US3576384A - Multinozzle system for vortex burners - Google Patents

Multinozzle system for vortex burners Download PDF

Info

Publication number
US3576384A
US3576384A US779707A US3576384DA US3576384A US 3576384 A US3576384 A US 3576384A US 779707 A US779707 A US 779707A US 3576384D A US3576384D A US 3576384DA US 3576384 A US3576384 A US 3576384A
Authority
US
United States
Prior art keywords
air
combustion chamber
nozzle
baffle
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US779707A
Inventor
Charles F Peczeli
Edward T Tyrcz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETROCANADA Inc A CORP OF CANADA
British American Oil Co Ltd
Original Assignee
British American Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British American Oil Co Ltd filed Critical British American Oil Co Ltd
Application granted granted Critical
Publication of US3576384A publication Critical patent/US3576384A/en
Assigned to PETROCANADA INC., A CORP. OF CANADA reassignment PETROCANADA INC., A CORP. OF CANADA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF CANADA CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion

Definitions

  • the nozzle consists of a 45 conical frustum surrounding the atomizer but spaced therefrom, and at least one frustoconical baffle with the same cone angle, located between the outer frustum and the atomizer.
  • This invention relates generally to oil burners, and has to do particularly with an oil burner assembly in which combustion air first enters an air chamber, wherein the air is rotated, and then passes through a nozzle around a fuel atomizer into a combustion chamber.
  • This invention specifically concerns the construction of the nozzle through which combustion air passes from the air chamber into the combustion chamber.
  • this invention provides, in an oil burner assembly, a nozzle for positioning around a fuel atomizer between an air chamber and a combustion chamber, said nozzle comprising: means defining around the fuel atomizer an annular passage through which air passes from the air chamber to the combustion chamber, said means including adjacent the combustion chamber a frustoconical portion whose apex is downstream of its base, and a frustoconical baffie supported between the fuel atomizer and said frustoconical portion, thereby to define two substantially concentric annular air passageways each converging toward the combustion chamber, one of said passageways being outwardly adjacent .said baffle, the other of said passageways being inwardly adjacent said baffle.
  • FIG. 1 is an axial sectional view of a prior art oil burner assembly of the general kind to which this invention relates;
  • FIG. 2 is a sectional view taken at the line 2-2 in FIG. 1;
  • FIG. 3 is a broken-away axial sectional view, to a larger scale than FIG. 1, of the fuel atomizer and nozzle portion of the assembly of FIG. 1;
  • FIG. 4 is an axial sectional view of a nozzle assembly constructed in accordance with the first embodiment of this invention.
  • FIG. 5 is an axial sectional view of a nozzle assembly and combustion chamber constructed in accordance with the second embodiment of this invention.
  • FIGS. 1, 2 and 3 tional recirculating burner of the vortex type is shown in FIGS. 1, 2 and 3.
  • FIGS. l, 2 and 3 The prior art recirculating vortex burner shown in FIGS. l, 2 and 3 is seen to include a vortex air chamber 10, a tangential inlet 12, a combustion chamber 14 defined by cylindrical walls 15 and an end wall 16, and a frustoconical discharge nozzle 18 in the end wall 16.
  • An elongated fuel atomizer 20 is provided to extend concentrically through the vortex air chamber 10, and terminate in the vicinity of the discharge nozzle 18.
  • combustion air As combustion air enters the vortex air chamber 10 through the tangential inlet 12, a swirling motion is imparted to it in the direction indicated by the arrow 21 in FIG. 2. After passing through the discharge nozzle 18 into the combustion chamber 14, the combustion air is mixed with atomized fuel particles from the atomizer 20 and is ignited, resulting in a vortex of hot combustion gases swirling in the combustion chamber 14.
  • the most critical section of the design is the exit plane of the discharge nozzle 18.
  • the bulk of the fuel is still in liquid state, and if the reverse current is allowed to penetrate within the nozzle 18 or air chamber 10, some of the carbon components of the fuel are deposited on exposed surfaces, particularly the atomizer 20.
  • both high recirculation and fine particle size are desirable for good combustion, these backflow-type deposits cannot be tolerated, and therefore in the conventional device some sort of undesirable compromise is unavoidable.
  • this invention arises from the observation that, if a vortex of air is discharged into the combustion chamber through a plurality of essentially concentric nozzles, then separate vortices will be formed in each annulus, causing the pressure and velocity distribution in the discharge plane to become more uniform. It has furthermore been found that if a cylindrical collar is attached to the inlet side of these nozzles, it will strengthen the effect. Discharged into a common chamber, the vortices merge again into a single vortex.
  • FIG. 4 shows the first embodiment of this invention, in which the end wall 23 of a combustion chamber similar to that shown in FIG. 1 communicates with a nozzle 24 having a frustoconical portion 25 opening through the wall 23.
  • the frustoconical portion 23 is similar in all important respects to the nozzle 18 shown in FIG. 1.
  • An elongated fuel atomizer 26 is aligned concentrically with the nozzle 24, and supported between the fuel atomizer 26 and the frustoconical portion 25 is a frustoconical baffle 28, which defines two substantially concentric annular air passageways 29 and 30, each converging toward the combustion chamber located to the right of the end wall 23. Passageway 29 is outwardly adjacent the baffle 28, while passageway 30 is inwardly adjacent the baffle 28.
  • the numeral 31 refers to the wall of the air chamber from which air enters the nozzle 24.
  • both the frustoconical portion 25 and the frustoconical bafile 28 convefge in the downstream direction, and have cone angles of substantially 45. While it is considered essential that the baffle 28 and portion 25 both converge in the downstream direction, their conical shape and their cone angle of 45 are not considered essential. The latter characteristics are preferred, however, for reasons of manufacturing simplicity and because tests made on the embodiment shown in FIG. 4 have conclusively shown air velocity characteristics superior to those obtained with the conventional nozzle. Nonetheless, it is entirely possible that different cone angles or even different and possibly curved axial profiles would prove to be no less advantageous, and possibly more so, than the embodiment shown in FIG. 4.
  • a fuel atomizer 32 is located concentrically with a vortex air chamber 33 of which only the right-hand portion has been shown.
  • a combustion chamber 35 is provided and is concentric with the vortex air chamber 33.
  • the combustion chamber 35 includes a cylindrical sidewall 38, and an end wall 40.
