US3570385A - Modular panel system for clean room - Google Patents

Modular panel system for clean room Download PDF

Info

Publication number
US3570385A
US3570385A US786564A US3570385DA US3570385A US 3570385 A US3570385 A US 3570385A US 786564 A US786564 A US 786564A US 3570385D A US3570385D A US 3570385DA US 3570385 A US3570385 A US 3570385A
Authority
US
United States
Prior art keywords
frame
filter
air
ceiling
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US786564A
Inventor
Charles A Heisterkamp
William K Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
American Home Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Home Products Corp filed Critical American Home Products Corp
Application granted granted Critical
Publication of US3570385A publication Critical patent/US3570385A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/068Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as perforated walls, ceilings or floors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/078Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser combined with lighting fixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed

Definitions

  • the disclosure is directed to a clean room design which has a uniform vertical laminar air flow pattern and which will provide a Federal Standard No. 209A, Class 100, environment in sterile gowning areas, around high-speed parenteral drug-filling apparatus, andin like environments.
  • the disclosure is also directed to modular lighting panel designs for use in such a room.
  • a basic modular panel is made up of a frame supporting a perforated panel on the outlet side and an absolute filter on the inlet side.
  • a transition piece connects the filter to the frame, the perforated panel having a substantially larger area than the filter.
  • the modular lighting panels utilize foraminous lenses so selected and located with relation to each lighting unit as to pass substantially the same volume of air per unit time as other modular panels used in the room.
  • Patented March 16, 1971 2 Sheets-Sheet 1 Patented March 16, 1971 3,570,385
  • This invention is directed to environment control apparatus for the exclusion of airborne dust and microorganisms. More particularly, the invention is directed to a novel clean room design and to novel air permeable modular panels for use in connection with such a room.
  • An innovation of clean room design has been the rapid circulation of air under controlled temperatures and humidities in systems utilizing a vertical laminar flow.
  • laminar flow clean rooms large volumes of filtered air are distributed vertically from the ceiling and the entire volume is simultaneously removed through the floor.
  • the volumeof air which may have accumulated dust and dirt particles generated in the clean room is recirculated through adequate filter media before being recycled to the room.
  • a limited amount of the recirculated air is removed from the system and a similar amount of fresh air is added to control temperature and humidity conditions as required.
  • a typical clean room utilizes air flowing at the rate of about 100 feet per minute.
  • FIG. 1 is a perspective view of a clean room utilizing the features of the present invention
  • FIG. 2 is a plan view of the modular panel layout forming the ceiling of the clean room of FIG. 1;
  • FIG. 3 is a sectional view of a basic modular panel utilizing the features of this invention and taken generally along lines 3-3 of FIG. 2;
  • FIG. 4 is a sectional view of a modification of the basic modular panel design incorporating lighting troughs and lenses and taken generally along lines 4-4 of FIG. 2;
  • FIG. 5 is a sectional view of one embodiment of a method of suspension of the ceiling of the present invention taken generally along lines 5-5 of FIG. 2.
  • the objects of the present invention are achieved in a clean room 10 which has a ceiling 12, a floor 14 and walls 16, 18, 20.
  • the fourth wall (not shown) may be a solid wall with no openings.
  • Air from a remote fan passes through duct 22 and through broad mesh screens 24 into a plenum chamber 26 bounded on the upper side by outer ceiling 38.
  • the plenum chamber 26 is sized so that the entire volume of air above the ceiling 12 is at substantially the same pressure.
  • the air flows through basic panels 28 and lighting panels 30 and flows in a vertical laminar fiow pattern through the floor 14 into plenum 32 and duct 34 and returns to the suction of the fan through a duct 36.
  • Clean rooms may be placed adjacent to one another for economy in space and equipment utilization.
  • the incoming air .to the second room may enter through duct'42 and pass through screens 44 into plenum chamber 46 through ceiling 48 and laminarly through the clean room work volume 50, pass out through grating floor 52 and return to the fan through duct 54.
  • the separate air streams are kept apart by partition 56.
