US3538639A - Novelty toy duck - Google Patents

Novelty toy duck Download PDF

Info

Publication number
US3538639A
US3538639A US794051*A US3538639DA US3538639A US 3538639 A US3538639 A US 3538639A US 3538639D A US3538639D A US 3538639DA US 3538639 A US3538639 A US 3538639A
Authority
US
United States
Prior art keywords
duck
toy
motor
sound
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794051*A
Inventor
Patrick M Tomaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Remco Industries Inc
Original Assignee
Remco Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Remco Industries Inc filed Critical Remco Industries Inc
Application granted granted Critical
Publication of US3538639A publication Critical patent/US3538639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/28Arrangements of sound-producing means in dolls; Means in dolls for producing sounds

Definitions

  • the duck has a cam-actuated noisemaker controlled by its driving motor which allows it to quack in sequential groups more like a real duck and has a bill action coordinated with the quacking sound.
  • the waddling motion of the duck is controlled by a whistle blown by the child and received by a microphone or the like.
  • the microphone circuit is inactive during the period of action of the duck, and so, is not affected by the quacking.
  • the present invention provides a toy with a degree of realism that, it is believed, has not previously been achieved.
  • Toy ducks have, of course, been made, and so have ones that are motor operated. There have, likewise, been toy ducks that have the ability to move and simulate a waddle and also to quack. None of these, however, have been adapted for remote, non-wire control, such as by sound waves. Indeed, such a sound control is a problem, since the noise of the quacking, and the noise of the motion, can themselves affect the sound control. Thus, the realism of an independently moving duck, with a true quacking noise has been missing.
  • My invention provides a moving, waddling, quacking duck, having a highly realistic effect for a small child. It is controlled remotely by sound waves.
  • the duck is operated by a small battery-powered electric motor.
  • the motor through a gear train, operates eccentrically mounted driving Wheels, which give the duck a waddling motion as it moves across the floor.
  • the motor also operates a cam and lever arm which serve to periodically compress and release a bellows-type noisemaker which simulates a quacking sound.
  • the cam arrangement is such that the duck quacks for a series of, say, three times and then is quiet for a period, thereafter repeating the quacking.
  • a linkage connected to the bill of the duck. This linkage causes the bill to open and close in synchronism with the noise itself.
  • the motor itself is controlled by a circuit that responds to a sound receiving means such as a microphone. When the sound is received, it actuates the circuit and turns on the motor; the motor runs for a predetermined period of time and then shuts off. During the period of operation and for a short period such as a second, thereafter, the control circuit is not responsive to sounds, and so the duck does not affect the operation and turn on the circuit again, nor do any noises associated with the stopping of the operation at the end of a predetermined time.
  • the child turns on the toy simply by blowing a whistle of a frequency to which the sound receiving means is responsive.
  • the duck then moves with its waddling motion, quacks in its programmed sequence, and continues its motion for the predetermined period of time. It then stops and must be started by blowing the whistle or other noise.
  • FIG. 1 is a perspective view of a duck of the type included in my invention.
  • FIG. 2 is a horizontal section taken on line 22 of FIG. 4 through the middle of the duck; it shows the general construction of the workings of the duck.
  • FIG. 3 is a more detailed view of the motor and gear train of the duck, taken on line 33 of BIG. 4.
  • FIG. 4 is a vertical section taken on line 44 of FIG. 2
  • FIG. 5 is an elevation showing a portion of the motor control circuit and the battery, taken on lines 5-5 of FIG. 2.
  • FIG. 6 is a vertical section taken on line 66 of FIG. 2.
  • FIG. 7 is a schematic drawing showing the circuit arrangement.
  • FIG. 1 A general view of the duck 1 of my invention is shown in FIG. 1.
  • the duck has a moderately realistic appearance but may be fanciful if desired.
  • the duck includes a body 2 and head 3 with bill portions 4 and 5. It is supported on the floor by a freely rotating wheel 6 and two larger eccentric wheels 7 and 8 (see FIG. 2).
  • the ducks feet such as 9, are simply for appearance not function.
  • the entire animal is preferably some form of a molded plastic.
  • Eccentric drive wheels 7 and 8 oppositely centered, are shown toward the rear of the duck. These are actuated by motor 15 through gear train 16. Power to operate the motor comes from battery 17; and the motor is controlled through a circuit generally depicted by the numeral 20, actuated by microphone 21.
  • Quacking is accomplished through a bellows-type noisemaker 25, of a standard type.
  • lever arm 26 mounted upon pivot 28.
  • One end of lever arm 26, end 29' presses against the top of normally expanded bellows 25.
  • the other end 40 of arm 26 rides along the surface of cam 27. It is pressed against the surface by the upward spring pressure on end 29 caused by bellows 25.
  • the surface of cam 27 has a series of projections 41, 42, 43 and 44.,It also has a surface 45 having no projections. With this cam surface arrangement end 40 of arm 26 is pressed upwardly several times in immediate sequence and then remains quiet for a period, thus simulating the quacking of a duck.
  • Cam 27 is associated with gear train 16 and rotates upon energization of motor 15.
  • the motor 15 serves to drive the duck and animate it.
  • Motor 15 is connected through a series of reducing gears identified as gear train 16.
  • the final gear of the train is connected to axle 18 which carries wheels 7 and 8.
