and the holding circuit.

RECEIVER APPARATUS FOR DISPLAY DURATION MODULATION This invention relates to a halftone display, and more particularly to a system for modulating the display duration of a light element to produce a halftone display.

During the early development of television in the latter part of the last century, a picture was generated on the retina of the eye of an observer by the rapid movement and intensity fluctuation of a narrow light beam. Because of persistence of vi-- sion of the human eye, a picture was in fact generated although of a very low quality. Basically, such displays require two matching integral parts: addressing and a light element. Addressing must be able to perform XY scanning as well as intensity modulation for a particular light element located at any XY location at the proper writing time. The lightelement, located in. any XY position, must'be able to respond to the writing and to effect a display.

As a result of inferior picture quality due to an inadequate addressing scheme and an operable light element, earlier efforts for producing a picture by means of light elements were abandoned in favor of its electron counterpart, the cathode ray tube. However, it is now realized that the cathode-ray tube displays have their limitation especially when producing color pictures. Screen sizes larger than 25-inch diagonalmeasurement produce a picture that lacks brightness as well as being difficult to handle (too bulky) and smaller than a 2l-inch diagonal measurement suffers in resolution on account of tolerance requirements.

Toovercome the brightness limitation imposed by the existing phosphers, various schemes have been proposed and developed for large screen display. Basically, these schemes rely on a modulatable-type light valve to be used in conjunction with an intense light source for projection, and for direct or projected viewing The light elements proposed include light emissive, light reflective, light refractive, light absorbing and light transmitting elements.

In accordance with. the present invention, the addressing scheme for such light elements provides ameans for modulat- "ing the display duration with a video signal. The writing circuit for each light element includes a storage device for extending the short time the video signal is available during a writing time into a much longer time display signal. Display signals of sufficient energy change the light element from one light state to a second light state and maintain the second state at the termination of the writing time. A holding circuit controls the display duration of the light element by slowly removing the display signal from the storage device. The display duration is proportional to the magnitude of the video signal, but in no case longer than one frame time.

y In accordance with another aspect of this invention, a dis- 4 play consists of a plurality of light elements with each light eleconfiguration with the storage capacitor and provides an equivalent circuit having a time constant long in comparison to one frame time (i.e., the time between subsequent addressing of one light element).

To modulate the display duration of a light element, it is an object of this invention to provide a writing and holding circuit for the light element. Another object of this invention is to provide display duration modulation of a light element by means of a writing circuit having a time constant short in comparison to the writing time. A further object of this invention is to provide display duration modulation of a light element by means of a holding circuit having a time constant long in comparison to one frame time. Still another object of this invention is to provide a display of light elements each individually display duration modulated. An additional object of this invention is to provide a display wherein a plurality of light elements are individually cycled between one of two light states by means of a writing and holding circuit.

A more complete understanding of the invention and it advantages will be apparent from the specification and claims and from the accompanying drawings illustrative of the invention.

Referring to the Drawings:

FIG. 1 illustrates a picture-receiving system employing a plurality of light elements coupled to an address scanner in accordance with the present invention;

FIG. 2 is an enlarged view in perspective of a typical bistable light valve that may be employed inthe panel illustrated in FIG. 1;

FIG. 3 schematically illustrates the writing equivalent circuit for addressing the individual light elements in the panel illustrated in FIG. 1;

FIG. 4 illustrates schematically the holding equivalent circuit for an individual light element;

FIG. 5 is a schematic of an addressing scheme for an individual light element;

FIG. 6 is a schematic of an addressing scheme for light elements arrange in a row of configuration; and

FIG. 7 is a schematic of an addressing scheme for a matrix panel array. A video receiver 14, coupled to an antenna 16,

provides a video signal for the operation of the address scanner 12 in the usual manner of present day video-receiving systems. To generate the visual display for an observer 18 on the panel 10, a light source 20 produces a light beam 22 columnated by a lens 24. A light panel may also be employed as a light source replacing the source 20 and the lens 24. This panel would match the size of the panel 10. By selectively opening and closing each light valve in the panel in accordance with the video signal received by the antenna 16, the observer 18 sees a picture displayed.