  • an access door 60 and an observation winder 62 may be provided in the wall 18.
  • FIG. 2 A typical layout plan of the modular panels is shown in FIG. 2.
  • a plurality of basic modular panels 28 are located on each side of the ceiling and a plurality of modular lighting panels 30 are located across the middle of the ceiling.
  • the panels may be suspended directly from the outer ceiling 38, as is shown in FIG 5, by a structural member 64, such as a stud bolt, and held in position by nuts 66.
  • the joint 68 between adjacent panels may be sealed by a sealing member 70, such as masking tape.
  • the basic modular panel 28 is made up of a frame 72 and a housing 74 which supports an absolute filter 76.
  • a foraminous member 78 is also connected to the frame.
  • the frame 72 may be supported at one end by attachment to appropriate structural members 80, such as angles, mounted in a wall 82.
  • the other sides may be supported from the ceiling, as described above, and connected to other modular panels, for instance by bolts and nuts.
  • the airflow in the embodiment shown in FIG. 3 is downwardly through the filter 76, as indicated by the arrows, into the plenum chamber formed by the housing 74 and the foraminous member 78, and then downwardly through the foraminous member 78 into the room in substantially laminar flow. It has been found advantageous to provide flow control means in the panels.
  • Dampers 71 having upper member 73 and lower member 75 and supported in member 77 may be mounted between the housing 74 and foraminous member 78.
  • the dampers 71 are interposed in the path of air flow and may be regulated by wellknown means, such as a worm gear.
  • a plurality of foramina 79 are defined in member 78.
  • member 78 is light gauge sheet metal, and the foramina are formed by stamping.
  • a typical modular lighting panel 30 is made up of a frame 84, and a housing 86 that supports an absolute filter 76.
  • a foraminous lens 90 is supported by the frame 84.
  • Lighting units 92 are mounted within the plenum chamber 89 formed by the housing 86 and the foraminous lens 90 or support member 88.
  • the support member may advantageously also support dampers 71 if desired.
  • the lighting units 92 are mounted above the foraminous lens 90.
  • the foraminous lens is typicallyplastic, preferably translucent, such as polystyrene or methyl methacrylate, and the foramina 91 are typically formed in a molding process.
  • the material for lens 90 is selected to be resistant to mechanical shock.
  • the foramina are of suitable size and spacing to provide airflow characteristics substantially identical to the foraminous members 7. Typically the airflow is about 100 cubic feet per minute per square foot of lens 90 at low head loss.
  • the airflow is downwardly through the absolute filter 76 into the plenum chamber 89 formed between the housing 86 and the foraminous sheet 90.
  • the air fills the plenum 89 at a substantially constant pressure throughout and flows through the dampers 71, when present, and the foraminous lens 90.
  • the air then flows in a vertical laminar flow through the clean room and is recycled as described above.
  • the basic module is about 36 inches by 5 or 6 feet long.
  • the depth of the plenum chamber of a basic modular panel is typically 7% inches.
  • the absolute filters used are typically 24 inches by 24 inches square by 12 inches deep.
  • the foraminous member has about 15 times the area of the filter.
  • the ceiling layout shown is for exemplification only and that the actual arrangement of modular panels may be made in a number of patterns to meet particular conditions of environment. Also the modular panels may be used by making a physical duct connection from the supply fan in lieu of the pressure plenum.
  • An improved clean room meeting the requirements of Federal Standard Number 209A, class for a sterile environment comprising:
  • An air-permeable ceiling further comprising:
  • a plurality of first modular panels having a frame, an absolute filter, a housing connecting said filter to said frame and a foraminous member connected to said frame and being substantially larger than said filter;
  • At least one second modular panel having a frame, an absolute filter, a housing connecting said filter to said frame, a foraminous lens connected to said frame opposite said housing, a support member connected to said frame and disposed between said housing and said lens, at least one lighting unit connected to said frame and disposed between said support member and said lens, said lens having an open area substantially equal to the open area of said foraminous member of said first modular panel;
  • E Means to remove air from under said floor, whereby air flows from said ceiling to said floor in a substantially vertical laminar pattern that is substantially the same under both said first and said second panels.

