US3544467A - Acid-amide pour point depressants - Google Patents

Acid-amide pour point depressants Download PDF

Info

Publication number
US3544467A
US3544467A US794444*A US3544467DA US3544467A US 3544467 A US3544467 A US 3544467A US 3544467D A US3544467D A US 3544467DA US 3544467 A US3544467 A US 3544467A
Authority
US
United States
Prior art keywords
carbon atoms
amine
acid
pour point
succinamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794444*A
Inventor
George J Kautsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3544467A publication Critical patent/US3544467A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties

Definitions

  • pour point depressants for waxy hydrocarbonaceous fuels and oils which are C-(n-aliphatic hydrocarbyl) succinamic acids of at least about a total of 50 carbon atoms, wherein the nitrogen has two aliphatic hydrocarbon substituents, each of which has at least 14 carbon atoms and the aliphatic hydrocarbyl group is of at least 14 carbon atoms and bonded to a carbon atom of the succinic acid radical at other than the terminal carbon Patented Dec. 1, 1970 atom of the aliphatic hydrocarbyl group (a secondary carbon atom).
  • Hydrocarbyl is an organic radical composed solely of carbon and hydrogen, which may be ali phatically saturated or unsaturated.
  • the succinamic acid may be used as the acid or as the amine salt.
  • the amine forming the salt may be a primary or secondary amine of from 0 to 50 carbon atoms.
  • succinamic acid or its salt or combination thereof is ,used with an ethylene-olefin copolymer wherein the ratio of the ethylene to the other olefin is in the range of 612:1.
  • the pour point depressants of this invention are the C-(n-aliphatic hydrocarbyl) succinamic acids having 2 aliphatic hydrocarbon substituents on the nitrogen, the amine salt of the succinamic acid and, preferably, the combinations thereof.
  • the succinamic acids, the salt or the combination thereof may be used by themselves or, preferably, with an ethylene-olefin copolymer wherein the ethylene to other olefin mole ratio is in the range of 6-1221.
  • the polymers will be of a relatively low molecular weight, being of from about 1,000 to 100,000 molecular weight, more usually of from 1,000 to 20,000 molecular weight.
  • succinamic acids C-(n-aliphatic hydrocarbyl) succinamic acids
  • the succinamic acids will, for the most part, have the following formula:
  • R is a straight chain aliphatic hydrocarbon group having from 0 to 1 site of olefinic unsaturation (alkyl or alkenyl) attached at a secondary carbon atom to the succinyl group and is of at least 14 carbon atoms, generally in the range of 15 to 28 carbon atoms and more usually in the range of 15 to 22 carbon atoms.
  • X and X is hydroxyl and the other is:
  • N has its normal meaning of nitrogen and Y and Y are aliphatic hydrocarbyl groups of from 14 to 28 carbon atoms, more usually of from 15 to 22 carbon atoms, having a total of from about 30 to 52 carbon atoms, more usually of from 32 to 48 carbon atoms, and, preferably, of from 32 to carbon atoms.
  • Y and Y may be aliphatically saturated or aliphatically unsaturated, generally free of acetylenic unsaturation (alkyl or alkenyl). There may be from 1 to 2 sites of olefinic unsaturation.
  • Y and Y may be the same or different and may be straight chain or branched chain, preferably straight chain. The branches will normally be not greater than 1 carbon atom, i.e., methyl.
  • the position of attachment to nitrogen may be at a terminal or internal carbon atom.
  • Y and Y may be hydrogen, aliphatic hydrocarbon of from 1 to 30 carbon atoms or oxyaliphatic hydrocarbon (there being 1 ethereal oxygen atom present in the radical bonded to nitrogen at least ,8 to the nitrogen atom) of from 3 to 30 carbon atoms.
  • Y and Y may be taken together to form a heterocyclic ring of from 5 to 7 members having nitrogen and oxygen as the only heteromembers.
  • n varies from to 1, preferably from 0.1 to 0.9. That is, from 10 to 90 mole percent of the succinamic acid present is in the form of its salt.
  • the aliphatic hydrocarbon groups may be saturated or unsaturated usually having not more than 2 sites of ethylenic unsaturation.
  • the total number of carbon atoms for HNY Y will be from 0 to 60, usually 1 to 40.
  • the groups indicated for Y and Y may also be used for Y and Y
  • primary amines may be used as well as secondary amines to form the salt.
  • an amine other than the one used to prepare the succinamic acid is used to form the salt, as will be explained subsequently, there will be a mixture of salts; both the added amine and the secondary amine employed to prepare the succinamic acid will be involved in salt formation.
  • (Illustrative amines which may be used to form salts are di-sec.-butyl amine, heptyl amine, dodecyl amine, octadecyl amine, tert.-butyl amine, morpholine, diethyl amine, methoxybutylamine, methoxyhexylamine, etc.
  • alkenyl succinamic acids of this invention are readily prepared by reacting an alkyl or alkenyl succinic anhydride with the desired secondary amine at a temperature in the range of about 150 to 250 F. in approximately equimolar amounts, either neat or in the presence of an inert solvent.
  • the time for the reaction is generally in the range of 15 minutes to 1 hour. This reaction is well known in the art and does not require extensive discussion here.
  • the alkyl or alkenyl succinic anhydride which is used may be individual compounds or mixtures of compounds. That is, various alkyl or alkenyl groups of differing nurnber of carbon atoms or different positions of attachment to the succinic anhydride group may be used. Alternatively, a single isomer may be used. Since mixtures are generally more readily available, to that degree they are preferred. Frequently, mixtures will be used of aliphatic hydrocarbyl substituted succinic anhydrides wherein no single homolog is present in amount greater than 25 mole percent, each homolog being present in at least mole percent.
  • Various secondary amines may be used, both those having the same aliphatic hydrocarbon groups and those having different aliphatic hydrocarbon groups.
  • Either alkyl or alkenyl substituents may be present on the nitrogen, each having at.,least 14 carbon atoms.
  • the range of diiference between the two aliphatic hydrocarbon 4 groups bonded at the nitrogen is not critical, but will generally be fewer than 8 carbon atoms, more usually fewer than 6 carbon atoms.
  • the aliphatic hydrocarbon groups will be straight chain, i.e., normal, with the amino nitrogen bonded either to internal or terminal carbon atoms.
  • the water may react with a succinic anhydride to form succinic acid. If the temperature is not high enough to regenerate the succinic anhydride, the succinic acid will probably remain unreacted or form the amine salt with available unreacted amine. Therefore, the mixtures of amic acid salts may be conveniently prepared merely by using a 1:1 mole ratio of amine to succinic anhydride, and not attempting to drive the reaction to completion, or up to a mole excess of amine.
  • the amine salts are readily prepared by adding the amine to the succinamic acid, conveniently as prepared, or in an inert solvent. Mild heating may facilitate the reaction. 4
  • Ethylene copolymers A preferred aspect of this invention is to use ethyleneolefin copolymers of from about 1,000 to 100,000 molecular weight, preferably from about 1,500 to 20,000 molecular weight wherein the mole ratio of ethylene to its comonomer is from about 6-12: 1.
  • the polymers employed in this invention should have polyethylene segments in the polymer approximating the chain length of the wax. That is, the polyethylene segments should have from about 6 to 12 monomers on the average.
  • the major function of the other monomer therefore, is to act as a divider between the polyethylene segments.
  • various monomers may be used which can be conveniently copolymerized with the ethylene.
  • These olefins include hydrocarbon terminal olefins of from about 3 to 12 carbon atoms, more usually of from about 3 to 6 carbon atoms and various heteroatom containing addition polymerizable terminal olefins such as the acrylates, methacrylates, vinyl ethers, vinyl ketones, vinyl esters, etc.
  • hydrocarbon olefins which find use will have the following formula:
  • W is hydrogen or methyl and Z is hydrocarbon of from 1 to 10 carbon atoms, more usually alkyl of from 1 to 4 carbon atoms. Z is free of aliphatic unsaturation.