  • a nozzle 42 is provided between the vortex air chamber 33 and the combustion chamber 35, and is adapted to pass combustion air from the former to the latter.
  • the nozzle 42 includes a portion 43 which is frustoconical in shape, and which is in fact merely a frustoconical opening through the end wall 40 of the combustion chamber 35.
  • the preferred cone angle for the frustoconical portion 43 is 45, but again neither the conicalness nor the cone angle of 45 is considered essential to to this invention.
  • Two frustoconical baffles 45a and 45b are disposed between the frustoconical portion 43 and the fuel atomizer 32, and the frustoconical baffles 45a and 45b have coaxial cylindrical projections 48a and 48b extending upstream from their bases.
  • the frustoconical baffles 45a and 45b together with their cylindrical projections 48a and 48b define three substantially concentric annular air passageways 49, 50 and 51, the air passageway 49 being between the baffles 45a and 45b, the air passageway 50 being outwardly adjacent the baffle 45a, and the air passageway 51 being inwardly adjacent the baffle 45b.
  • the frustoconical baffles 45a and 45b have frustoconical projections 52a and 52b extending forwardly from the frustoconical baffles 45a and 45b into the combustion chamber 35.
  • the frustoconical projections 52a and 52b have a slightly smaller cone angle than the frustoconical baffles 45a and 45b.
  • the dotted lines with arrowheads in FIG. represent the approximate axial airflow pattern for the combustion air passing through the nozzle 42, and for the combustion gases in the combustion chamber 35. Tangential motion is present, but is not represented in FIG. 5. It will be noted that essentially two toroidal vortices are created in the combustion chamber 35, these being indicated by the letters A and B.
  • the toroidal vortex denoted B is rather elongated in the axial direction and thus, strictly speaking, there is no central hoop or loop about which the toroidal vortex rotates. Hence, the location of the letter B has no positional significance.
  • the solid arrows around the letters A and B within the combustion chamber 35 indicate the general direction of rotation of the two toroidal vortices.
  • Test Results The effect of the two embodiments of this invention on the flow of combustion air through the nozzle, as compared to a conventional nozzle, was detennined through a series of cold tests. By cold tests is meant that no firing or combustion took place. The results of these tests are shown in FIGS. 6 and 7.
  • Assembly 1 was a conventional single-nozzle arrangement, schematically shown at the upper left of FIG. 6, and labeled as prior art.
  • Assembly 2 was the first embodiment of this invention, and was constructed from assembly 1 by adding to the latter a frustoconical baffle. Assembly 2 is schematically shown below assembly 1 in FIG. 6.
  • Assembly 3 represents the second embodiment of this invention, and assembly 3 was constructed from assembly 2 by adding a cylindrical collar to the frustoconical baffle of assembly 2. Assembly 3 is schematically drawn beneath assembly 2 in FIG. 6.
  • Both the nozzle and the baffle were frustoconical in shape, with a cone angle of 45.
  • a Pitot tube was used to measure the velocity and the direction of the airflow in the discharge plane and from this data the axial and tangential velocity components were subsequently calculated.
  • all tests were run with the identical blower setting, and the delivery of the blower was held constant.
  • FIG. 6 shows the tangential velocity distribution in the discharge plane of the nozzle, which is the same as the plane containing the downstream end of the nozzle.
  • the values for the prior art assembly, without a baffle are plotted as a short-dash broken line
  • the values for the first embodiment of this invention are plotted as a long-dash broken line
  • the values for the'second embodiment of this invention are plotted as a continuous line.
  • the same types of lines are used in FIG. 7.
  • the axial velocity distribution pattern for the first embodiment of this invention is different from that for the prior art in that the velocity drop in the vicinity of the baffle discharge is markedly reduced, and the domain of reverse flow is distinctly smaller and less intensive.
  • FIG. 6 the plots of tangential velocity components for the three assemblies indicate that the swirl is markedly higher with assembly than with assembly 1. Since all tests were run with an identical blower setting, it follows that the friction of the additional baffle and collar was more than compensated for by the more uniform airflow density across the noule face.
  • test data illustrated in FIGS. 6 and 7 indicate that the nozzle assembly of this invention can accomplish the following three desirable results;
  • Backflow-type deposits can be substantially reduced with the first embodiment of this invention and virtually eliminated with the second, owing to the reduction or elimination of reverse flow at the discharge plane.
  • the first of these vortex burners was originally equipped with a conventional single discharge nozzle, and delivered 2.5Xl0 B.T.U. per hour at maximum load. Originally, the burner had a 4.611 tumdown ratio. After the burner was equipped with a multicone assembly in accordance with the second embodiment of this invention, the maximum load increased to 4.25 l() BTU. per hour, and achieved a turndown ratio of 20: l. The increase in the load was accomplished with reduced air pressures, and thus the work of the combustion air blower did not increase.
  • the second burner had a 20x10 B.T.U. per hour rating, and was developed from the beginning with a multinozzle assembly. This unit also demonstrated an exceptionally high tumdown ratio, 25: 1. It performed well over 2 months of continuous operation in a boiler.
  • An oil burner assembly comprising:
  • a fuel atomizer extending coaxially from the air chamber into the nozzle and terminated substantially at the downstream end ofthe nozzle, said nozzle having ad acent the combustion chamber a substantially frustoconical portion whose apex is downstream of its base, said nozzle further having a substantially frustoconical baffle supported between the fuel atomizer and said substantially frustoconical portion, thereby to define two substantially concentric annular passageways each converging toward the combustion chamber and each communicating the air chamber with the combustion chamber, one of said passageways being outwardly adjacent said baffle, the other of said passageways being inwardly adjacent said baffle, said substantially frustoconical baffle having a cylindrical projection extending upstream from its base, thereby to increase the length of both said air passageways.
  • An oil burner as claimed in claim 1 which has a plurality of concentric baffles, of which one is the said substantially frustoconical baffle.
  • An oil burner assembly as claimed in claim 1, in which said means for causing admitted air to rotate within the air chamber comprises directing said air inlet substantially tangentially of the air chamber.