Abstract

The disclosure is directed to a clean room design which has a uniform vertical laminar air flow pattern and which will provide a Federal Standard No. 209A, Class 100, environment in sterile growing areas, around high-speed parenteral drug-filling apparatus, and in like environments. The disclosure is also directed to modular lighting panel designs for use in such a room. A basic modular panel is made up of a frame supporting a perforated panel on the outlet side and an absolute filter on the inlet side. A transition piece connects the filter to the frame, the perforated panel having a substantially larger area than the filter. The modular lighting panels utilize foraminous lenses so selected and located with relation to each lighting unit as to pass substantially the same volume of air per unit time as other modular panels used in the room.

Description

United States Patent [72] Inventors Charles A. Heisterkamp Westtown;
William K. Walker, Penllyn, Pa. [2]] Appl. No. 786,564 [22] Filed Dec. 24, 1968 [45] Patented Mar. 16, 1971 [73] Assignee American Home Products Corporation New York, N.Y.
[54] MODULAR PANEL SYSTEM FOR CLEAN ROOM 1 Claim, 5 Drawing Figs.
3,323,437 6/1967 Knab 3,350,862 11/1967 Nutting ABSTRACT: The disclosure is directed to a clean room design which has a uniform vertical laminar air flow pattern and which will provide a Federal Standard No. 209A, Class 100, environment in sterile gowning areas, around high-speed parenteral drug-filling apparatus, andin like environments. The disclosure is also directed to modular lighting panel designs for use in such a room. A basic modular panel is made up of a frame supporting a perforated panel on the outlet side and an absolute filter on the inlet side. A transition piece connects the filter to the frame, the perforated panel having a substantially larger area than the filter. The modular lighting panels utilize foraminous lenses so selected and located with relation to each lighting unit as to pass substantially the same volume of air per unit time as other modular panels used in the room.
Patented March 16, 1971 2 Sheets-Sheet 1 FIG Patented March 16, 1971 3,570,385
2 Sheets-Sheet 2 MODULAR PANEL SYSTEM F018 CLEAN ROOM This invention is directed to environment control apparatus for the exclusion of airborne dust and microorganisms. More particularly, the invention is directed to a novel clean room design and to novel air permeable modular panels for use in connection with such a room.
The packaging of highly sophisticated electronic components and the like and the packaging of certain drugs and medicine, particularly those for parenteral injection require an environment which is as nearly absolutely dust-free and absolutely microorganism-free as is possible. Clean room requirements are intended to provide an area in which activity may be performed in an atmosphere as free of airborne materials as possible by removing any particulate matter generated in the space as rapidly as possible. United States government Federal Standard 209A and Air Force T 0 00- 25-203 establish general standards for such procedures. The control of the particle size of foreign material has been effected by the use of absolute filters in the removal of the airborne dust particles.
An innovation of clean room design has been the rapid circulation of air under controlled temperatures and humidities in systems utilizing a vertical laminar flow. In laminar flow clean rooms large volumes of filtered air are distributed vertically from the ceiling and the entire volume is simultaneously removed through the floor. The volumeof air which may have accumulated dust and dirt particles generated in the clean room is recirculated through adequate filter media before being recycled to the room. A limited amount of the recirculated air is removed from the system and a similar amount of fresh air is added to control temperature and humidity conditions as required. A typical clean room utilizes air flowing at the rate of about 100 feet per minute.
In early clean rooms, substantially the entire ceiling was made up of absolute filters. The filters were exposed to the room and were subject to mechanical damage, for instance, by tools used in cleaning.
The most recent clean room designs have largely eliminated the mechanical damage problem by making the ceiling from perforated metal, or high-impact plastic, panels. The absolute filters were located near to a fan or blower used for circulating the air, thus reducing the number of expensive absolute filters required.