  • heteroatom containing olefins will have the following formula:
  • W1 CHFC wherein W is hydrogen, alkyl of from 1 to 3 carbon atoms or Z and Z is hydrocarboxyoarbonyl wherein Q is aliphatically saturated hydrocarbyl), hydrocarbyloxy, acyloxy (QCO and hydrocarbyl carbonyl.
  • Z is free of aliphatic unsaturation.
  • the preferred Z is acyloxy and hydrocarbyloxycarbonyl.
  • the heteroatom containing monomer will generally be of from 4 to 24 carbon atoms, more usually of from 4 to carbon atoms, have from 1 to 2 oxygen heteroatoms, and have only one site of olefinic unsaturation as its only aliphatic unsaturation.
  • the method of preparation of the polymer is not critical to this invention. Any convenient method for obtaining polymers of the desired molecular weight may be used.
  • nonstereospecific catalysts will be employd. Illustrative of such catalysts are triethylaluminum with vanadium oxychloride or titanium tetrachloride. These catalysts are in the category known as Ziegler-type catalysts. Alternatively, free radical high pressure polymerizations may also be used.
  • succinamic acids of this invention when referring to succinamic acid it is intended to include the salts or combinations of acids and salts), either by themselves or in combination with the ethylene-olefin copolymers, may be used with a wide variety of hydrocarbon fluids, either fuels or lubricating oils which require the lowering of their pour points.
  • the compositions of this invention are particularly useful with mid-range distillate fuels.
  • Naturally derived oils include naphthenic, paraflinic, asphaltic or mixed base oils, which may be waxy or partially dewaxed.
  • Synthetic oils may be derived by polymerization of olefins, generally in the range of from C to C using any convenient catalyst.
  • the combination of the succinamic acid and the ethyleneolefin copolymer is particularly useful with diesel fuels obtained from cracked light cycle oils.
  • Cracked light cycle oils generally have boiling ranges in the range of 300 to 700 F. (ASTM D 158-54).
  • pour point depressing composition usually at least 100 parts per million (p.p.m.) or more of the pour point depressing composition will be used.
  • amount of pour point depressant used will be less than about 2 weight percent and generally less than about 1 weight percent of the hydrocarbon fluid, usually in the range of 150 p.p.m. to 1,000 p.p.m.
  • the ratio of succinamic acid to ethylene-olefin copolymer will generally be about 0.25 to 10 parts of the succinamic acid to 1 part of the polymer, more usually from about 2 to 8 parts of the succinamic acid per part of polymer.
  • the pour point depressing compositions may be used in the presence of various other additives which are common to compounded fuels and lubricating oils.
  • various other additives which are common to compounded fuels and lubricating oils.
  • rust inhibitors there may be present rust inhibitors, oiliness agents, dyes, detergents, extreme pressure additives, etc.
  • these other additive will be present in amounts of from about 0.1 to 10 weight percent.
  • Example A -Isomerization of C1540 (number of carbon atoms) cracked wax olefins to internal unsaturation
  • Twenty pounds of C1540 l-olefins are charged into a kettle and mixed with 2 /2 pounds of a silica-alumina catalyst (known under the trade name of Aero Cat.). Stirring is continued for /2 hour to disperse the catalyst, and then 800 pounds of C1540 l-olefins are added. Heating is started, and the mixture is kept at 400 F. with stirring for 3 hours. Initially, the temperature of the reaction mixture rises to 425 F. due to the heat of reaction.
  • Example B Adduction of the isomerized olefin and maleic anhydride
  • a kettle is charged with 510 pounds of isomerized C1540 l-olefins and 100 pounds of maleic anhydride (a ratio of olefin to maleic anhydride of 2:1 moles).
  • the mixture is purged with nitrogen, and the system is sealed. Heating and stirring are started, and the mixture is kept at 450 F.
  • the pressure in the system is about 25 p.s.i.g. due to vapors of maleic anhydride.
  • the reaction is complete in about 3 hours, and the completion is determined by the disappearance of an infrared band at 840 cmr
  • the excess olefin is thereupon removed by vacuum distillation.
  • Example I Example I.Exemplary preparation of succinamic acid Into a reaction vessel was introduced 520 g. (1 mole) of di(hydrogenated tallow amine) (supplied by Foremost Chemical Co. as Formonyte 703) and 343 g. (1 mole) of alkenyl succinc anhydride (prepared as described in Example B) and the mixture heated to 150 F. The prod- 1 uct was then isolated and characterized by titration and its infrared spectrum.
  • di(hydrogenated tallow amine) supplied by Foremost Chemical Co. as Formonyte 703
  • alkenyl succinc anhydride prepared as described in Example B
  • succinamic acids were formed, varying the alkenyl group and the secondary amine. These succinamic acids were tested according to ASTM D 97- 57 with a variety of fuels. The following table indicates the results.
  • Alkenyl AC internally unsaturated alkenyl bonded to the succlnyl radical at other than a terminal carbon atom. 13-015-20, internally unsaturated alkenyl bonded to the suceinyl radical at other than a terminal carbon atom.
  • Amine A-di(hydrogenated tallow) amine (Cit-is) supplied by Foremost Chem. Co. as Formonyte 703.
  • the alkenyl succinamic acid of Example I was titrated and various amounts of different amines were added based on the titer obtained.
  • the titration is carried out as follows: A sample of about 1.5 g. is weighed accurately in a 250 ml. beaker. The sample is dissolved in ml. of chloroform and 10 m1. of methanol. The solution is stirred with a magnetic bar and 1 ml. increments of 0.1 normal ethanolic KON are added, the titration being followed by means of an electric pH meter. The titration is plotted and the end point determined.
  • Morpholine 25 tert.-butylamine 1 The degrees of depression are reported, subtracting the pour point of the fuel having the additive from the origimal pour point.
  • succinamic acids in combination with other ethylene-comonomer copolymers, mixtures were prepared of the succinamic acid of Example I with 2 ethylene copolymers. The compositions were tested at varying ratios and with Supplied by Foremost Dairy 00. as Poriiioiiyte 103. fuels analogous to the fuels indicated in Example I. The 4 Supplied by Armour Industrial Chem. Co. as the Ai'meeii L series following table indicates the results TABLE IV Fuels our oint, F. Wt. ratio of Ex. p p
  • the eoploymer is used as a wt. percent active solution; Ex. I is used as a wt. percent active solution.
  • Example I The composition of Example I was also tested for its effect on cloud point according to ASTM D 97-57. The following table indicates tne results obtained.
  • succinamic acids used in this invention either by themselves or in combination with the ethylene copolymers are excellent pour point depressants for a wide variety of hydrocarbonaceous media, for which pour point depression is only difficultly achieved. Moreover, pumpability is retained even below the cloud point of the hydrocarbonaceous media. Also, it is found that the succinamic acids do not interfere with other additives which may be present in the oils or fuels and do not add to or enhance undesirable qualities of the hydrocarbonaceous media.
  • the pour point depressantes of this invention provide compositions having good water tolerance, tend to enhance corrosion inhibition, both with mild steel and zinc, and do not significantly affect the stability of the hydrocarbonaceous media to oxidation.
  • a material useful as a pour point depressant consisting essentially of (I) or (II) or mixtures thereof, wherein I is of the formula:
  • R-CH-C OX Hr-C OX 10 and II is of the formula:
  • RCH-C 0X CHzC ox wherein R is a straight chain aliphatic hydrocarbon having from 0 to 1 site of olefinic unsaturation of from 14 to 28 carbon atoms and attached at a secondary carbon atom to the succinyl group;
  • X and X are NYY and the other is OH(NHY Y wherein Y and Y are aliphatic hydrocarbyl groups each of from 14 to 28 carbon atoms and Y and Y are hydrogen, aliphatic hydrocarbon of from 1 to carbon atoms or oxyaliphatic hydrocarbon of from 1 to 30 carbon atoms, and may be taken together with the nitrogen to which they are attached to form a heterocyclic ring of from 5 to 7 annular members.