Although this description will proceed to emphasize a television system, it is not intended to be so limited. The address scanner 12 may be programmed from any one of many sources other than the receiver 14. For example, a computer can be employed to program the address scanner 12 to produce simulated environmental conditions, such as might be encountered in space travel, to observer 18. 6

In a typical television system in accordance with present day NTSC (National Television Systems Committee) regulations, the panel 10 includes 525 scanning lines, a bandwidth chosen for equal area resolution with an aspect ratio of 4:3, and there would be two interlaced fields in one frame having a frame rate of 30 frames per second. Accordingly, in order to fully utilize the NTSC information, the panel 10 has 525X(4/ 3X525)= I light units (one light valve per unit for a monochrome display, two light valves per unit for a bicolor display, and three light valves per unit for a tricolor display. In terms of light units, the video information received at the antenna 16 comes in at a rate of 0.0906 microseconds per unit (roughly 0.1 microsecond). Thus, for sequential addressing each valve in the panel 10 must be able to be addressed within a writing time of 0.l microsecond and updated once per frame time. Each frame time has a duration of one-thirtieth second.

Light elements that are used to make up the panel 10 may be any one of those that are classified as having some drivelight linearity, or bistable (on-off) elements, or those light elements which have highly nonlinear characteristics. Included within the group having some drive-light linearity are the El cells (electroluminescence cell), light bulbs, and light emitting diodes or the like. The nonlinear light elements include the gas discharge bulb and regional gaseous discharge elements or the like. Although any of these may be used in the panel 10, the invention will be described with reference to a bistable element such as disclosed in the copending application of Ray H. Lee, Ser. No. 7 1 3,503, filed Mar. l5, 1968 and assigned to the assignee of the present invention. Such a light element, as shown in FIG. 2, has two chargeable leaf shutters 28, 30 connected to receive a video signal through the address scanner 12. The light valve illustrated further includes a housing having sidewalls 34 and 36 along with front and back walls all of a reflective opaque material either electrically conductive, such as aluminum, or electrically insulating and covered with a conductive coating. An insulating layer (not shown) covers the conductive coating to electrically isolate the housing walls from the shutters. The housing or conductive coating is grounded by means of a lead 38 to provide electrostatic shielding, thereby eliminating electrostatic forces in the housing interior generated externally thereof.

Operationally, the light valve uses the well-known electroscope principle with each of the leaf shutters 28 and 30 considered one plate of a capacitor, with the respect of sidewall 34 or 36 forming the second plate. A charge is uniformly distributed, neglecting edge effects, over the facing surfaces, resulting in a uniformly distributed load on the leaf shutters and setting them in motion against both the inertia and elastic properties of the shutter material. To completely shut off the transmission of light to the observer 18, the leaf shutters 28 and 30 must be deflected to their respective sidewalls. The voltage connected to the valve to deflect the shutters to this position is identified as the pull-in" voltage, V,,. To return the leaf shutters 28 and 30 to their light transmission position, the voltage to the valve must be reduced to the release voltage, V,.

Although the valve described in the above-identified patent application has a measure of storage capability, to produce a halftone display with a plurality of such elements requires additional storage. This additional storage capability is provided for by means of an addressing scheme in the address scanner 12 which includes a writing circuit and a holding circuit. These circuits control the display duration of each valve in an array.

This additional storage capability and the writing and holding circuits for each light element make up the address scanner 12. Referring to FIGS. 3 and 4, there is shown an equivalent writing and holding circuit for each of the light elements of the panel 10. A capacitor 42 parallels the light element 40 and provides a means for storing a drive signal to maintain the light element in one of two light states. The writing equivalent circuit of FIG. 3 includes a resistor 44 in series with a signal source 46 coupled to the capacitor 42. A resistor 48 in the holding equivalent circuit shown in FIG. 4, forms an RC circuit configuration with the capacitor 42. The writing equivalent circuit including the resistor 44 and the capacitor 42 has a time constant short in comparison to the writing time, as discussed previously. The holding equivalent circuit including the resistor 48 and the capacitor 42 has a circuit time constant long in comparison to one frame time, again as discussed previously.

If the light element 40 is a bistable device as illustrated in FIG. 2, then it has two steady states, which may be denoted as state and 1. With reference to the light element of FIG. 2, the 0 state corresponds to that condition when the leaf shutters 28 and 30 pass light through the housing, and the 1 state corresponds to that condition when the leaf shutters are attracted to the housing walls and block light from passing therethrough. Starting from a 0 initial state, the voltage across the capacitor 42 increases up to the pull-in voltage V,, at which point the light element 40 changes instantaneously from state 0 to state 1. The element remains in state 1 until the voltage across the capacitor 42 and consequently the element 40, reduces to the release voltage V,, where V, is less than or equal to V,,. At the release voltage level, the light element 40 'rtTfmsinstantaneously to thestateQ WitIralightelement of the type illustrated in FIG. 2, and with most light elements, the release voltage V, will be somewhat less than the pull-in voltage V, as the result of hysteresis. For elements without hysteresis, the release voltage V, will equal the pull-in voltage V,,. The system described herein may be used with light elements with or without hysteresis.