Abstract

A nozzle to be positioned around a fuel atomizer between a rotary air chamber and a coaxial combustion chamber. The nozzle consists of a 45* conical frustum surrounding the atomizer but spaced therefrom, and at least one frustoconical baffle with the same cone angle, located between the outer frustum and the atomizer. Thus are defined two concentric, converging annular passageways through which rotating air passes from the air chamber into the combustion chamber around the atomizer.

Description

United States 1 Patent Inventors Charles F. Peczeli Weston, Ontario;
Edward T. Tyrcz, Toronto, Ontario, Canada Nov. 29, 1968 Apr. 27, 1971 The British American Oil Company Limited Toronto, Ontario, Canada Appl. No. Filed Patented Assignee MULTINOZZLE SYSTEM FOR VORTEX BURNERS 6 Claims, 7 Drawing Figs.
US. Cl. 431/353,
431/182, 431/187, 239/405, 239/424 Int. Cl F23d 15/02 Field of Search 431/182- Primary Examiner-Carroll B. Dority, Jr. Attorney-Thomas T. Rieder ABSTRACT: A nozzle to be positioned around a fuel atomizer between a rotary air chamber and a coaxial combustion chamber. The nozzle consists of a 45 conical frustum surrounding the atomizer but spaced therefrom, and at least one frustoconical baffle with the same cone angle, located between the outer frustum and the atomizer. Thus are defined two concentric, converging annular passageways through which rotating air passes from the air chamber into the combustion chamber around the atomizer.
PATENTED M27 1971 SHEET 1 UF 2 INVENTORS: ggm fis F. PECLEU W RD T TYRCZ BY M W m;
PRIOR ART.
AGENT.
PATENTEUAPRZTIBYI 35763 4 sum 2 OF 2 Wins.
4425-, V ASSEMBLY I.
(PRIOR ART) ASSEMBLY 2 I l I ASSEMBLY 3.
q g 1-625 I 2% l E, DISCHARGE." I PLANE. I FIG. 6.
DISTRIBUTION OF TANGENTIAL VELOCITY COMPONENTS ALONG THE RADIUS I//I I l I I I I I I I VIO Ipm.
Iiil'IS.
DOMAINOF 2625-REVERSE FLOW.
1425- FIG] DISTRIBUTION OF I A IAI VELOCITY COMPONENTS MONG THE RADIUS. I
' I I l l I I I I l l 1l1 12 -I 0 1 2 3 4 5 6 7 8 9 1o INVENTORS:
EDI/MN) T- TY KCZ MLL MULTINOZZLE SYSTEM FOR VORTEX BURNERS This invention relates generally to oil burners, and has to do particularly with an oil burner assembly in which combustion air first enters an air chamber, wherein the air is rotated, and then passes through a nozzle around a fuel atomizer into a combustion chamber. This invention specifically concerns the construction of the nozzle through which combustion air passes from the air chamber into the combustion chamber.
As will be explained in greater detail below with reference to the drawings, conventional oil burner assemblies of the same general kind havea tendency to develop backflow"- type deposits of carbon on the fuel atomizer, primarily due to the reverse flow characteristics in the region of the central axis of the combustion chamber.
' Accordingly, it is one object of the present invention to provide an oil burner assembly in which backflow-type deposits of carbon on the fuel atomizer are substantially eliminated.
Although it is of advantage to eliminate the carbon deposits on the fuel atomizer, it is not desirable to reduce the recirculation characteristics of the gases in the combustion chamber, which is a contributing factor to the carbon buildup. Furthermore, it is of advantage to atomize the fuel to as fine a particle size as possible for good combustion characteristics, but unfortunately, fine particle size is also a contributing factor to the carbon buildup on the fuel atomizer.
Accordingly, it is a further object of this invention to provide an oil burner assembly in which carbon deposits on the fuel atomizer are substantially eliminated, without sacrificing either the fineness of particle size or the recirculating characteristics of the combustion gases in the combustion chamber.
Essentially, the above objects are accomplished by this invention through the provision of a multiple-nozzle assembly in which concentric cones, converging in the downstream direction, define at least two parallel converging passageways for the whirling air in the air chamber to pass around the fuel atomizer into the combustion chamber.
More specifically, this invention provides, in an oil burner assembly, a nozzle for positioning around a fuel atomizer between an air chamber and a combustion chamber, said nozzle comprising: means defining around the fuel atomizer an annular passage through which air passes from the air chamber to the combustion chamber, said means including adjacent the combustion chamber a frustoconical portion whose apex is downstream of its base, and a frustoconical baffie supported between the fuel atomizer and said frustoconical portion, thereby to define two substantially concentric annular air passageways each converging toward the combustion chamber, one of said passageways being outwardly adjacent .said baffle, the other of said passageways being inwardly adjacent said baffle.
Two embodiments of this invention are shown in the accompanying drawings, in which like numerals denote like parts throughout the several views, and in which:
FIG. 1 is an axial sectional view of a prior art oil burner assembly of the general kind to which this invention relates;
FIG. 2 is a sectional view taken at the line 2-2 in FIG. 1;
FIG. 3 is a broken-away axial sectional view, to a larger scale than FIG. 1, of the fuel atomizer and nozzle portion of the assembly of FIG. 1;
FIG. 4 is an axial sectional view of a nozzle assembly constructed in accordance with the first embodiment of this invention;
FIG. 5 is an axial sectional view of a nozzle assembly and combustion chamber constructed in accordance with the second embodiment of this invention;
tional recirculating burner of the vortex type is shown in FIGS. 1, 2 and 3.
PRIOR ART The prior art recirculating vortex burner shown in FIGS. l, 2 and 3 is seen to include a vortex air chamber 10, a tangential inlet 12, a combustion chamber 14 defined by cylindrical walls 15 and an end wall 16, and a frustoconical discharge nozzle 18 in the end wall 16. An elongated fuel atomizer 20 is provided to extend concentrically through the vortex air chamber 10, and terminate in the vicinity of the discharge nozzle 18.
As combustion air enters the vortex air chamber 10 through the tangential inlet 12, a swirling motion is imparted to it in the direction indicated by the arrow 21 in FIG. 2. After passing through the discharge nozzle 18 into the combustion chamber 14, the combustion air is mixed with atomized fuel particles from the atomizer 20 and is ignited, resulting in a vortex of hot combustion gases swirling in the combustion chamber 14.
In the vortex created in the combustion chamber 14, the pressure is higher on the periphery than it is in the center, and provided that the components of the burner are correctly proportioned, a reverse current is set up along the core or axis of the combustion chamber 14, thereby providing the desired recirculation of hot combustion gases.
The most critical section of the design is the exit plane of the discharge nozzle 18. Here, the bulk of the fuel is still in liquid state, andif the reverse current is allowed to penetrate within the nozzle 18 or air chamber 10, some of the carbon components of the fuel are deposited on exposed surfaces, particularly the atomizer 20. The stronger the recirculating current, and the finer the particle size, the greater is the tendency to form backflowtype deposits. This is so because larger particles tend to maintain their original direction, while a fine particle is easily entrained even in a weak backfiow current. Although both high recirculation and fine particle size are desirable for good combustion, these backflow-type deposits cannot be tolerated, and therefore in the conventional device some sort of undesirable compromise is unavoidable.