Description

United States Patent 3,544,467 ACID-AMIDE POUR POINT DEPRESSANTS George J. Kautsky, El Cerrito, Calif., assignor to Chevron Research Company, San Francisco, Calif., a corporation of Delaware No Drawing. Original application Apr. 8, 1968., Ser. No. 719,701, now Patent No. 3,444,082, dated May 13, 1969. Divided and this application Oct. 31, 1968, Ser. No. 794,444 The portion of the term of the patent subsequent to May 13, 1986, has been disclaimed Int. Cl. C101 1/22; Cm N32 US. Cl. 252-515 4 Claims ABSTRACT OF .THE DISCLOSURE Pour point depressants for waxy hydrocarbonaceous fuels and oils having as the pour point depressant an alkenyl succinamic acid disubstituted on the nitrogen and the amine salts, the succinamic acid having a total of at least 50 carbon atoms. The succinamic acid or salt is preferably used in combination with a relatively low molecular weight ethylene-olefin copolymer.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional of application Ser. No. 719,701, filed Apr. 8, 1968, and now US. 3,444,082, which is a continuation-in-part of application Ser. No. 525,375, filed Feb. 7, 1966, and application Ser. No. 579,- 201, filed Sept. 14, 1966, the latter two applications both now abandoned.
BACKGROUND OF THE INVENTION 7 Field of the invention When using liquid hydrocarbons as lubricating oils or fuels, it is necessary that the hydrocarbon fluids flow readily at loW temperatures; that is, temperatures below the freezing point of water (0 C.). The flow of these fluids, particularly those with high wax content, is very sensitive to low temperatures. The crystallization results in the fluid setting up as a waxy material which does not pour. The pour point depressant additives do not reduce the amount of wax which crystallizes from the fluid, but modify the surface by absorption or cocrystallization and reduce fluid occlusion by the crystals. This changes the wax crystal structure and permits the fluid to flow.
Description of the prior art Two major types of materials have found wide acceptance as pour point depressants: naphthalene alkylated with chlorinated waxes and homoor copolymers of hydrocarbon olefins, methacrylates, vinyl esters, and alkyl styrenes. Carboxamides have found some mention in the patent literature, although they have not found particular commercial acceptance. See for example US. Pat. Nos. 1,870,074, 2,291,396, 2,342,114 and 2,727,862.
During the previous prosecution, the following patents were cited: US. Pat. Nos. 2,604,451; 2,699,427; 2,982,- 630; 2,982,634; 3,031,282; 3,148,960; 3,280,033; 3,219,- 666.
SUMMARY OF THE INVENTION Pour point depressants for waxy hydrocarbonaceous fuels and oils are provided which are C-(n-aliphatic hydrocarbyl) succinamic acids of at least about a total of 50 carbon atoms, wherein the nitrogen has two aliphatic hydrocarbon substituents, each of which has at least 14 carbon atoms and the aliphatic hydrocarbyl group is of at least 14 carbon atoms and bonded to a carbon atom of the succinic acid radical at other than the terminal carbon Patented Dec. 1, 1970 atom of the aliphatic hydrocarbyl group (a secondary carbon atom). (Hydrocarbyl is an organic radical composed solely of carbon and hydrogen, which may be ali phatically saturated or unsaturated.)
The succinamic acid may be used as the acid or as the amine salt. The amine forming the salt may be a primary or secondary amine of from 0 to 50 carbon atoms.
Preferably, the succinamic acid or its salt or combination thereof is ,used with an ethylene-olefin copolymer wherein the ratio of the ethylene to the other olefin is in the range of 612:1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The pour point depressants of this invention are the C-(n-aliphatic hydrocarbyl) succinamic acids having 2 aliphatic hydrocarbon substituents on the nitrogen, the amine salt of the succinamic acid and, preferably, the combinations thereof. The succinamic acids, the salt or the combination thereof may be used by themselves or, preferably, with an ethylene-olefin copolymer wherein the ethylene to other olefin mole ratio is in the range of 6-1221.
The polymers will be of a relatively low molecular weight, being of from about 1,000 to 100,000 molecular weight, more usually of from 1,000 to 20,000 molecular weight.
C-(n-aliphatic hydrocarbyl) succinamic acids The succinamic acids will, for the most part, have the following formula:
R? H-C O X wherein R is a straight chain aliphatic hydrocarbon group having from 0 to 1 site of olefinic unsaturation (alkyl or alkenyl) attached at a secondary carbon atom to the succinyl group and is of at least 14 carbon atoms, generally in the range of 15 to 28 carbon atoms and more usually in the range of 15 to 22 carbon atoms. One of X and X is hydroxyl and the other is:
wherein N has its normal meaning of nitrogen and Y and Y are aliphatic hydrocarbyl groups of from 14 to 28 carbon atoms, more usually of from 15 to 22 carbon atoms, having a total of from about 30 to 52 carbon atoms, more usually of from 32 to 48 carbon atoms, and, preferably, of from 32 to carbon atoms.
Y and Y may be aliphatically saturated or aliphatically unsaturated, generally free of acetylenic unsaturation (alkyl or alkenyl). There may be from 1 to 2 sites of olefinic unsaturation. Y and Y may be the same or different and may be straight chain or branched chain, preferably straight chain. The branches will normally be not greater than 1 carbon atom, i.e., methyl. The position of attachment to nitrogen may be at a terminal or internal carbon atom.
As is evidenced from the above formula, it is not important which position the alkyl or alkenyl group has in relation to the carboxamide or carboxyl group. Because of the bulky nature of the amine, the usual method of preparation through the succinic anhydride will provide the alkenyl group 6 to the carboxamide as the major product. To the extent that this is the more easily accessible derivative, this derivative is preferred. However, as far as operability is concerned, either isomer or a mixture of the two isomers may be used.