Assume that the light element 40 is a purely voltage device that does not affect the operation of the writing or holding circuit. Proceeding from this assumption, it can be shown that the voltage across the capacitor 42 alone determines the light element output. Within a writing time and starting from a discharge condition, the voltage buildup across the capacitor 42 takes place in accordance with the formula:

c( for t less than W, where e (t) the voltage across the capacitor 42,

r= the resistance value of the resistor 44,

c the value of the capacitor 42, and V(W) a constant value of the video signal occurring within a writing time W. Since the writing time W is usually short in comparison with the video content, the assumption is made that V(W) remains constant throughout the writing time. For a writing time W, the voltage across the capacitor 42 will be given by:

The term [V(W)+V,, in equation (2 represent the voltage of the source 46 and includes a bias voltage V,, equal to the pullin voltage of the light element 40. By design, if the term (W/rc) can be made large, than the linear transfer of the video signal V(t) can be made large, then the linear transfer of the video signal V(t) to the capacitor will take place in accordance with the approximation:

e,(W) V(W) +V,, (3) with an error of less than 5 percent with the term (W/rc) is larger than three.

At the termination of the writing time for a particular light element, the holding circuit takes over and the capacitor 42 begins to discharge through the resistor 48. With zero time considered as the start of the holding period, the voltage decay across the capacitor 42 will be in accordance with the expresston:

which will be meaningful only if e,(W) is equal to or greater than V,,. If e,(W), as given by the above expression, is less than V,,, at the end of a writing time, the light element remains at state 0 during the frame time. However, if e,(W) is greater than V,, at the end of a writing time, the light element 40 changes from the initial state 0 to state 1. The display duration for the light element to be in state 1 is given by the formula:

M e r where D the display duration, and R represents the resistance value of the resistor 48.

By design, if the term D/Rc is made small the following approximation can be written:

with an error less than 10 percent for D/Rc less than 0.2. This condition will be automatically satisfied by making F/Rc less than 0.2, where F is one frame time.

From equation (7 it can be concluded that the display duration of the light element 40 in the state 1 can be made proportional to the magnitude of the video signal. In summary, if the voltage e,(W) is less than or equal to the pull-in voltage V then the light element 40 remains in state 0 at the completion of a writing time and the term D/Rc equals zero. However, if the voltage e (W) is equal to or greater than V,,, then the light element 40 changes from the initial state 0 to the second state 1 and the display duration will be calculated in accordance with the approximation at (6 For a light element with hysteresis, the change between the two states can be summarized as:

l state 0, for an increasing e equal to or greater than 0, but

less than or equal to V,,,

2. state 1, for an increasing e equal to or greater than V,,;

3. state 1, for a decreasing e, greater than V,; and

While only one embodiment of the invention, together with modifications thereof, has been described in detail herein and shown in the accompanying drawings, it will be evident that various further modifications are possible without departing 4. state 0, for a decreasing e equal or greater than 0, but 5 from the scope of the invention.

less than or equal to V,. Referring to FIG. 5, there is shown an addressing scheme including a writing and holding circuit for a light element 50.

The holding circuit includes a resistor 52 and a capacitor 54 which is connected across the light element 50. The writing circuit includes the capacitor 54 and a resistor 56 in series with a signal source 58. A single-pole single-throw switch 60 controls the addressing of the light element 50. During the writing time, the switch 60 is closed thereby connecting the source 58 to the capacitor 54 through the resistor 56. This circuit has a time constant short enough to ensure that the capacitor 54 will be charged to the level of the signal from a source 58 in the time allotted. During the holding time, the capacitor 54 discharges through the resistor 52. This RC circuit has a time constant long compared to one frame time. The frame time being the time interval between subsequent closings of the switch 60. The display duration of the element 50 is determined by the magnitude of the source voltage, the value of the resistor 52, and the value of the capacitor 54.