  • Axle 18 does not go through the center of wheels 7 and 8, but rather is slightly off center so that the wheels are eccentrically mounted.
  • the mounting of the wheels is such that they are not in phase with one another.
  • rotation of axle 1-8 by motor 15 results in rotation of the wheels 7 and 8 which, because they are eccentric, cause the duck to move forward with a waddling motion.
  • This eccentric relationship can be readily seen in FIG. 6 where, in a particular position of the wheels, the duck is leaning to the left as seen in the drawing.
  • Motor control is through a series of switches.
  • Battery 17 is connected to the motor through three switches: (a) an on/off switch 22, (b) a control circuit 20, and (c) a motion control circuit 24.
  • Control circuit 20 and motion control circuit 24 are in parallel. They are in series with on/ofif switch 22, battery 17, and motor 15.
  • On/ off switch 22 is a rotary switch controlled by knob 24. It can be any desired structure, but in the form I have adopted is simply an arm 24 which rotates against a piece of spring metal contact arm 34 which when pressed downwardly contacts the upper pole of battery 17 to hold it against the battery. Contact 34 is then connected through lead 35 to control circuit 20.
  • Control circuit 20 is electrically connected to microphone 21.
  • Circuit 20 is normally open, but is designed to close when the microphone receives a noise of sufiicient intensity and, if desired, of a pre-determined frequency.
  • Motion control circuit 24 is in parallel with control circuit 20. It is designed to short circuit control circuit and cause the toy duck to be animated for a pre determined time period.
  • Contact 23 of circuit 24 is operatively associated with a notch in one of the gears 37 in gear train 16. Being of spring metal, contact 23 tends to press down into the notch 38 in gear 37. Rotation of gear 37, however, presses contact 23 upwardly against another piece of metal 39 and so closes a circuit between gear train 33 and 39.
  • Gear 37 should be made of plastic or other non-conducting material.
  • the duck commences motion upon receipt of a sound from a whistle blown by the child, or from any other desired source; the motion continues for a cycle of pre-determined length; and, during operation, it is not affected by the other sounds, such as its own quacking.
  • This provides a cycle of operation of a pre-determined length which is not re-set, recommenced or otherwise affected by the noises made by the toy, such as quacking, during its operation.
  • the present toy is designed so that the sound receiving means, such as the microphone, is de-sensitized during its period of operation and for a short period, such as a second, thereafter.
  • the duration of operation, once started is mechanically determined as with switch 23 of circuit 24 and is on longer controlled by the sound responsive means.
  • control circuit 20 actuated by micropsone 21, serves only to start the operation of the device. Thereafter control circuit 20 is shorted out, as above described, returns to its normally-open position, and the toy operates through one full cycle is determined by rotation of notched wheel 37 acting with switch 23. Further, the control circuit is so designed so as to be desensitized for a limited period after the completion of a cycle. This period may be varied but preferably of the order of one second, so that stopping noises do not affect it.
  • time delay may be readily designed. Usually the time delay is accomplished by use of RC circuits. My preferred circuit, however, is that time delay case shown in pending application of Patrick M. Tomaro, Ser. No. 718,409, now Pat. No. 3,458,950, filed on Apr. 3, 1968.
  • a sound controlled toy which movesand makes a noise during operation, said toy including a motor within said toy to drive same, a noisemaker operated by said motor, a control circuit for said motor, said control circuit including timing means to continue operation of said motor for a pre-determined period after starting sound receiving means connected to said circuit, said circuit being actuated by sound waves received by said sound receiving means to start said motor, and means for de-sensitizing said sound receiving means during operation of said toy whereby, upon receipt of a sound, said toy will start and will operate for a pre-determined period of time, unaffected by its own sound, and will then shut itself off.
  • a toy as set forth in claim 2 including cam means operated by said motor, said cam means controlling said quacking to cause the quacking to occur in sequential groups.
  • a toy as set forth in claim 3 including a pivoted bill on said duck and a linkage operatively interconnecting said bill with said cam means to cause motion of said bill coordinated with said quacking.
  • a sound controlled toy as set forth in claim 1 including means for de-sensitizing said control circuit for a second pre-determined period after said first predetermined period so that said toy will not be atfected by receipt of sound after shutting itself off, for said second period.
  • a sound-controlled toy as set forth in claim 5 in which said sound receiving means and said control circuit are, together, adapted to respond to sounds of a predetermined frequency.
  • a control circuit for said toy including receiving means to receive said sound, a sound controlled circuit operatively associated with said receiving means for causing actuation of said toy, a timing circuit in parallel with said sound controlled circuit and adapted to de-sensitize said sound controlled circuit for a pi e-determined cycle period, whereby said toy may operate for one cycle period without being re-cycled during said period by receipt of external sound or noises emitted by said toy.
  • a time delay circuit operatively associated with said soundcontrolled circuit, said time delay circuit including means for continuing the de-sensitization of said sound-controlled circuit for a pre-determined period after the end of said cycle period, whereby noises caused by the stopping of said toy will not re-actuate said toy.