Individual compounds or mixtures of compounds may be used as pour point depressants. Mixtures of different C- and/or N-substituents, both as to homologs and isomers, will frequently be employed when the individual R--CHO OX H -COX wherein R is as previously defined, one of the X and X is NYY wherein Y and Y have been previously defined. The other of X and X is of the formula:
wherein Y and Y may be hydrogen, aliphatic hydrocarbon of from 1 to 30 carbon atoms or oxyaliphatic hydrocarbon (there being 1 ethereal oxygen atom present in the radical bonded to nitrogen at least ,8 to the nitrogen atom) of from 3 to 30 carbon atoms. Y and Y may be taken together to form a heterocyclic ring of from 5 to 7 members having nitrogen and oxygen as the only heteromembers. n varies from to 1, preferably from 0.1 to 0.9. That is, from 10 to 90 mole percent of the succinamic acid present is in the form of its salt.
The aliphatic hydrocarbon groups may be saturated or unsaturated usually having not more than 2 sites of ethylenic unsaturation. The total number of carbon atoms for HNY Y will be from 0 to 60, usually 1 to 40.
The groups indicated for Y and Y may also be used for Y and Y However, as already indicated, primary amines may be used as well as secondary amines to form the salt. Usually, where an amine other than the one used to prepare the succinamic acid is used to form the salt, as will be explained subsequently, there will be a mixture of salts; both the added amine and the secondary amine employed to prepare the succinamic acid will be involved in salt formation.
(Illustrative amines which may be used to form salts are di-sec.-butyl amine, heptyl amine, dodecyl amine, octadecyl amine, tert.-butyl amine, morpholine, diethyl amine, methoxybutylamine, methoxyhexylamine, etc.
The alkenyl succinamic acids of this invention are readily prepared by reacting an alkyl or alkenyl succinic anhydride with the desired secondary amine at a temperature in the range of about 150 to 250 F. in approximately equimolar amounts, either neat or in the presence of an inert solvent. The time for the reaction is generally in the range of 15 minutes to 1 hour. This reaction is well known in the art and does not require extensive discussion here.
The alkyl or alkenyl succinic anhydride which is used may be individual compounds or mixtures of compounds. That is, various alkyl or alkenyl groups of differing nurnber of carbon atoms or different positions of attachment to the succinic anhydride group may be used. Alternatively, a single isomer may be used. Since mixtures are generally more readily available, to that degree they are preferred. Frequently, mixtures will be used of aliphatic hydrocarbyl substituted succinic anhydrides wherein no single homolog is present in amount greater than 25 mole percent, each homolog being present in at least mole percent.
Various secondary amines may be used, both those having the same aliphatic hydrocarbon groups and those having different aliphatic hydrocarbon groups. Either alkyl or alkenyl substituents may be present on the nitrogen, each having at.,least 14 carbon atoms. The range of diiference between the two aliphatic hydrocarbon 4 groups bonded at the nitrogen is not critical, but will generally be fewer than 8 carbon atoms, more usually fewer than 6 carbon atoms. For the most part, the aliphatic hydrocarbon groups will be straight chain, i.e., normal, with the amino nitrogen bonded either to internal or terminal carbon atoms.
It is found that when using approximately a 1:1 mole ratio of amine to succinic anhydride, depending on the reaction conditions, a significant amount of amine may be unreacted and remain to form the salt of the succinamic acid which is formed. In some instances, as much as 30 percent of the amine may remain unreacted, forming a significant amount of salt. Thus, the salt will frequently be from 10 to 30 mole percent of the total succinamic acid present.
Also, in situations Where significant amounts of water are present during the course of the reaction, the water may react with a succinic anhydride to form succinic acid. If the temperature is not high enough to regenerate the succinic anhydride, the succinic acid will probably remain unreacted or form the amine salt with available unreacted amine. Therefore, the mixtures of amic acid salts may be conveniently prepared merely by using a 1:1 mole ratio of amine to succinic anhydride, and not attempting to drive the reaction to completion, or up to a mole excess of amine.
The amine salts are readily prepared by adding the amine to the succinamic acid, conveniently as prepared, or in an inert solvent. Mild heating may facilitate the reaction. 4
Ethylene copolymers A preferred aspect of this invention is to use ethyleneolefin copolymers of from about 1,000 to 100,000 molecular weight, preferably from about 1,500 to 20,000 molecular weight wherein the mole ratio of ethylene to its comonomer is from about 6-12: 1.
The polymers employed in this invention should have polyethylene segments in the polymer approximating the chain length of the wax. That is, the polyethylene segments should have from about 6 to 12 monomers on the average.
The major function of the other monomer, therefore, is to act as a divider between the polyethylene segments. For this reason, various monomers may be used which can be conveniently copolymerized with the ethylene. These olefins include hydrocarbon terminal olefins of from about 3 to 12 carbon atoms, more usually of from about 3 to 6 carbon atoms and various heteroatom containing addition polymerizable terminal olefins such as the acrylates, methacrylates, vinyl ethers, vinyl ketones, vinyl esters, etc.
The hydrocarbon olefins which find use will have the following formula:
wherein W is hydrogen or methyl and Z is hydrocarbon of from 1 to 10 carbon atoms, more usually alkyl of from 1 to 4 carbon atoms. Z is free of aliphatic unsaturation.
For the most part, the heteroatom containing olefins will have the following formula:
W1 CHFC wherein W is hydrogen, alkyl of from 1 to 3 carbon atoms or Z and Z is hydrocarboxyoarbonyl wherein Q is aliphatically saturated hydrocarbyl), hydrocarbyloxy, acyloxy (QCO and hydrocarbyl carbonyl. Z is free of aliphatic unsaturation.
The preferred Z is acyloxy and hydrocarbyloxycarbonyl. The heteroatom containing monomer will generally be of from 4 to 24 carbon atoms, more usually of from 4 to carbon atoms, have from 1 to 2 oxygen heteroatoms, and have only one site of olefinic unsaturation as its only aliphatic unsaturation.
The method of preparation of the polymer is not critical to this invention. Any convenient method for obtaining polymers of the desired molecular weight may be used. In preparing the hydrocarbon copolymers, usually nonstereospecific catalysts will be employd. Illustrative of such catalysts are triethylaluminum with vanadium oxychloride or titanium tetrachloride. These catalysts are in the category known as Ziegler-type catalysts. Alternatively, free radical high pressure polymerizations may also be used.
Fuel and oil compositions The succinamic acids of this invention (when referring to succinamic acid it is intended to include the salts or combinations of acids and salts), either by themselves or in combination with the ethylene-olefin copolymers, may be used with a wide variety of hydrocarbon fluids, either fuels or lubricating oils which require the lowering of their pour points. The compositions of this invention are particularly useful with mid-range distillate fuels.
Both naturally derived and synthetic hydrocarbon fuels or lubricating oils may be used in conjunction with the pour point depressing compositions of this invention. Naturally derived oils include naphthenic, paraflinic, asphaltic or mixed base oils, which may be waxy or partially dewaxed. Synthetic oils may be derived by polymerization of olefins, generally in the range of from C to C using any convenient catalyst.
The combination of the succinamic acid and the ethyleneolefin copolymer is particularly useful with diesel fuels obtained from cracked light cycle oils. Cracked light cycle oils generally have boiling ranges in the range of 300 to 700 F. (ASTM D 158-54).
Usually, at least 100 parts per million (p.p.m.) or more of the pour point depressing composition will be used. Generally, the amount of pour point depressant used will be less than about 2 weight percent and generally less than about 1 weight percent of the hydrocarbon fluid, usually in the range of 150 p.p.m. to 1,000 p.p.m.
The ratio of succinamic acid to ethylene-olefin copolymer will generally be about 0.25 to 10 parts of the succinamic acid to 1 part of the polymer, more usually from about 2 to 8 parts of the succinamic acid per part of polymer.
The pour point depressing compositions may be used in the presence of various other additives which are common to compounded fuels and lubricating oils. In addition to the pour point depressants, there may be present rust inhibitors, oiliness agents, dyes, detergents, extreme pressure additives, etc. Usually, these other additive will be present in amounts of from about 0.1 to 10 weight percent.
EXAMPLES The following examples are offered by way of illustration 608.0l(g).
Example A.-Isomerization of C1540 (number of carbon atoms) cracked wax olefins to internal unsaturation Twenty pounds of C1540 l-olefins are charged into a kettle and mixed with 2 /2 pounds of a silica-alumina catalyst (known under the trade name of Aero Cat.). Stirring is continued for /2 hour to disperse the catalyst, and then 800 pounds of C1540 l-olefins are added. Heating is started, and the mixture is kept at 400 F. with stirring for 3 hours. Initially, the temperature of the reaction mixture rises to 425 F. due to the heat of reaction. The completion of isomerization is followed by the disappearance of an infrared band at 910 cmf After completion of the reaction, the mixture is filtered, and the isomerized olefin is distilled under 100 mm. pressure at 370 F. The distillation is complete when the kettle temperature reaches 575 F.
Example B.Adduction of the isomerized olefin and maleic anhydride A kettle is charged with 510 pounds of isomerized C1540 l-olefins and 100 pounds of maleic anhydride (a ratio of olefin to maleic anhydride of 2:1 moles). The mixture is purged with nitrogen, and the system is sealed. Heating and stirring are started, and the mixture is kept at 450 F. The pressure in the system is about 25 p.s.i.g. due to vapors of maleic anhydride. The reaction is complete in about 3 hours, and the completion is determined by the disappearance of an infrared band at 840 cmr The excess olefin is thereupon removed by vacuum distillation.
Example I.Exemplary preparation of succinamic acid Into a reaction vessel was introduced 520 g. (1 mole) of di(hydrogenated tallow amine) (supplied by Foremost Chemical Co. as Formonyte 703) and 343 g. (1 mole) of alkenyl succinc anhydride (prepared as described in Example B) and the mixture heated to 150 F. The prod- 1 uct was then isolated and characterized by titration and its infrared spectrum.
A number of other succinamic acids were formed, varying the alkenyl group and the secondary amine. These succinamic acids were tested according to ASTM D 97- 57 with a variety of fuels. The following table indicates the results.
Alkenyl=AC internally unsaturated alkenyl bonded to the succlnyl radical at other than a terminal carbon atom. 13-015-20, internally unsaturated alkenyl bonded to the suceinyl radical at other than a terminal carbon atom.
2 Amine=A-di(hydrogenated tallow) amine (Cit-is) supplied by Foremost Chem. Co. as Formonyte 703. B di(behenyl-arachidyl) amine (022-24) supplied by Hurnko Chem. Co. as Kemamine S-190.
3 See table below.
Light cycle oil Diesel fuel A B A B AS TM distillate F 394-622 410-683 370-664 340-688 50% point F 493 554 511 532 Gravity API) 25. 7 l9. 5 39. 0 37. 4 Cloud point F -10 0 Sulfur, wt. percent 1. 3 1. 3 0. 81 1. 0
4 B=below 80 F., the lower measured limit of the procedure.