Referring to FIG. 6, there is illustrated an addressing scheme for a row of light elements 1, 2...n. Each light element branch includes: a light element 62, a storage capacitor 64 and a holding resistor 66, all in a parallel arrangement. The individual branches are coupled to a voltage source 68 through a writing resistor 70 by means of single-pole single-throw switches 72. During the writing time for branch 1, the switch 72 associated with this branch is closed, thereby charging the capacitor 64 with the voltage from the source 68. For this period, the switches for the remaining branches in the row are open. At the completion of the writing time for branch 1, the switch for branch 2 is closed for the writing time of this branch. This operation continues with one switch being closed at any given time. Between the closing cycle of the switch 72 for a particular branch, the holding circuit of resistor 66 and capacitor 64 controls the duration of the display element 62. The time between subsequent closings of the switch 72 for each branch is one frame time.

Referring to FIG. 7, there is shown an addressing scheme for a matrix of light elements arranged in rows b b ...b,,, and columns a,, a ...a,,, to be subsequently coupled to a video signal source 74 through a writing resistor 76 by means of single-pole single-throw switches. Each element branch includes a light element 78, a storage capacitor 80, and a holding resistor 82. In addition, each branch includes a diode 84 to eliminate the so called crossimage effect. Assume the switch in column a and the switch in row b are closed. Although only one branch is coupled to both terminals of the source 74, all the branches in column a and all the branches in row 12 are coupled to one side or the other of the source. The diode 84, however, in all the branches except that one coupled to both terminals of the source 74, will be reverse biased thereby isolating these branches.

In operation, during the writing time for each branch the switches in the appropriate row and column are closed, thereby charging the capacitor 80 to the value of the video signal from the source 74. At the completion of the writing time for a particular branch, the column switch will be open and the next column switch closed. At the completion of one row, both the column and row switch will be opened and the next switch closed. The first column switch is then closed and all the branches in the second row are sequentially connected to the video signal source 74. Between subsequent couplings of a particular branch to the video signal source 74, that branch is considered to be in a holding state and the condition of the light element will be determined by the magnitude of the video signal connected thereto during the writing time and the component values for the resistor 82 and capacitor 80.

lclaim:

l. A display system comprising in combination:

a. a panel of selectively positioned light valves having variable light transmitting characteristics;

b. a light source impinging upon one surface of said light valve panel;

c. a video signal source;

d. an address scanner responsive to said video signal source for scanning said light valve panel along its X and Y axis and for intensity modulating said light valve panel along its Z axis;

e. a lurality of storage members respectively connected in pafiallel to said light valves;

f. a plurality of first circuit means respectively connected between said address scanner and said storage members for selectively charging said storage members during a first preselected time period; and

g. a plurality of second circuit means respectively connected in parallel to said storage members for effectively maintaining the charge on said storage members during a second preselected time period; wherein h. said address scanner selectively connects each of said first an second circuit means to its respective storage member respectively during said first and second preselected time periods; whereby i. during said first preselected time period each of said storage members selectively pass light to the other side of said panel; and whereby j. during said second preselected time period of said storage members are selectively maintained in their light passing condition.

2. The display system of claim 1 wherein each of said valves have a light blocking and light passing state, and wherein each of said light valves are in their passing state when their respective storage member is charged above a threshold valve and in their light blocking state when their respective storage member is discharged below threshold valve.

3. The display system of claim 1 wherein each of said storage members in combination with their respective first circuit means has a time constant that is relatively short with respect to said first preselected time period.

4. The display system of claim 1 wherein each of said storage members in combination with their respective second circuit means has a time constant relatively large with respect to the time required for said address scanner to scan said light valve panel.

5. The display system of claim 2 and further including means for biasing said video signals slightly lower than the threshold level required to change said light valves from their light block state to their light passing state.

6. The display system of claim 1 wherein each of said storage members includes a capacitor that is selectively connected in series with a first resistor during said, first preselected time period, and selectively connected in parallel to respective second resistors during said second preselected time period.

7. The display system of claim 1 wherein:

a. said light valves are selectively connected in rows and columns to form said panel; and wherein b. said address scanner scans said light valves by row and column and selectively couples said video signal to said storage members for selectively changing their light trans mitting characteristics.