PARTICULAR DESCRIPTION OF THE INVENTION Essentially, this invention arises from the observation that, if a vortex of air is discharged into the combustion chamber through a plurality of essentially concentric nozzles, then separate vortices will be formed in each annulus, causing the pressure and velocity distribution in the discharge plane to become more uniform. It has furthermore been found that if a cylindrical collar is attached to the inlet side of these nozzles, it will strengthen the effect. Discharged into a common chamber, the vortices merge again into a single vortex.
The most important characteristic of the foregoing system, however, is that the penetration of the reverse flow to and beyond the discharge plane of the nozzle can be prevented, and thus the possibility of forming backflow-type deposits can be eliminated. At the same time, a significant reverse flow can be generated in the combustion chamber, and thus a very high proportion of combustion gases can still be recirculated.
FIG. 4 shows the first embodiment of this invention, in which the end wall 23 of a combustion chamber similar to that shown in FIG. 1 communicates with a nozzle 24 having a frustoconical portion 25 opening through the wall 23. The frustoconical portion 23 is similar in all important respects to the nozzle 18 shown in FIG. 1. An elongated fuel atomizer 26 is aligned concentrically with the nozzle 24, and supported between the fuel atomizer 26 and the frustoconical portion 25 is a frustoconical baffle 28, which defines two substantially concentric annular air passageways 29 and 30, each converging toward the combustion chamber located to the right of the end wall 23. Passageway 29 is outwardly adjacent the baffle 28, while passageway 30 is inwardly adjacent the baffle 28. The numeral 31 refers to the wall of the air chamber from which air enters the nozzle 24.
In the embodiment shown in FIG. 4, both the frustoconical portion 25 and the frustoconical bafile 28 convefge in the downstream direction, and have cone angles of substantially 45. While it is considered essential that the baffle 28 and portion 25 both converge in the downstream direction, their conical shape and their cone angle of 45 are not considered essential. The latter characteristics are preferred, however, for reasons of manufacturing simplicity and because tests made on the embodiment shown in FIG. 4 have conclusively shown air velocity characteristics superior to those obtained with the conventional nozzle. Nonetheless, it is entirely possible that different cone angles or even different and possibly curved axial profiles would prove to be no less advantageous, and possibly more so, than the embodiment shown in FIG. 4.
The second embodiment of the invention is shown in FlG. 5, to which attention is now directed. A fuel atomizer 32 is located concentrically with a vortex air chamber 33 of which only the right-hand portion has been shown. A combustion chamber 35 is provided and is concentric with the vortex air chamber 33. The combustion chamber 35 includes a cylindrical sidewall 38, and an end wall 40. A nozzle 42 is provided between the vortex air chamber 33 and the combustion chamber 35, and is adapted to pass combustion air from the former to the latter. As in the first embodiment, the nozzle 42 includes a portion 43 which is frustoconical in shape, and which is in fact merely a frustoconical opening through the end wall 40 of the combustion chamber 35. The preferred cone angle for the frustoconical portion 43 is 45, but again neither the conicalness nor the cone angle of 45 is considered essential to to this invention. Two frustoconical baffles 45a and 45b are disposed between the frustoconical portion 43 and the fuel atomizer 32, and the frustoconical baffles 45a and 45b have coaxial cylindrical projections 48a and 48b extending upstream from their bases. The frustoconical baffles 45a and 45b together with their cylindrical projections 48a and 48b define three substantially concentric annular air passageways 49, 50 and 51, the air passageway 49 being between the baffles 45a and 45b, the air passageway 50 being outwardly adjacent the baffle 45a, and the air passageway 51 being inwardly adjacent the baffle 45b. In addition to the cylindrical projections 48a and 48b, the frustoconical baffles 45a and 45b have frustoconical projections 52a and 52b extending forwardly from the frustoconical baffles 45a and 45b into the combustion chamber 35. The frustoconical projections 52a and 52b have a slightly smaller cone angle than the frustoconical baffles 45a and 45b.
The dotted lines with arrowheads in FIG. represent the approximate axial airflow pattern for the combustion air passing through the nozzle 42, and for the combustion gases in the combustion chamber 35. Tangential motion is present, but is not represented in FIG. 5. It will be noted that essentially two toroidal vortices are created in the combustion chamber 35, these being indicated by the letters A and B. The toroidal vortex denoted B is rather elongated in the axial direction and thus, strictly speaking, there is no central hoop or loop about which the toroidal vortex rotates. Hence, the location of the letter B has no positional significance. The solid arrows around the letters A and B within the combustion chamber 35 indicate the general direction of rotation of the two toroidal vortices. lt will be noted that the toroidal vortices rotate in opposite directions. In FIG. 5, it will be noted that the dotted arrow path 54 and the dotted arrow path 56 both cause a recirculation of the hot combustion gases hack to the vicinity of fuel atomization.
Test Results The effect of the two embodiments of this invention on the flow of combustion air through the nozzle, as compared to a conventional nozzle, was detennined through a series of cold tests. By cold tests is meant that no firing or combustion took place. The results of these tests are shown in FIGS. 6 and 7.
Three different assemblies were tested:
a. Assembly 1 was a conventional single-nozzle arrangement, schematically shown at the upper left of FIG. 6, and labeled as prior art.
b. Assembly 2 was the first embodiment of this invention, and was constructed from assembly 1 by adding to the latter a frustoconical baffle. Assembly 2 is schematically shown below assembly 1 in FIG. 6.
c. Assembly 3 represents the second embodiment of this invention, and assembly 3 was constructed from assembly 2 by adding a cylindrical collar to the frustoconical baffle of assembly 2. Assembly 3 is schematically drawn beneath assembly 2 in FIG. 6.
Both the nozzle and the baffle were frustoconical in shape, with a cone angle of 45. A Pitot tube was used to measure the velocity and the direction of the airflow in the discharge plane and from this data the axial and tangential velocity components were subsequently calculated. To determine the effect of the additional baffle and the combination of baffle and cylindrical projection on the friction losses, all tests were run with the identical blower setting, and the delivery of the blower was held constant.