Description

Nov. 10, 1970 P. M. TOMARO NOVELTY 'IOY DUCK 3 Sheets-Sheet 1 Filed Jan. 27, 1969 I INVENTOR.
Pafruclf M. Toma/w 7 flmozwm Nov. 10, 1970 M. TOMARO 3,538,639
NOVELTY TOY DUCK Filed Jan. '27, 1969 3 Sheets-Sheet 2 lllllll I v 2/ INVENTOR. Zdirwf/f N. Tamara NOV. 10, 1970 p, TOMARO 3,538,639
7 NOVELTY TOY DUCK Filed Jan. 27, 1969 3 Sheets-Sheet s wg a CONTROL CIRCUIT v 3/ 55 I INVENTOR. .lainwk HIV/1mm m, z fumed 1117' RAM'YSY United States Patent O 3,538,639 NOVELTY TOY DUCK Patrick M. Tomaro, Maplewood, N.J., assignor to Remco Industries, Inc., Harrison, NJ. Filed Jan. 27, 1969, Ser. No. 794,051 Int. Cl. A63h 33/26 US. Cl. 46-232 8 Claims ABSTRACT OF THE DISCLOSURE A toy duck is provided which simulates actions and noises of a live duck and which is remotely controlled by a whistle. The duck has a cam-actuated noisemaker controlled by its driving motor which allows it to quack in sequential groups more like a real duck and has a bill action coordinated with the quacking sound. The waddling motion of the duck is controlled by a whistle blown by the child and received by a microphone or the like. The microphone circuit is inactive during the period of action of the duck, and so, is not affected by the quacking.
BACKGROUND OF THE INVENTION The present invention provides a toy with a degree of realism that, it is believed, has not previously been achieved.
Toy ducks have, of course, been made, and so have ones that are motor operated. There have, likewise, been toy ducks that have the ability to move and simulate a waddle and also to quack. None of these, however, have been adapted for remote, non-wire control, such as by sound waves. Indeed, such a sound control is a problem, since the noise of the quacking, and the noise of the motion, can themselves affect the sound control. Thus, the realism of an independently moving duck, with a true quacking noise has been missing.
SUMMARY OF THE INVENTION My invention provides a moving, waddling, quacking duck, having a highly realistic effect for a small child. It is controlled remotely by sound waves.
The duck is operated by a small battery-powered electric motor. The motor, through a gear train, operates eccentrically mounted driving Wheels, which give the duck a waddling motion as it moves across the floor.
The motor also operates a cam and lever arm which serve to periodically compress and release a bellows-type noisemaker which simulates a quacking sound. The cam arrangement is such that the duck quacks for a series of, say, three times and then is quiet for a period, thereafter repeating the quacking. Associated with the cam arm is a linkage connected to the bill of the duck. This linkage causes the bill to open and close in synchronism with the noise itself.
The motor itself is controlled by a circuit that responds to a sound receiving means such as a microphone. When the sound is received, it actuates the circuit and turns on the motor; the motor runs for a predetermined period of time and then shuts off. During the period of operation and for a short period such as a second, thereafter, the control circuit is not responsive to sounds, and so the duck does not affect the operation and turn on the circuit again, nor do any noises associated with the stopping of the operation at the end of a predetermined time.
The child turns on the toy simply by blowing a whistle of a frequency to which the sound receiving means is responsive. The duck then moves with its waddling motion, quacks in its programmed sequence, and continues its motion for the predetermined period of time. It then stops and must be started by blowing the whistle or other noise.
THE DRAWINGS The drawings show the structure and operation of the toy duck as follows:
FIG. 1 is a perspective view of a duck of the type included in my invention.
FIG. 2 is a horizontal section taken on line 22 of FIG. 4 through the middle of the duck; it shows the general construction of the workings of the duck.
FIG. 3 is a more detailed view of the motor and gear train of the duck, taken on line 33 of BIG. 4.
FIG. 4 is a vertical section taken on line 44 of FIG. 2
FIG. 5 is an elevation showing a portion of the motor control circuit and the battery, taken on lines 5-5 of FIG. 2.
FIG. 6 is a vertical section taken on line 66 of FIG. 2.
FIG. 7 is a schematic drawing showing the circuit arrangement.
DETAILED DESCRIPTION OF THE INVENTION A general view of the duck 1 of my invention is shown in FIG. 1. The duck has a moderately realistic appearance but may be fanciful if desired. The duck includes a body 2 and head 3 with bill portions 4 and 5. It is supported on the floor by a freely rotating wheel 6 and two larger eccentric wheels 7 and 8 (see FIG. 2).
The ducks feet, such as 9, are simply for appearance not function. The entire animal is preferably some form of a molded plastic.