8. Apparatus for selectively varying the display state of a matrix of light elements of the type having light transmitting and light restraining states comprising in combination:

a. a video signal source;

b. scanning means responsive to said video signal for selectively scanning said light elements of said matrix by row and column;

c. a plurality of storage means respectively connected in parallel to said light elements;

d. charging means selectively connected in series with a respective one of said storage means in response to said scanning means during a first preselected time period for selectively changing its respective light element from one of its states to its other state; and

e. a plurality of holding and discharging means effectively connected in parallel with a respective one of said storage

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1848888 *20 Aug 19298 Mar 1932 kendall
US1964062 *24 Jan 193026 Jun 1934Rca CorpElectrooptical device
US1972492 *1 Jul 19324 Sep 1934Communications Patents IncElastic wave television system
US2058882 *12 Nov 192727 Oct 1936Bell Telephone Labor IncElectrooptical image production
US3166635 *25 Sep 196119 Jan 1965Todt Joachim HThin film magnetic shutter display panel
US3210757 *29 Jan 19625 Oct 1965Carlyle W JacobMatrix controlled light valve display apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4006298 *20 May 19751 Feb 1977Gte Laboratories IncorporatedBistable matrix television display system
US5079544 *27 Feb 19897 Jan 1992Texas Instruments IncorporatedStandard independent digitized video system
US5128660 *27 Feb 19897 Jul 1992Texas Instruments IncorporatedPointer for three dimensional display
US5162787 *30 May 199110 Nov 1992Texas Instruments IncorporatedApparatus and method for digitized video system utilizing a moving display surface
US5170156 *30 May 19918 Dec 1992Texas Instruments IncorporatedMulti-frequency two dimensional display system
US5192946 *30 May 19919 Mar 1993Texas Instruments IncorporatedDigitized color video display system
US5206629 *3 Jul 199127 Apr 1993Texas Instruments IncorporatedSpatial light modulator and memory for digitized video display
US5214419 *26 Jun 199125 May 1993Texas Instruments IncorporatedPlanarized true three dimensional display
US5214420 *26 Jun 199125 May 1993Texas Instruments IncorporatedSpatial light modulator projection system with random polarity light
US5272473 *17 Aug 199221 Dec 1993Texas Instruments IncorporatedReduced-speckle display system
US5287096 *18 Sep 199215 Feb 1994Texas Instruments IncorporatedVariable luminosity display system
US5398041 *27 Apr 199014 Mar 1995Hyatt; Gilbert P.Colored liquid crystal display having cooling
US5432526 *27 Apr 199011 Jul 1995Hyatt; Gilbert P.Liquid crystal display having conductive cooling
US5446479 *4 Aug 199229 Aug 1995Texas Instruments IncorporatedMulti-dimensional array video processor system
US5506597 *22 Dec 19929 Apr 1996Texas Instruments IncorporatedApparatus and method for image projection
US5808797 *26 Apr 199615 Sep 1998Silicon Light MachinesMethod and apparatus for modulating a light beam
US5841579 *7 Jun 199524 Nov 1998Silicon Light MachinesFlat diffraction grating light valve
US5982553 *20 Mar 19979 Nov 1999Silicon Light MachinesDisplay device incorporating one-dimensional grating light-valve array
US6088102 *31 Oct 199711 Jul 2000Silicon Light MachinesDisplay apparatus including grating light-valve array and interferometric optical system
US6101036 *23 Jun 19988 Aug 2000Silicon Light MachinesEmbossed diffraction grating alone and in combination with changeable image display
US6130770 *23 Jun 199810 Oct 2000Silicon Light MachinesElectron gun activated grating light valve
US621557924 Jun 199810 Apr 2001Silicon Light MachinesMethod and apparatus for modulating an incident light beam for forming a two-dimensional image
US62718085 Jun 19987 Aug 2001Silicon Light MachinesStereo head mounted display using a single display device
US670759115 Aug 200116 Mar 2004Silicon Light MachinesAngled illumination for a single order light modulator based projection system
US671248027 Sep 200230 Mar 2004Silicon Light MachinesControlled curvature of stressed micro-structures
US671433728 Jun 200230 Mar 2004Silicon Light MachinesMethod and device for modulating a light beam and having an improved gamma response
US672802328 May 200227 Apr 2004Silicon Light MachinesOptical device arrays with optimized image resolution
US67477812 Jul 20018 Jun 2004Silicon Light Machines, Inc.Method, apparatus, and diffuser for reducing laser speckle