The alkenyl succinamic acid of Example I was titrated and various amounts of different amines were added based on the titer obtained. The titration is carried out as follows: A sample of about 1.5 g. is weighed accurately in a 250 ml. beaker. The sample is dissolved in ml. of chloroform and 10 m1. of methanol. The solution is stirred with a magnetic bar and 1 ml. increments of 0.1 normal ethanolic KON are added, the titration being followed by means of an electric pH meter. The titration is plotted and the end point determined.
Using fuels analogous to those in Table I, the pour 7 8 points were determined for the succinamic acid salt-acid In order to demonstrate the eifect of a combination of mixtures. an alkenyl succinamic acid and ethylene/propylene co- TABLE H polymer, the pour points of a light cycle oil, C, with varying combinations of the polymer and succinamic acid were determined. The same ASTM procedure as previ- Percent of ously described was used. succinamic Light Diesel acid Add. cycle oil fuel neutralized cone. Amine with amine p.p.m. D 2 E 7 D 1 E 2 Di-(hydrogeriated tal1ow)arnine B 10 TABLE III 1)i(sec.-butyl)amine-. ASTM pour Ethylene] point of propylene light cycle 15 polymer, oil C- Z-hoptylamine 4 F Alkeriyl 1 succinamic acid, p.p.m.:
+10 enonylamiw $32:::::::::::1:131:13:11:11:::::::::::::::::::::: 3 170 l5 2o 85 255 -30 5 25 2-undeeylam1ne 4 170 85 1 Alkenyl succinamic acid of Example I. 2 Ethylene/propylene copolyiner, -l,500 mol wt.; mol ratio C /C -9/1.
2-pentedecylamine 3 API gravity-27.2 ASTM, D1st., R, 411-622 at 650 mm. Hg.
Morpholine 25 tert.-butylamine 1 The degrees of depression are reported, subtracting the pour point of the fuel having the additive from the origimal pour point.
2 See table below.
9 3O pg l In order to demonstrate the effectiveness of the succinamic acids in combination with other ethylene-comonomer copolymers, mixtures were prepared of the succinamic acid of Example I with 2 ethylene copolymers. The compositions were tested at varying ratios and with Supplied by Foremost Dairy 00. as Poriiioiiyte 103. fuels analogous to the fuels indicated in Example I. The 4 Supplied by Armour Industrial Chem. Co. as the Ai'meeii L series following table indicates the results TABLE IV Fuels our oint, F. Wt. ratio of Ex. p p
I to copolymer 2 p.p.m. A 1 B 3 C 3 D Copolymer A 4:1 600 25, -25 -20, -15 1:1 600 15 1:4 600 I +5 25 v Only coploymer..- 4 600 -15, 0, 5 25, 45 30 Only Ex. I 600 -10, -15, 10 -15, -30,
B 4:1 600 20 1:1 i- 600 -20 0 1:4 600 10 0 Only copolymer-.- 600 -15 0 Only Ex. I 600 l0 l5 No additive +10 +20 +5 1 A.Ethyieiie-vinyl acetate copolymer (9:1 moi ratio); -1,500 molecular weight. B.Ethylene-lsobutyl aerylate eopolymer (-7 :1 'mol ratio); -2,100 molecular weight.
2 The eoploymer is used as a wt. percent active solution; Ex. I is used as a wt. percent active solution.
a See table below.
Distsillation, ASTM D-86, F.:
Percent sultur,ASTM D-1266 0.37 .38 .37 .42
The composition of Example I was also tested for its effect on cloud point according to ASTM D 97-57. The following table indicates tne results obtained.
1 Refer to Table 1 for a description of the various oils and fuels.
It is evident from the above data that the succinamic acids used in this invention either by themselves or in combination with the ethylene copolymers are excellent pour point depressants for a wide variety of hydrocarbonaceous media, for which pour point depression is only difficultly achieved. Moreover, pumpability is retained even below the cloud point of the hydrocarbonaceous media. Also, it is found that the succinamic acids do not interfere with other additives which may be present in the oils or fuels and do not add to or enhance undesirable qualities of the hydrocarbonaceous media. The pour point depressantes of this invention provide compositions having good water tolerance, tend to enhance corrosion inhibition, both with mild steel and zinc, and do not significantly affect the stability of the hydrocarbonaceous media to oxidation.
As will be evident to those skilled in the art, various modifications on this invention can be made or followed, in the light of the foregoing disclosure and discussion, without departing from the spirit or scope of the disclosure or from the scope of the following claims.
I claim:
1. A material useful as a pour point depressant consisting essentially of (I) or (II) or mixtures thereof, wherein I is of the formula:
R-CH-C OX Hr-C OX 10 and II is of the formula:
RCH-C 0X CHzC ox wherein R is a straight chain aliphatic hydrocarbon having from 0 to 1 site of olefinic unsaturation of from 14 to 28 carbon atoms and attached at a secondary carbon atom to the succinyl group;
wherein one of X and X is -NYY and the other is hydroxyl;
wherein one of X and X is NYY and the other is OH(NHY Y wherein Y and Y are aliphatic hydrocarbyl groups each of from 14 to 28 carbon atoms and Y and Y are hydrogen, aliphatic hydrocarbon of from 1 to carbon atoms or oxyaliphatic hydrocarbon of from 1 to 30 carbon atoms, and may be taken together with the nitrogen to which they are attached to form a heterocyclic ring of from 5 to 7 annular members.
2. A material according to claim 1 wherein Y and Y are of from 15 to 22 carbon atoms and have 0 to 2 sites of olefinic unsaturation.
3. A material according to claim 1 wherein Y and Y are aliphatic hydrocarbon of from 15 to 22 carbon atoms, and II is present in from 10 to 30 mole percent.
4. A material according to claim 1 wherein the total number of carbon atoms of Y and Y is in the range of 30 to 52 and the total number of carbon atoms of Y and Y is in the range of 0 to 60.
References Cited UNITED STATES PATENTS 3,219,666 11/1965 Norman et a1. 25251.5A 3,231,587 1/1966 Rense 260534X 3,427,245 2/ 1969 Hotten 25251.5A
DANIEL E. WYMAN, Primary Examiner W. J. SHINE, Assistant Examiner US. Cl. X.R.
US794444*A 1966-02-07 1968-10-31 Acid-amide pour point depressants Expired - Lifetime US3544467A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US52537566A 1966-02-07 1966-02-07
US57920166A 1966-09-14 1966-09-14
US71970168A 1968-04-08 1968-04-08
US79444468A 1968-10-31 1968-10-31