The general grouping of the parts of this toy is best seen by examining FIGS. 2 and 4. Eccentric drive wheels 7 and 8, oppositely centered, are shown toward the rear of the duck. These are actuated by motor 15 through gear train 16. Power to operate the motor comes from battery 17; and the motor is controlled through a circuit generally depicted by the numeral 20, actuated by microphone 21.
Quacking, is accomplished through a bellows-type noisemaker 25, of a standard type. Associated with noisemaker 25 is lever arm 26 mounted upon pivot 28. One end of lever arm 26, end 29', presses against the top of normally expanded bellows 25. The other end 40 of arm 26 rides along the surface of cam 27. It is pressed against the surface by the upward spring pressure on end 29 caused by bellows 25. The surface of cam 27 has a series of projections 41, 42, 43 and 44.,It also has a surface 45 having no projections. With this cam surface arrangement end 40 of arm 26 is pressed upwardly several times in immediate sequence and then remains quiet for a period, thus simulating the quacking of a duck. Cam 27 is associated with gear train 16 and rotates upon energization of motor 15.
The motor 15 serves to drive the duck and animate it. Motor 15 is connected through a series of reducing gears identified as gear train 16. The final gear of the train is connected to axle 18 which carries wheels 7 and 8. Axle 18 does not go through the center of wheels 7 and 8, but rather is slightly off center so that the wheels are eccentrically mounted. The mounting of the wheels is such that they are not in phase with one another. As a result, rotation of axle 1-8 by motor 15 results in rotation of the wheels 7 and 8 which, because they are eccentric, cause the duck to move forward with a waddling motion. This eccentric relationship can be readily seen in FIG. 6 where, in a particular position of the wheels, the duck is leaning to the left as seen in the drawing.
Motor control is through a series of switches. Battery 17 is connected to the motor through three switches: (a) an on/off switch 22, (b) a control circuit 20, and (c) a motion control circuit 24. Control circuit 20 and motion control circuit 24 are in parallel. They are in series with on/ofif switch 22, battery 17, and motor 15.
On/ off switch 22, is a rotary switch controlled by knob 24. It can be any desired structure, but in the form I have adopted is simply an arm 24 which rotates against a piece of spring metal contact arm 34 which when pressed downwardly contacts the upper pole of battery 17 to hold it against the battery. Contact 34 is then connected through lead 35 to control circuit 20.
Control circuit 20 is electrically connected to microphone 21. Circuit 20 is normally open, but is designed to close when the microphone receives a noise of sufiicient intensity and, if desired, of a pre-determined frequency.
When closed, motor will operate ,(provided switch 22 is closed).
Motion control circuit 24 is in parallel with control circuit 20. It is designed to short circuit control circuit and cause the toy duck to be animated for a pre determined time period. Contact 23 of circuit 24 is operatively associated with a notch in one of the gears 37 in gear train 16. Being of spring metal, contact 23 tends to press down into the notch 38 in gear 37. Rotation of gear 37, however, presses contact 23 upwardly against another piece of metal 39 and so closes a circuit between gear train 33 and 39. Gear 37 should be made of plastic or other non-conducting material.
Thus, it can be seen that, once the control circuit 20 is closed and has caused the motor 15 to start operating, gear train 16, will commence rotating, particularly gear 37. Arm 23 will then be pushed upwardly out of notch 38 and will close a contact with contact 39, shorting out the control circuit. The motor then will continue to operate until gear 37 has made a complete revolution and arm 23 again drops down into notch 38. This will serve to open the circuit and stop motor 15 until it is again actuated by control circuit 20.
The result is that the duck commences motion upon receipt of a sound from a whistle blown by the child, or from any other desired source; the motion continues for a cycle of pre-determined length; and, during operation, it is not affected by the other sounds, such as its own quacking. This, then, provides a cycle of operation of a pre-determined length which is not re-set, recommenced or otherwise affected by the noises made by the toy, such as quacking, during its operation.