FIG. 6 shows the tangential velocity distribution in the discharge plane of the nozzle, which is the same as the plane containing the downstream end of the nozzle. As indicated at the upper left in FIG. 6, the values for the prior art assembly, without a baffle, are plotted as a short-dash broken line, the values for the first embodiment of this invention are plotted as a long-dash broken line, and the values for the'second embodiment of this invention are plotted as a continuous line. The same types of lines are used in FIG. 7.
Directing attention first to FIG. 7, the plot of the axial velocity components for the three assemblies reveals that:
I. With the prior art assembly (assembly 1 there is an annulus of high velocity air around the periphery. The velocity, however, drops rapidly toward the center where a core of reverse flow with significant dimensions and velocities exists. Thus, it is seen that a core with a radius of approximately 1 inch is moving in the reverse or upstream direction in the plane defining the downstream end of the nozzle of the prior art assembly. It is this reverse flow core which entrains the fine atomized fuel particles and deposits them on surfaces upstream of the plane considered here.
2. The axial velocity distribution pattern for the first embodiment of this invention is different from that for the prior art in that the velocity drop in the vicinity of the baffle discharge is markedly reduced, and the domain of reverse flow is distinctly smaller and less intensive.
3. With the second embodiment of this invention, a more pronounced change is noticeable. There is a prominent second velocity peak in the vicinity of the discharge from the baffle, and there is no reverse flow in the discharge plane.
Integration of the axial velocity components for the discharge area yields the same value for all three assemblies, indicating identical flow rates. This face was confirmed by the independent flow measurement at the blower discharge.
Turning now to FIG. 6, the plots of tangential velocity components for the three assemblies indicate that the swirl is markedly higher with assembly than with assembly 1. Since all tests were run with an identical blower setting, it follows that the friction of the additional baffle and collar was more than compensated for by the more uniform airflow density across the noule face.
The test data illustrated in FIGS. 6 and 7 indicate that the nozzle assembly of this invention can accomplish the following three desirable results;
1. Backflow-type deposits can be substantially reduced with the first embodiment of this invention and virtually eliminated with the second, owing to the reduction or elimination of reverse flow at the discharge plane.
2. Better combustion is attained at any given load (Le. airflow rate), since the tangential velocities are'higher and thus the shear between the swirling air mass and the fuel particles is greater. The rate of recirculation is also higher, and this arises as a result of the higher tangential velocities. Since these results are obtained with no increase in blower work, it follows that the assembly is more efficient.
3. Higher tumdown ratios can be obtained, since at low loads where the tangential velocity of the conventional nozzle is not adequate to sustain an acceptable combustion, that of the present multiple-nozzle assembly is still sufficient.
The data presented above corresponds to approximately SOpercent burner load, because with the available instrumentation, this range gave the most consistent readings. Other tests have indicated that the advantages are appreciably higher at full load, and slightly less significant at idling.
Further tests have indicated that the uniformity of the axial velocity distribution improves with an increase in the number of concentric baffles in the nozzle assembly, provided increased frictional forces are ignored. Naturally, the addition of more concentric baffles will reach a point where the improvement in combustion characteristics becomes only marginally significant if it is noticeable at all, and where the increase in air pressure losses with additional baffles is undesirable. With significantly large units, however, it is considered that the number of useful baffles that can be included in the assembly will be higher than with small units.
For testing purposes, two different vortex burners were developed with multicone assemblies in accordance with this invention. The atomizers utilized in these burners incorporated the invention which is the subject of U.S. Pat. application Ser. No. 650,342, entitled Two-Stage Sonic Atomizing Device, filed June 30, 1.967 now abandoned.
The first of these vortex burners was originally equipped with a conventional single discharge nozzle, and delivered 2.5Xl0 B.T.U. per hour at maximum load. Originally, the burner had a 4.611 tumdown ratio. After the burner was equipped with a multicone assembly in accordance with the second embodiment of this invention, the maximum load increased to 4.25 l() BTU. per hour, and achieved a turndown ratio of 20: l. The increase in the load was accomplished with reduced air pressures, and thus the work of the combustion air blower did not increase.
The second burner had a 20x10 B.T.U. per hour rating, and was developed from the beginning with a multinozzle assembly. This unit also demonstrated an exceptionally high tumdown ratio, 25: 1. It performed well over 2 months of continuous operation in a boiler.
While preferred embodiments of this invention have been disclosed herein, those skilled in the air will appreciate that changes and modifications may be made therein without departing from the spirit and scope of this invention as defined in the appended claims.
We claim: I
1. An oil burner assembly, comprising:
an air chamber of circular cross section having an air inlet and means for causing admitted air to rotate within the air chamber,
a combustion chamber of circular cross section coaxial with said air chamber,
a nozzle coaxially communicating the air chamber with the combustion chamber, whereby air can pass from the former to the latter,
a fuel atomizer extending coaxially from the air chamber into the nozzle and terminated substantially at the downstream end ofthe nozzle, said nozzle having ad acent the combustion chamber a substantially frustoconical portion whose apex is downstream of its base, said nozzle further having a substantially frustoconical baffle supported between the fuel atomizer and said substantially frustoconical portion, thereby to define two substantially concentric annular passageways each converging toward the combustion chamber and each communicating the air chamber with the combustion chamber, one of said passageways being outwardly adjacent said baffle, the other of said passageways being inwardly adjacent said baffle, said substantially frustoconical baffle having a cylindrical projection extending upstream from its base, thereby to increase the length of both said air passageways.
2. An oil burner as claimed in claim 1, which has a plurality of concentric baffles, of which one is the said substantially frustoconical baffle.
3. The invention claimed in claim 1, in which the cone angle of said portion and of said baffle is substantially 45.
4. An oil burner as claimed in claim 1, in which said combustion chamber is cylindrical.
5. An oil burner assembly as claimed in claim 1, in which said means for causing admitted air to rotate within the air chamber comprises directing said air inlet substantially tangentially of the air chamber.
6. An oil burner as claimed in claim 1, in which the combustion chamber is cylindrical, and in which the cone angle of said portion and of said baffle is substantially 45.