Publications (1)

Publication Number Publication Date
US3544467A true US3544467A (en) 1970-12-01

Family

ID=27504594

Family Applications (1)

Application Number Title Priority Date Filing Date
US794444*A Expired - Lifetime US3544467A (en) 1966-02-07 1968-10-31 Acid-amide pour point depressants

Country Status (1)

Country Link
US (1) US3544467A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2339175A1 (en) * 1972-08-24 1974-03-07 Exxon Research Engineering Co FUEL AND HEATING OILS WITH IMPROVED FLOW BEHAVIOR IN THE COLD
US3857879A (en) * 1967-12-04 1974-12-31 W Abramitis Amine salts of substituted succinamic acids
US3910776A (en) * 1972-08-24 1975-10-07 Exxon Research Engineering Co Additive combination for cold flow improvement of distillate fuel oil
US3982909A (en) * 1975-02-13 1976-09-28 Exxon Research And Engineering Company Nitrogen-containing cold flow improvers for middle distillates
US4014663A (en) * 1974-10-23 1977-03-29 Exxon Research And Engineering Company Synergistic low temperature flow improver in distillate fuel
US4184851A (en) * 1977-07-25 1980-01-22 Exxon Research & Engineering Co. Borated derivatives of hydrocarbon substituted succinamic acids and/or acid salts thereof are flow improvers for middle distillate fuel oils (PT-364)
US4402708A (en) * 1980-11-18 1983-09-06 Exxon Research & Engineering Co. Dialkyl amine derivatives of phthalic acid
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4609531A (en) * 1983-05-27 1986-09-02 Hoechst Aktiengesellschaft Use of alkenylsuccinic acid half-amides as anticorrosion agents
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4705666A (en) * 1983-11-12 1987-11-10 Henkel Kommanditgesellschaft Auf Aktien Alkanolamin salts of alkenyl succinic acid dialkyl semiamide corrosion inhibitors
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5516444A (en) * 1994-10-13 1996-05-14 Exxon Chemical Patents Inc Synergistic combinations for use in functional fluid compositions
US5629447A (en) * 1995-06-02 1997-05-13 Warner-Lambert Company Methods of making (S)-3-(aminomethyl)-5-methylhexanoic acid
US5750476A (en) * 1995-10-18 1998-05-12 Exxon Chemical Patents Inc. Power transmitting fluids with improved anti-shudder durability
US5840662A (en) * 1995-10-18 1998-11-24 Exxon Chemical Patents Inc. Lubricating oils of improved friction durability
EP1230328B1 (en) * 1999-11-17 2004-10-13 Basf Aktiengesellschaft Lubricity improver and a fuel and lubricant compositions containing said agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3231587A (en) * 1960-06-07 1966-01-25 Lubrizol Corp Process for the preparation of substituted succinic acid compounds
US3427245A (en) * 1966-08-15 1969-02-11 Chevron Res Lubricant additive composed of a mixture of amine salts of monoamides and monoamides of alkenyl succinic acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3231587A (en) * 1960-06-07 1966-01-25 Lubrizol Corp Process for the preparation of substituted succinic acid compounds
US3427245A (en) * 1966-08-15 1969-02-11 Chevron Res Lubricant additive composed of a mixture of amine salts of monoamides and monoamides of alkenyl succinic acids