US676487524 May 200120 Jul 2004Silicon Light MachinesMethod of and apparatus for sealing an hermetic lid to a semiconductor die
US676775128 May 200227 Jul 2004Silicon Light Machines, Inc.Integrated driver process flow
US678220515 Jan 200224 Aug 2004Silicon Light MachinesMethod and apparatus for dynamic equalization in wavelength division multiplexing
US680023815 Jan 20025 Oct 2004Silicon Light Machines, Inc.Method for domain patterning in low coercive field ferroelectrics
US680135420 Aug 20025 Oct 2004Silicon Light Machines, Inc.2-D diffraction grating for substantially eliminating polarization dependent losses
US680699728 Feb 200319 Oct 2004Silicon Light Machines, Inc.Patterned diffractive light modulator ribbon for PDL reduction
US681305928 Jun 20022 Nov 2004Silicon Light Machines, Inc.Reduced formation of asperities in contact micro-structures
US682279731 May 200223 Nov 2004Silicon Light Machines, Inc.Light modulator structure for producing high-contrast operation using zero-order light
US682907728 Feb 20037 Dec 2004Silicon Light Machines, Inc.Diffractive light modulator with dynamically rotatable diffraction plane
US6829092 *15 Aug 20017 Dec 2004Silicon Light Machines, Inc.Blazed grating light valve
US682925826 Jun 20027 Dec 2004Silicon Light Machines, Inc.Rapidly tunable external cavity laser
US68653465 Jun 20018 Mar 2005Silicon Light Machines CorporationFiber optic transceiver
US687298424 Jun 200229 Mar 2005Silicon Light Machines CorporationMethod of sealing a hermetic lid to a semiconductor die at an angle
US690820128 Jun 200221 Jun 2005Silicon Light Machines CorporationMicro-support structures
US692227214 Feb 200326 Jul 2005Silicon Light Machines CorporationMethod and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US692227328 Feb 200326 Jul 2005Silicon Light Machines CorporationPDL mitigation structure for diffractive MEMS and gratings
US692789123 Dec 20029 Aug 2005Silicon Light Machines CorporationTilt-able grating plane for improved crosstalk in 1ŚN blaze switches
US692820712 Dec 20029 Aug 2005Silicon Light Machines CorporationApparatus for selectively blocking WDM channels
US693407018 Dec 200223 Aug 2005Silicon Light Machines CorporationChirped optical MEM device
US694761311 Feb 200320 Sep 2005Silicon Light Machines CorporationWavelength selective switch and equalizer
US695699528 Aug 200218 Oct 2005Silicon Light Machines CorporationOptical communication arrangement
US6987600 *17 Dec 200217 Jan 2006Silicon Light Machines CorporationArbitrary phase profile for better equalization in dynamic gain equalizer
US699195328 Mar 200231 Jan 2006Silicon Light Machines CorporationMicroelectronic mechanical system and methods
US702720228 Feb 200311 Apr 2006Silicon Light Machines CorpSilicon substrate as a light modulator sacrificial layer
US70426113 Mar 20039 May 2006Silicon Light Machines CorporationPre-deflected bias ribbons
US70491649 Oct 200223 May 2006Silicon Light Machines CorporationMicroelectronic mechanical system and methods
US705451530 May 200230 May 2006Silicon Light Machines CorporationDiffractive light modulator-based dynamic equalizer with integrated spectral monitor
US705779520 Aug 20026 Jun 2006Silicon Light Machines CorporationMicro-structures with individually addressable ribbon pairs
US705781917 Dec 20026 Jun 2006Silicon Light Machines CorporationHigh contrast tilting ribbon blazed grating
US706837228 Jan 200327 Jun 2006Silicon Light Machines CorporationMEMS interferometer-based reconfigurable optical add-and-drop multiplexor
US71770818 Mar 200113 Feb 2007Silicon Light Machines CorporationHigh contrast grating light valve type device
US72867643 Feb 200323 Oct 2007Silicon Light Machines CorporationReconfigurable modulator-based optical add-and-drop multiplexer
US739197328 Feb 200324 Jun 2008Silicon Light Machines CorporationTwo-stage gain equalizer
US7515127 *1 May 20027 Apr 2009Microemissive Displays LimitedPixel circuit and operating method
US789181812 Dec 200722 Feb 2011Evans & Sutherland Computer CorporationSystem and method for aligning RGB light in a single modulator projector
US807737812 Nov 200913 Dec 2011Evans & Sutherland Computer CorporationCalibration system and method for light modulation device
US835831726 May 200922 Jan 2013Evans & Sutherland Computer CorporationSystem and method for displaying a planar image on a curved surface
Classifications
U.S. Classification348/740, 348/795, 348/E03.12
International ClassificationH04N3/12, H04N3/10
Cooperative ClassificationH04N3/12
European ClassificationH04N3/12