Claims (6)

1. An oil burner assembly, comprising: an air chamber of circular cross section having an air inlet and means for causing admitted air to rotate within the air chamber, a combustion chamber of circular cross section coaxial with said air chamber, a nozzle coaxially communicating the air chamber with the combustion chamber, whereby air can pass from the former to the latter, a fuel atomizer extending coaxially from the air chamber into the nozzle and terminated substantially at the downstream end of the nozzle, said nozzle having adjacent the combustion chamber a substantially frustoconical portion whose apex is downstream of its base, said nozzle further having a substantially frustoconical baffle supported between the fuel atomizer and said substantially frustoconical portion, thereby to define two substantially concentric annular passageways each converging toward the combustion chamber and each communicating the air chamber with the combustion chamber, one of said passageways being outwardly adjacent said baffle, the other of said passageways being inwardly adjacent said baffle, said substantially frustoconical baffle having a cylindrical projection extending upstream from its base, thereby to increase the length of both said air passageways.
2. An oil burner as claimed in claim 1, which has a plurality of concentric baffles, of which one is the said substantially frustoconical baffle.
3. The invention claimed in claim 1, in which the cone angle of said portion and of said baffle is substantially 45*.
4. An oil burner as claimed in claim 1, in which said combustion chamber is cylindrical.
5. An oil burner assembly as claimed in claim 1, in which said means for causing admitted air to rotate within the air chamber comprises directing said air inlet substantially tangentially of the air chamber.
6. An oil burner as claimed in claim 1, in which the combustion chamber is cylindrical, and in which the cone angle of said portion and of said baffle is substantially 45*.
US779707A 1968-11-29 1968-11-29 Multinozzle system for vortex burners Expired - Lifetime US3576384A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77970768A 1968-11-29 1968-11-29

Publications (1)

Publication Number Publication Date
US3576384A true US3576384A (en) 1971-04-27

Family

ID=25117274

Family Applications (1)

Application Number Title Priority Date Filing Date
US779707A Expired - Lifetime US3576384A (en) 1968-11-29 1968-11-29 Multinozzle system for vortex burners

Country Status (1)