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857879A (en) * 1967-12-04 1974-12-31 W Abramitis Amine salts of substituted succinamic acids
DE2339175A1 (en) * 1972-08-24 1974-03-07 Exxon Research Engineering Co FUEL AND HEATING OILS WITH IMPROVED FLOW BEHAVIOR IN THE COLD
US3910776A (en) * 1972-08-24 1975-10-07 Exxon Research Engineering Co Additive combination for cold flow improvement of distillate fuel oil
US4014663A (en) * 1974-10-23 1977-03-29 Exxon Research And Engineering Company Synergistic low temperature flow improver in distillate fuel
US3982909A (en) * 1975-02-13 1976-09-28 Exxon Research And Engineering Company Nitrogen-containing cold flow improvers for middle distillates
US4184851A (en) * 1977-07-25 1980-01-22 Exxon Research & Engineering Co. Borated derivatives of hydrocarbon substituted succinamic acids and/or acid salts thereof are flow improvers for middle distillate fuel oils (PT-364)
US4402708A (en) * 1980-11-18 1983-09-06 Exxon Research & Engineering Co. Dialkyl amine derivatives of phthalic acid
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4729841A (en) * 1983-05-27 1988-03-08 Hoechst Aktiengesellschaft Alkenylsuccinic acid half-amides as anticorrosion agents
US4609531A (en) * 1983-05-27 1986-09-02 Hoechst Aktiengesellschaft Use of alkenylsuccinic acid half-amides as anticorrosion agents
US4705666A (en) * 1983-11-12 1987-11-10 Henkel Kommanditgesellschaft Auf Aktien Alkanolamin salts of alkenyl succinic acid dialkyl semiamide corrosion inhibitors
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US5516444A (en) * 1994-10-13 1996-05-14 Exxon Chemical Patents Inc Synergistic combinations for use in functional fluid compositions
US5629447A (en) * 1995-06-02 1997-05-13 Warner-Lambert Company Methods of making (S)-3-(aminomethyl)-5-methylhexanoic acid
US5750476A (en) * 1995-10-18 1998-05-12 Exxon Chemical Patents Inc. Power transmitting fluids with improved anti-shudder durability
US5840662A (en) * 1995-10-18 1998-11-24 Exxon Chemical Patents Inc. Lubricating oils of improved friction durability
EP1230328B1 (en) * 1999-11-17 2004-10-13 Basf Aktiengesellschaft Lubricity improver and a fuel and lubricant compositions containing said agent

Similar Documents

Publication Publication Date Title
US3444082A (en) Acid-amide pour point depressants
US3544467A (en) Acid-amide pour point depressants
US4210424A (en) Combination of ethylene polymer, normal paraffinic wax and nitrogen containing compound (stabilized, if desired, with one or more compatibility additives) to improve cold flow properties of distillate fuel oils
US4261703A (en) Additive combinations and fuels containing them
US3854893A (en) Long side chain polymeric flow improvers for waxy hydrocarbon oils
EP0156577B1 (en) Middle distillate compositions with improved cold flow properties
US4147520A (en) Combinations of oil-soluble aliphatic copolymers with nitrogen derivatives of hydrocarbon substituted succinic acids are flow improvers for middle distillate fuel oils
CA1060206A (en) Nitrogen-containing cold flow improvers for middle distillates
EP0225688B1 (en) Oil and fuel oil compositions
GB2023645A (en) Additive combinations and fuels containing them
JP2562171B2 (en) Fuel composition
JPH04226514A (en) Ethylene terpolymer, its manufacture, and method of using it as additive for mineral oil distillate
US3467597A (en) Grafted terpolymers,their process of production,and use as additives for lubricants and fuels
JPH10506134A (en) Oil additives, compositions and polymers for use therein
RU2114155C1 (en) Composition of liquid fuel
US3910776A (en) Additive combination for cold flow improvement of distillate fuel oil
US3841850A (en) Hydrocarbon oil containing ethylene copolymer pour depressant
US4108613A (en) Pour point depressants
US3638349A (en) Oil compositions containing copolymers of ethylene and vinyl esters of c{11 to c{11 monocarboxylic acid ethylenically unsaturated
US3850587A (en) Low-temperature flow improves in fuels
EP1144555A1 (en) Fuel oil additives and compositions
US4014663A (en) Synergistic low temperature flow improver in distillate fuel
JP2641925B2 (en) Fuel oil additive
US3847561A (en) Petroleum middle distillate fuel with improved low temperature flowability
JP2839291B2 (en) Fuel composition