Problems exist in the prior art. It is customary to place the blowers and filters in a room remote from the clean room, and a relatively long duct is needed in order to distribute air to a plenum chamber above the clean room panel. The large volume in the ductwork and plenum chambers provides space v for microorganisms to grow and is difficult to reach for cleaning purposes.
Lighting fixtures used interrupted the uniformity of flow pattern across the room. The nonuniforrnity frequently caused eddies and increased the likelihood of recirculation of dust particlesgenerated within the room. In tests it has been found that a 12-inch wide troffer light which was air-impermeable when placed between two air-permeable panels created considerable disturbance in the form of eddy currents for a distance of 4 to 5 feet below the ceiling and directly under the light fixture. One prior-art solution was to place lighting units only at the side of a room, but such placement results in inadequate lighting of larger rooms.
It is an object of the present invention to provide a clean room design which eliminates or substantially reduces the problems of the prior art.
It is a further object of the present invention to provide an improved modular panel design in which the absolute filter is protected from mechanical damage yet is readily accessible for replacement, and the duct length between the filter and the clean room is relatively small.
It is still another object of this invention to provide an improved modular panel design in which lighting units may be incorporated while maintaining the uniformity of the flow of air across the entire panel.
Other and further objects of the invention will be apparent to those skilled in the art from a reading of the description of the invention taken in conjunction with the drawings in which:
FIG. 1 is a perspective view of a clean room utilizing the features of the present invention;
FIG. 2 is a plan view of the modular panel layout forming the ceiling of the clean room of FIG. 1;
FIG. 3 is a sectional view of a basic modular panel utilizing the features of this invention and taken generally along lines 3-3 of FIG. 2;
FIG. 4 is a sectional view of a modification of the basic modular panel design incorporating lighting troughs and lenses and taken generally along lines 4-4 of FIG. 2; and
FIG. 5 is a sectional view of one embodiment of a method of suspension of the ceiling of the present invention taken generally along lines 5-5 of FIG. 2.
The objects of the present invention are achieved in a clean room 10 which has a ceiling 12, a floor 14 and walls 16, 18, 20. The fourth wall (not shown) may be a solid wall with no openings. Air from a remote fan (not shown) passes through duct 22 and through broad mesh screens 24 into a plenum chamber 26 bounded on the upper side by outer ceiling 38. The plenum chamber 26 is sized so that the entire volume of air above the ceiling 12 is at substantially the same pressure. The air flows through basic panels 28 and lighting panels 30 and flows in a vertical laminar fiow pattern through the floor 14 into plenum 32 and duct 34 and returns to the suction of the fan through a duct 36.
Clean rooms may be placed adjacent to one another for economy in space and equipment utilization. The incoming air .to the second room may enter through duct'42 and pass through screens 44 into plenum chamber 46 through ceiling 48 and laminarly through the clean room work volume 50, pass out through grating floor 52 and return to the fan through duct 54. The separate air streams are kept apart by partition 56.
As is shown in FIG. 1, an access door 60 and an observation winder 62 may be provided in the wall 18.
A typical layout plan of the modular panels is shown in FIG. 2. In the embodiment shown a plurality of basic modular panels 28 are located on each side of the ceiling and a plurality of modular lighting panels 30 are located across the middle of the ceiling. The panels may be suspended directly from the outer ceiling 38, as is shown in FIG 5, by a structural member 64, such as a stud bolt, and held in position by nuts 66. The joint 68 between adjacent panels may be sealed by a sealing member 70, such as masking tape.