Country Link
US (1) US3576384A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684186A (en) * 1970-06-26 1972-08-15 Ex Cell O Corp Aerating fuel nozzle
US3758258A (en) * 1970-03-24 1973-09-11 Collin Consult A method for combusting fuels in a substantially conically shaped curtain
US3852020A (en) * 1972-06-20 1974-12-03 Gulf Oil Canada Ltd Method for admixing combustion air in a burner
US3852022A (en) * 1972-10-06 1974-12-03 Ofr Officine Fratelli Riello S Liquid fuel burner head
US3864073A (en) * 1970-03-24 1975-02-04 Collin Consult Method for combustion fuels which are ejected from an orifice in a manner to form a substantially conically shaped curtain of fuel and a device for putting the method into effect
US3897199A (en) * 1974-07-05 1975-07-29 Foster Wheeler Corp Burner assembly having a tertiary air nozzle
US3922137A (en) * 1974-02-22 1975-11-25 Gulf Oil Canada Ltd Apparatus for admixing fuel and combustion air
FR2308865A1 (en) * 1975-04-22 1976-11-19 Coulon Christian METHOD AND DEVICE FOR SPRAYING AND BURNING LIQUID FUELS
DE2830228A1 (en) * 1978-07-10 1980-01-24 Cons Natural Gas Svc Gaseous and liquid fuel burner for metallurgical furnace - which uses air, enriched air or oxygen as oxidants
US4260367A (en) * 1978-12-11 1981-04-07 United Technologies Corporation Fuel nozzle for burner construction
US4265615A (en) * 1978-12-11 1981-05-05 United Technologies Corporation Fuel injection system for low emission burners
US4285664A (en) * 1979-04-02 1981-08-25 Voorheis James T Burner for a plurality of fluid streams
US4394120A (en) * 1981-06-10 1983-07-19 Sredneaziatsky Filial Vniipromgaz Burner
US4443182A (en) * 1981-11-10 1984-04-17 Hauck Manufacturing Company Burner and method
US4600377A (en) * 1985-05-29 1986-07-15 Cedarapids, Inc. Refractoriless liquid fuel burner
US4798330A (en) * 1986-02-14 1989-01-17 Fuel Systems Textron Inc. Reduced coking of fuel nozzles
WO1992006328A1 (en) * 1990-10-05 1992-04-16 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5251823A (en) * 1992-08-10 1993-10-12 Combustion Tec, Inc. Adjustable atomizing orifice liquid fuel burner
US5499768A (en) * 1989-05-31 1996-03-19 Ohkawara Kakohki Co., Ltd. Spray nozzle unit
US5603211A (en) * 1993-07-30 1997-02-18 United Technologies Corporation Outer shear layer swirl mixer for a combustor
WO1997029326A1 (en) * 1996-02-06 1997-08-14 Foster Wheeler Energy International, Inc. Burner assembly with air stabilizer vane
US5983809A (en) * 1996-02-06 1999-11-16 Foster Wheeler Energy International, Inc. Burner assembly with low erosion inlet elbow
US6010330A (en) * 1997-04-07 2000-01-04 Eastman Chemical Company Faired lip protuberance for a burner nozzle
US6461145B1 (en) * 1999-02-25 2002-10-08 Stein Heurtey Flat flame burners
US20040050982A1 (en) * 2002-09-12 2004-03-18 Sprouse Kenneth M. Fluid mixing injector and method
US20040050056A1 (en) * 2002-09-13 2004-03-18 Pederson Robert J. Compact, lightweight high-performance lift thruster incorporating swirl-augmented oxidizer/fuel injection, mixing and combustion
US20040050061A1 (en) * 2002-09-13 2004-03-18 Schmotolocha Stephen N. Compact swirl augmented afterburners for gas turbine engines
US20080128547A1 (en) * 2006-12-05 2008-06-05 Pratt & Whitney Rocketdyne, Inc. Two-stage hypersonic vehicle featuring advanced swirl combustion
US20080256925A1 (en) * 2007-04-17 2008-10-23 Pratt & Whitney Rocketdyne, Inc. Compact, high performance swirl combustion rocket engine
US20080256924A1 (en) * 2007-04-17 2008-10-23 Pratt & Whitney Rocketdyne, Inc. Ultra-compact, high performance aerovortical rocket thruster
US20080283677A1 (en) * 2006-12-05 2008-11-20 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US20100183989A1 (en) * 2009-01-16 2010-07-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air-Gas Pilot Burner that can Operate with Oxygen
US20100209862A1 (en) * 2009-02-17 2010-08-19 Hahn Nicholas R Burner nozzle assembly for use in association with animal carcass dehairing equipment
US20100233639A1 (en) * 2009-03-11 2010-09-16 Richardson Andrew P Burner for reducing wall wear in a melter
US20110030235A1 (en) * 2008-01-10 2011-02-10 Zdenek Brancuzsky Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
WO2011080780A1 (en) * 2009-12-30 2011-07-07 Hysytech S.R.L. Burner and combustion device comprising said burner
US20120145050A1 (en) * 2010-12-08 2012-06-14 Vladimir Vladimirovich Fisenko Apparatus for combustion products utilization and heat generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2053003A (en) * 1932-05-28 1936-09-01 Electrol Inc Combustion apparatus
US2480547A (en) * 1947-09-19 1949-08-30 Comb Eng Superheater Inc Burner with adjustable air distribution
US2654219A (en) * 1950-09-04 1953-10-06 Bbc Brown Boveri & Cie Metal combustion chamber
US2669296A (en) * 1950-06-14 1954-02-16 Eloise B Stillman Burner throat with air inlet annulus defined by internally bladed cone
GB1006211A (en) * 1960-11-09 1965-09-29 Hamworthy Engineering Improvements in or relating to oil burners

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2053003A (en) * 1932-05-28 1936-09-01 Electrol Inc Combustion apparatus
US2480547A (en) * 1947-09-19 1949-08-30 Comb Eng Superheater Inc Burner with adjustable air distribution
US2669296A (en) * 1950-06-14 1954-02-16 Eloise B Stillman Burner throat with air inlet annulus defined by internally bladed cone
US2654219A (en) * 1950-09-04 1953-10-06 Bbc Brown Boveri & Cie Metal combustion chamber
GB1006211A (en) * 1960-11-09 1965-09-29 Hamworthy Engineering Improvements in or relating to oil burners