In a toy such as this, actuated by a microphone, there is always the possibility that extraneous sounds, other than the desired whistle blown by the child, will also serve to actuate the toy. Under such circumstances, once started, the toy may continue to operate; it could even be turned on again by its own noise as it stops operation at the end of a cycle. To avoid this problem, the present toy is designed so that the sound receiving means, such as the microphone, is de-sensitized during its period of operation and for a short period, such as a second, thereafter. As a result, the duration of operation, once started is mechanically determined as with switch 23 of circuit 24 and is on longer controlled by the sound responsive means.
To accomplish this, the control circuit 20, actuated by micropsone 21, serves only to start the operation of the device. Thereafter control circuit 20 is shorted out, as above described, returns to its normally-open position, and the toy operates through one full cycle is determined by rotation of notched wheel 37 acting with switch 23. Further, the control circuit is so designed so as to be desensitized for a limited period after the completion of a cycle. This period may be varied but preferably of the order of one second, so that stopping noises do not affect it.
Various circuits to accomplish this time delay purpose may be readily designed. Usually the time delay is accomplished by use of RC circuits. My preferred circuit, however, is that time delay case shown in pending application of Patrick M. Tomaro, Ser. No. 718,409, now Pat. No. 3,458,950, filed on Apr. 3, 1968.
Having described my toy duck and its method of operation, in one particular configuration, I do not, however, mean to be limited by this particular structure. Variations may be permitted and still remain within the scope of my concept.
What is claimed:
1. A sound controlled toy which movesand makes a noise during operation, said toy including a motor within said toy to drive same, a noisemaker operated by said motor, a control circuit for said motor, said control circuit including timing means to continue operation of said motor for a pre-determined period after starting sound receiving means connected to said circuit, said circuit being actuated by sound waves received by said sound receiving means to start said motor, and means for de-sensitizing said sound receiving means during operation of said toy whereby, upon receipt of a sound, said toy will start and will operate for a pre-determined period of time, unaffected by its own sound, and will then shut itself off.
2. A sound controlled toy as set forth in claim 1 in which said toy is a duck and said noisemaker produces a quacking sound.
3. A toy as set forth in claim 2 including cam means operated by said motor, said cam means controlling said quacking to cause the quacking to occur in sequential groups.
4. A toy as set forth in claim 3 including a pivoted bill on said duck and a linkage operatively interconnecting said bill with said cam means to cause motion of said bill coordinated with said quacking.
5. A sound controlled toy as set forth in claim 1 including means for de-sensitizing said control circuit for a second pre-determined period after said first predetermined period so that said toy will not be atfected by receipt of sound after shutting itself off, for said second period.
6. A sound-controlled toy as set forth in claim 5 in which said sound receiving means and said control circuit are, together, adapted to respond to sounds of a predetermined frequency.
7. In an animated toy adapted to be actuated by sound, which toy emits noise when actuated, a control circuit for said toy including receiving means to receive said sound, a sound controlled circuit operatively associated with said receiving means for causing actuation of said toy, a timing circuit in parallel with said sound controlled circuit and adapted to de-sensitize said sound controlled circuit for a pi e-determined cycle period, whereby said toy may operate for one cycle period without being re-cycled during said period by receipt of external sound or noises emitted by said toy.
8. In an animated toy as set forth in claim 7 a time delay circuit operatively associated with said soundcontrolled circuit, said time delay circuit including means for continuing the de-sensitization of said sound-controlled circuit for a pre-determined period after the end of said cycle period, whereby noises caused by the stopping of said toy will not re-actuate said toy.
References Cited UNITED STATES PATENTS 2,629,203 2/1953 Brown 46104 2,983,072 5/1961 Crawford et al. 46-104 X 3,060,630 10/1962 Collischan 4698 3,120,079 2/1964 Glass et a1. 4698 ANTONIO F. GUIDA, Primary Examiner J. N. ESKOVITZ, Assistant Examiner U.S. Cl. X.R.
US794051*A 1969-01-27 1969-01-27 Novelty toy duck Expired - Lifetime US3538639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79405169A 1969-01-27 1969-01-27