As is shown in FIG. 3, the basic modular panel 28 is made up of a frame 72 and a housing 74 which supports an absolute filter 76. A foraminous member 78 is also connected to the frame. The frame 72 may be supported at one end by attachment to appropriate structural members 80, such as angles, mounted in a wall 82. The other sides may be supported from the ceiling, as described above, and connected to other modular panels, for instance by bolts and nuts. The airflow in the embodiment shown in FIG. 3 is downwardly through the filter 76, as indicated by the arrows, into the plenum chamber formed by the housing 74 and the foraminous member 78, and then downwardly through the foraminous member 78 into the room in substantially laminar flow. It has been found advantageous to provide flow control means in the panels. Dampers 71 having upper member 73 and lower member 75 and supported in member 77 may be mounted between the housing 74 and foraminous member 78. The dampers 71 are interposed in the path of air flow and may be regulated by wellknown means, such as a worm gear.
A plurality of foramina 79 are defined in member 78. Typically member 78 is light gauge sheet metal, and the foramina are formed by stamping.
As may be seen in FIG. 4, a typical modular lighting panel 30 is made up of a frame 84, and a housing 86 that supports an absolute filter 76. A foraminous lens 90 is supported by the frame 84. Lighting units 92, are mounted within the plenum chamber 89 formed by the housing 86 and the foraminous lens 90 or support member 88. The support member may advantageously also support dampers 71 if desired. The lighting units 92 are mounted above the foraminous lens 90. The foraminous lens is typicallyplastic, preferably translucent, such as polystyrene or methyl methacrylate, and the foramina 91 are typically formed in a molding process. The material for lens 90 is selected to be resistant to mechanical shock. The foramina are of suitable size and spacing to provide airflow characteristics substantially identical to the foraminous members 7. Typically the airflow is about 100 cubic feet per minute per square foot of lens 90 at low head loss.
The airflow, as indicated by the arrows in FIG. 4, is downwardly through the absolute filter 76 into the plenum chamber 89 formed between the housing 86 and the foraminous sheet 90. The air fills the plenum 89 at a substantially constant pressure throughout and flows through the dampers 71, when present, and the foraminous lens 90. The air then flows in a vertical laminar flow through the clean room and is recycled as described above.
In a typical modular design, the basic module is about 36 inches by 5 or 6 feet long. The depth of the plenum chamber of a basic modular panel is typically 7% inches. The absolute filters used are typically 24 inches by 24 inches square by 12 inches deep. The foraminous member has about 15 times the area of the filter.
It is to be understood that the ceiling layout shown is for exemplification only and that the actual arrangement of modular panels may be made in a number of patterns to meet particular conditions of environment. Also the modular panels may be used by making a physical duct connection from the supply fan in lieu of the pressure plenum.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
We claim:
1. An improved clean room meeting the requirements of Federal Standard Number 209A, class for a sterile environment comprising:
A. An air-permeable ceiling further comprising:
1. A plurality of first modular panels having a frame, an absolute filter, a housing connecting said filter to said frame and a foraminous member connected to said frame and being substantially larger than said filter;
2. At least one second modular panel having a frame, an absolute filter, a housing connecting said filter to said frame, a foraminous lens connected to said frame opposite said housing, a support member connected to said frame and disposed between said housing and said lens, at least one lighting unit connected to said frame and disposed between said support member and said lens, said lens having an open area substantially equal to the open area of said foraminous member of said first modular panel;
B. An air-permeable floor;
C. A plurality of walls extending from said floor to said ceil- D. Means to supply air under pressure above said ceiling;
and
E. Means to remove air from under said floor, whereby air flows from said ceiling to said floor in a substantially vertical laminar pattern that is substantially the same under both said first and said second panels.