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758258A (en) * 1970-03-24 1973-09-11 Collin Consult A method for combusting fuels in a substantially conically shaped curtain
US3864073A (en) * 1970-03-24 1975-02-04 Collin Consult Method for combustion fuels which are ejected from an orifice in a manner to form a substantially conically shaped curtain of fuel and a device for putting the method into effect
US3684186A (en) * 1970-06-26 1972-08-15 Ex Cell O Corp Aerating fuel nozzle
US3852020A (en) * 1972-06-20 1974-12-03 Gulf Oil Canada Ltd Method for admixing combustion air in a burner
US3852022A (en) * 1972-10-06 1974-12-03 Ofr Officine Fratelli Riello S Liquid fuel burner head
US3922137A (en) * 1974-02-22 1975-11-25 Gulf Oil Canada Ltd Apparatus for admixing fuel and combustion air
US3897199A (en) * 1974-07-05 1975-07-29 Foster Wheeler Corp Burner assembly having a tertiary air nozzle
US4348168A (en) * 1975-04-22 1982-09-07 Christian Coulon Process and apparatus for atomizing and burning liquid fuels
FR2308865A1 (en) * 1975-04-22 1976-11-19 Coulon Christian METHOD AND DEVICE FOR SPRAYING AND BURNING LIQUID FUELS
DE2830228A1 (en) * 1978-07-10 1980-01-24 Cons Natural Gas Svc Gaseous and liquid fuel burner for metallurgical furnace - which uses air, enriched air or oxygen as oxidants
US4265615A (en) * 1978-12-11 1981-05-05 United Technologies Corporation Fuel injection system for low emission burners
US4260367A (en) * 1978-12-11 1981-04-07 United Technologies Corporation Fuel nozzle for burner construction
US4285664A (en) * 1979-04-02 1981-08-25 Voorheis James T Burner for a plurality of fluid streams
US4394120A (en) * 1981-06-10 1983-07-19 Sredneaziatsky Filial Vniipromgaz Burner
US4443182A (en) * 1981-11-10 1984-04-17 Hauck Manufacturing Company Burner and method
US4600377A (en) * 1985-05-29 1986-07-15 Cedarapids, Inc. Refractoriless liquid fuel burner
US4798330A (en) * 1986-02-14 1989-01-17 Fuel Systems Textron Inc. Reduced coking of fuel nozzles
US5499768A (en) * 1989-05-31 1996-03-19 Ohkawara Kakohki Co., Ltd. Spray nozzle unit
WO1992006328A1 (en) * 1990-10-05 1992-04-16 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5411394A (en) * 1990-10-05 1995-05-02 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5251823A (en) * 1992-08-10 1993-10-12 Combustion Tec, Inc. Adjustable atomizing orifice liquid fuel burner
EP0895024A3 (en) * 1993-07-30 1999-07-07 United Technologies Corporation Swirl mixer for a combustor
US5603211A (en) * 1993-07-30 1997-02-18 United Technologies Corporation Outer shear layer swirl mixer for a combustor
US5983809A (en) * 1996-02-06 1999-11-16 Foster Wheeler Energy International, Inc. Burner assembly with low erosion inlet elbow
US6145450A (en) * 1996-02-06 2000-11-14 Foster Wheeler Corporation Burner assembly with air stabilizer vane
WO1997029326A1 (en) * 1996-02-06 1997-08-14 Foster Wheeler Energy International, Inc. Burner assembly with air stabilizer vane
US6010330A (en) * 1997-04-07 2000-01-04 Eastman Chemical Company Faired lip protuberance for a burner nozzle
US6461145B1 (en) * 1999-02-25 2002-10-08 Stein Heurtey Flat flame burners
US6755359B2 (en) * 2002-09-12 2004-06-29 The Boeing Company Fluid mixing injector and method
US20040050982A1 (en) * 2002-09-12 2004-03-18 Sprouse Kenneth M. Fluid mixing injector and method
US20040050061A1 (en) * 2002-09-13 2004-03-18 Schmotolocha Stephen N. Compact swirl augmented afterburners for gas turbine engines
US6820411B2 (en) * 2002-09-13 2004-11-23 The Boeing Company Compact, lightweight high-performance lift thruster incorporating swirl-augmented oxidizer/fuel injection, mixing and combustion
US6895756B2 (en) * 2002-09-13 2005-05-24 The Boeing Company Compact swirl augmented afterburners for gas turbine engines
US20040050056A1 (en) * 2002-09-13 2004-03-18 Pederson Robert J. Compact, lightweight high-performance lift thruster incorporating swirl-augmented oxidizer/fuel injection, mixing and combustion
US20080283677A1 (en) * 2006-12-05 2008-11-20 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US20080128547A1 (en) * 2006-12-05 2008-06-05 Pratt & Whitney Rocketdyne, Inc. Two-stage hypersonic vehicle featuring advanced swirl combustion
US7762077B2 (en) 2006-12-05 2010-07-27 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US20080256924A1 (en) * 2007-04-17 2008-10-23 Pratt & Whitney Rocketdyne, Inc. Ultra-compact, high performance aerovortical rocket thruster
US7690192B2 (en) 2007-04-17 2010-04-06 Pratt & Whitney Rocketdyne, Inc. Compact, high performance swirl combustion rocket engine
US20080256925A1 (en) * 2007-04-17 2008-10-23 Pratt & Whitney Rocketdyne, Inc. Compact, high performance swirl combustion rocket engine
US7762058B2 (en) 2007-04-17 2010-07-27 Pratt & Whitney Rocketdyne, Inc. Ultra-compact, high performance aerovortical rocket thruster
US20110030235A1 (en) * 2008-01-10 2011-02-10 Zdenek Brancuzsky Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US10551121B2 (en) * 2008-01-10 2020-02-04 Douglas Technical Limited Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US10690409B2 (en) 2008-01-10 2020-06-23 Douglas Technical Limited Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US20100183989A1 (en) * 2009-01-16 2010-07-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air-Gas Pilot Burner that can Operate with Oxygen
US20100209862A1 (en) * 2009-02-17 2010-08-19 Hahn Nicholas R Burner nozzle assembly for use in association with animal carcass dehairing equipment
US20100233639A1 (en) * 2009-03-11 2010-09-16 Richardson Andrew P Burner for reducing wall wear in a melter
WO2011080780A1 (en) * 2009-12-30 2011-07-07 Hysytech S.R.L. Burner and combustion device comprising said burner
US20120145050A1 (en) * 2010-12-08 2012-06-14 Vladimir Vladimirovich Fisenko Apparatus for combustion products utilization and heat generation
US8551222B2 (en) * 2010-12-08 2013-10-08 Fisonic Holding Limited Apparatus for combustion products utilization and heat generation

Similar Documents

Publication Publication Date Title
US3576384A (en) Multinozzle system for vortex burners
US3979069A (en) Air-atomizing fuel nozzle
US4265615A (en) Fuel injection system for low emission burners
US3972182A (en) Fuel injection apparatus
US3946552A (en) Fuel injection apparatus
EP0896191B1 (en) Fuel gas admission device for a premix burner
US5169302A (en) Burner
US3648457A (en) Combustion apparatus
US4443182A (en) Burner and method
US3299841A (en) Burner impeller
IL34172A (en) Fuel delivery system
CA2074102A1 (en) Low nox short flame burner
US4941617A (en) Airblast fuel nozzle
US3922137A (en) Apparatus for admixing fuel and combustion air
JPS6055721B2 (en) Device that supplies a mixture of air and circulating combustion gas to the burner
US2577918A (en) Air jacketed combustion chamber flame tube
CA2177117C (en) Diffuser for coal nozzle burner
US3826083A (en) Recirculating combustion apparatus jet pump
US4815664A (en) Airblast fuel atomizer
US3074361A (en) Pulverized fuel burner
US3393650A (en) Slurry burner
US5228624A (en) Swirling structure for mixing two concentric fluid flows at nozzle outlet
US3693887A (en) Method and apparatus for gasifying liquid fuels and effecting a complete combustion thereof
US6132202A (en) Method and device for operating a premix burner
US5860600A (en) Atomizer (low opacity)

Legal Events

Date Code Title Description
AS Assignment

Owner name: PETROCANADA INC., A CORP. OF CANADA,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF CANADA CORPORATION;REEL/FRAME:004779/0997

Effective date: 19870630

Owner name: PETROCANADA INC., 150-6TH AVENUE S.W., CALGARY ALB

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF CANADA CORPORATION;REEL/FRAME:004779/0997

Effective date: 19870630