Claims (4)

1. An improved clean room meeting the requirements of Federal Standard Number 209A, class 100 for a sterile environment comprising: A. An air-permeable ceiling further comprising:
1. A plurality of first modular panels having a frame, an absolute filter, a housing connecting said filter to said frame and a foraminous member connected to said frame and being substantially larger than said filter;
2. At least one second modular panel having a frame, an absolute filter, a housing connecting said filter to said frame, a foraminous lens connected to said frame opposite said housing, a support member connected to said frame and disposed between said housing and said lens, at least one lighting unit connected to said frame and disposed between said support member and said lens, said lens having an open area substantially equal to the open area of said foraminous member of said first modular panel; B. An air-permeable floor; C. A plurality of walls extending from said floor to said ceiling; D. Means to supply air under pressure above said ceiling; and E. Means to remove air from under said floor, whereby air flows from said ceiling to said floor in a substantially vertical laminar pattern that is substantially the same under both said first and said second panels.
2. At least one second modular panel having a frame, an absolute filter, a housing connecting said filter to said frame, a foraminous lens connected to said frame opposite said housing, a support member connected to said frame and disposed between said housing and said lens, at least one lighting unit connected to said frame and disposed between said support member and said lens, said lens having an open area substantially equal to the open area of said foraminous member of said first modular panel; B. An air-permeable floor; C. A plurality of walls extending from said floor to said ceiling; D. Means to supply air under pressure above said ceiling; and E. Means to remove air from under said floor, whereby air flows from said ceiling to said floor in a substantially vertical laminar pattern that is substantially the same under both said first and said second panels.
US786564A 1968-12-24 1968-12-24 Modular panel system for clean room Expired - Lifetime US3570385A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78656468A 1968-12-24 1968-12-24

Publications (1)

Publication Number Publication Date
US3570385A true US3570385A (en) 1971-03-16

Family

ID=25138946

Family Applications (1)

Application Number Title Priority Date Filing Date
US786564A Expired - Lifetime US3570385A (en) 1968-12-24 1968-12-24 Modular panel system for clean room

Country Status (1)

Country Link
US (1) US3570385A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688477A (en) * 1970-07-01 1972-09-05 Charles Coward Jr Air distribution/filtration device for clean rooms
US3699235A (en) * 1971-09-01 1972-10-17 Airco Inc Hospital overhead service module
US3715578A (en) * 1971-02-10 1973-02-06 American Air Filter Co Light and filter assembly for ceiling structure
US3774522A (en) * 1972-03-10 1973-11-27 Bio Dynamics Inc Modular clean room enclosure
US3986850A (en) * 1974-12-05 1976-10-19 Flanders Filters, Inc. Flow control apparatus and air filters
JPS51144054A (en) * 1975-06-04 1976-12-10 Yoshiro Okuma Unit of blowing controlled air
US4030518A (en) * 1974-12-05 1977-06-21 Flanders Filters, Inc. Air flow control apparatus
US4034659A (en) * 1975-12-01 1977-07-12 Raider George K Air diffusion unit and control mechanism therefor
US4163416A (en) * 1977-08-29 1979-08-07 Schako Metallwarenfabrik Ferdinand Schad Gmbh Slotted outlet for the ventilation of interior spaces
US4439816A (en) * 1981-12-10 1984-03-27 Sci-Med Environmental Systems, Inc. Lighting and air filter structure
FR2561537A1 (en) * 1984-03-20 1985-09-27 Poelman Sofiltra Filtering structure with laminar air flow with incorporated lighting
US4625627A (en) * 1985-05-20 1986-12-02 Matheson Gas Products, Inc. Ventilated cabinet for containing gas supply vessels
US4869155A (en) * 1988-07-11 1989-09-26 The Grieve Corporation Airflow distribution system for discharging air from a thin plenum, and oven employing same
US4892030A (en) * 1988-07-11 1990-01-09 The Grieve Corporation Airflow distribution system for discharging air from a thin plenum, and oven employing same
US5871556A (en) * 1997-05-02 1999-02-16 Hepa Corporation Clean room air filter system with self-supporting filter units
US5934786A (en) * 1995-09-21 1999-08-10 O'keefe; Donald L. Sealed lighting unit for clean-rooms and the like
US6190431B1 (en) * 1997-05-02 2001-02-20 Peter Jeanseau Individually pin-supported filter units for a clean room system
US6267666B1 (en) * 1997-07-15 2001-07-31 Wilhelmi Werke Ag Room air conditioning method and an air-conditioned ceiling for a method of this type
US6675542B1 (en) * 2002-06-14 2004-01-13 Aaron I. Norton Housing for an internal combustion engine
US20060032078A1 (en) * 2004-08-11 2006-02-16 Christopher Charleston Method and apparatus for heating golf balls
US20110201265A1 (en) * 2010-02-15 2011-08-18 Philadelphia University Methods and apparatus for combating sick building syndrome
US20110217917A1 (en) * 2007-12-14 2011-09-08 Ge-Hitachi Nuclear Energy Americas Llc Air filtration and handling for nuclear reactor habitability area
CN102463230A (en) * 2010-11-10 2012-05-23 鸿富锦精密工业(深圳)有限公司 Container data center and dust collector thereof
US20140087649A1 (en) * 2012-09-26 2014-03-27 Shenzhen China Star Optoelectronics Technology Co. Ltd. Cleanroom and Cleaning Apparatus
US8999027B1 (en) * 2013-03-17 2015-04-07 Randy Carroll Baxter Self-contained system for scavenging contaminated air from above the water surface of an indoor swimming pool
US20170086333A1 (en) * 2007-06-14 2017-03-23 Switch Communications Group LLC Systems and methods for cooling data centers and other electronic equipment
US20180313558A1 (en) * 2017-04-27 2018-11-01 Cisco Technology, Inc. Smart ceiling and floor tiles
DE102007008019B4 (en) * 2007-02-15 2018-11-15 Krantz Gmbh air outlet
US20210047828A1 (en) * 2019-08-15 2021-02-18 G-Con Manufacturing, Inc. Removable Panel Roof for Modular, Self-Contained, Mobile Clean Room

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252400A (en) * 1964-02-24 1966-05-24 Jr Joseph Madl Means providing a coordinated air flow in an enclosure
US3323437A (en) * 1965-08-20 1967-06-06 Weber Showcase & Fixture Co Filter system
US3350862A (en) * 1965-07-22 1967-11-07 American Air Filter Co Modular support frame and filter media assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252400A (en) * 1964-02-24 1966-05-24 Jr Joseph Madl Means providing a coordinated air flow in an enclosure
US3350862A (en) * 1965-07-22 1967-11-07 American Air Filter Co Modular support frame and filter media assembly
US3323437A (en) * 1965-08-20 1967-06-06 Weber Showcase & Fixture Co Filter system

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688477A (en) * 1970-07-01 1972-09-05 Charles Coward Jr Air distribution/filtration device for clean rooms
US3715578A (en) * 1971-02-10 1973-02-06 American Air Filter Co Light and filter assembly for ceiling structure
US3699235A (en) * 1971-09-01 1972-10-17 Airco Inc Hospital overhead service module
US3774522A (en) * 1972-03-10 1973-11-27 Bio Dynamics Inc Modular clean room enclosure
US4030518A (en) * 1974-12-05 1977-06-21 Flanders Filters, Inc. Air flow control apparatus
US3986850A (en) * 1974-12-05 1976-10-19 Flanders Filters, Inc. Flow control apparatus and air filters
JPS51144054A (en) * 1975-06-04 1976-12-10 Yoshiro Okuma Unit of blowing controlled air
US4034659A (en) * 1975-12-01 1977-07-12 Raider George K Air diffusion unit and control mechanism therefor
US4163416A (en) * 1977-08-29 1979-08-07 Schako Metallwarenfabrik Ferdinand Schad Gmbh Slotted outlet for the ventilation of interior spaces
US4439816A (en) * 1981-12-10 1984-03-27 Sci-Med Environmental Systems, Inc. Lighting and air filter structure
FR2561537A1 (en) * 1984-03-20 1985-09-27 Poelman Sofiltra Filtering structure with laminar air flow with incorporated lighting
US4625627A (en) * 1985-05-20 1986-12-02 Matheson Gas Products, Inc. Ventilated cabinet for containing gas supply vessels
US4869155A (en) * 1988-07-11 1989-09-26 The Grieve Corporation Airflow distribution system for discharging air from a thin plenum, and oven employing same
US4892030A (en) * 1988-07-11 1990-01-09 The Grieve Corporation Airflow distribution system for discharging air from a thin plenum, and oven employing same
US5934786A (en) * 1995-09-21 1999-08-10 O'keefe; Donald L. Sealed lighting unit for clean-rooms and the like
US6183528B1 (en) * 1996-10-24 2001-02-06 Peter Jeanseau Clean room air filter system with self-supporting filter units
US6190431B1 (en) * 1997-05-02 2001-02-20 Peter Jeanseau Individually pin-supported filter units for a clean room system
US6270546B1 (en) * 1997-05-02 2001-08-07 Hepa Corporation Individually pin-supported filter units for a clean room system
US5871556A (en) * 1997-05-02 1999-02-16 Hepa Corporation Clean room air filter system with self-supporting filter units
US6267666B1 (en) * 1997-07-15 2001-07-31 Wilhelmi Werke Ag Room air conditioning method and an air-conditioned ceiling for a method of this type
US6675542B1 (en) * 2002-06-14 2004-01-13 Aaron I. Norton Housing for an internal combustion engine
US20060032078A1 (en) * 2004-08-11 2006-02-16 Christopher Charleston Method and apparatus for heating golf balls
US7721725B2 (en) 2004-08-11 2010-05-25 Acushnet Company Method and apparatus for heating golf balls
DE102007008019B4 (en) * 2007-02-15 2018-11-15 Krantz Gmbh air outlet
US20170086333A1 (en) * 2007-06-14 2017-03-23 Switch Communications Group LLC Systems and methods for cooling data centers and other electronic equipment
US20110217917A1 (en) * 2007-12-14 2011-09-08 Ge-Hitachi Nuclear Energy Americas Llc Air filtration and handling for nuclear reactor habitability area
US9435552B2 (en) * 2007-12-14 2016-09-06 Ge-Hitachi Nuclear Energy Americas Llc Air filtration and handling for nuclear reactor habitability area
US20110201265A1 (en) * 2010-02-15 2011-08-18 Philadelphia University Methods and apparatus for combating sick building syndrome
CN102463230A (en) * 2010-11-10 2012-05-23 鸿富锦精密工业(深圳)有限公司 Container data center and dust collector thereof
US20140087649A1 (en) * 2012-09-26 2014-03-27 Shenzhen China Star Optoelectronics Technology Co. Ltd. Cleanroom and Cleaning Apparatus
US8999027B1 (en) * 2013-03-17 2015-04-07 Randy Carroll Baxter Self-contained system for scavenging contaminated air from above the water surface of an indoor swimming pool
US20180313558A1 (en) * 2017-04-27 2018-11-01 Cisco Technology, Inc. Smart ceiling and floor tiles
US20210047828A1 (en) * 2019-08-15 2021-02-18 G-Con Manufacturing, Inc. Removable Panel Roof for Modular, Self-Contained, Mobile Clean Room
US11624182B2 (en) * 2019-08-15 2023-04-11 G-Con Manufacturing, Inc. Removable panel roof for modular, self-contained, mobile clean room

Similar Documents

Publication Publication Date Title
US3570385A (en) Modular panel system for clean room
US3986850A (en) Flow control apparatus and air filters
US4798171A (en) Animal isolator
US3776121A (en) Controlled environmental apparatus for industry
US4699640A (en) Clean room having partially different degree of cleanliness
US3252400A (en) Means providing a coordinated air flow in an enclosure
JPH0660757B2 (en) Air filtration distribution structure
US3158457A (en) Ultra-clean room
US4690100A (en) Ventilated animal housing and service system with cage filter covers
US4267769A (en) Prefabricated knockdown clean room
US3935803A (en) Air filtration apparatus
US4427427A (en) Vertical laminar flow filter module
US4339250A (en) Fresh air fountain air filter arrangement
GB2147409A (en) Environmental control device
US6113486A (en) Fabric sheath for ventilation and laminar flow hood
US3498032A (en) High capacity low contamination bench
US4030518A (en) Air flow control apparatus
IE74881B1 (en) Filter/ventilator apparatus for use in clean rooms
EP1212131A1 (en) Adjustable clean-air flow environment
US4016809A (en) Clean air workbench
US3638404A (en) Vertical laminar-flow clean room of flexible design
US10184686B2 (en) System for maintaining a pollutant controlled workspace
US3494112A (en) Clean air work station
JPS58500178A (en) Clean room and its operating method
WO1985004240A1 (en) Portable clean air space system