Publications (1)

Publication Number Publication Date
US3538639A true US3538639A (en) 1970-11-10

Family

ID=25161543

Family Applications (1)

Application Number Title Priority Date Filing Date
US794051*A Expired - Lifetime US3538639A (en) 1969-01-27 1969-01-27 Novelty toy duck

Country Status (4)

Country Link
US (1) US3538639A (en)
DE (1) DE1941548A1 (en)
FR (1) FR2029436A1 (en)
GB (1) GB1280028A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628286A (en) * 1970-03-07 1971-12-21 Gakken Co Ltd An amphibian toy
US4143484A (en) * 1976-07-22 1979-03-13 Kabushiki Kaisha Yoneya Gangu Drive mechanism for a running toy
USRE31667E (en) * 1978-08-07 1984-09-11 Low cost electromechanical electronic simulation circuits
US4690242A (en) * 1986-11-19 1987-09-01 Mark David S Sound actuated switch
WO1987006487A1 (en) * 1986-05-02 1987-11-05 Vladimir Sirota Toy
US4737131A (en) * 1985-05-15 1988-04-12 Vladimir Sirota Toy
US4795395A (en) * 1986-07-01 1989-01-03 Iwaya Corporation Animal motion toy having an automatic action switching drive mechanism
FR2619726A1 (en) * 1987-08-27 1989-03-03 Tomy Kogyo Co TOY REPRESENTING AN ANIMAL AND SWITCH FOR SUCH A TOY
US5615380A (en) * 1969-11-24 1997-03-25 Hyatt; Gilbert P. Integrated circuit computer system having a keyboard input and a sound output
US20090137186A1 (en) * 2006-05-04 2009-05-28 Mattel, Inc. Motorized toy creature
US20100139146A1 (en) * 2008-12-10 2010-06-10 Rich Elpi Bird decoy system
US20140220857A1 (en) * 2013-02-07 2014-08-07 Ta-Wei Hsu Swing-type removable toy
RU2567695C1 (en) * 2014-05-27 2015-11-10 Александр Сергеевич Дорофеев Flying winded helicopter
US20190209935A1 (en) * 2018-01-05 2019-07-11 American Family Life Assurance Company Of Columbus Animatronic toy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168391U (en) * 1982-05-06 1983-11-10 有限会社桜屋 Sound-activated bird toy
AU2177483A (en) * 1983-03-29 1984-10-04 Jeffery, E.M. Self annunciator
JPS626892U (en) * 1985-06-28 1987-01-16
JPH0617495Y2 (en) * 1989-06-30 1994-05-11 株式会社タカラ Upholstery with a flexing movement
JPH0475597U (en) * 1990-11-15 1992-07-01
IL104645A0 (en) * 1993-02-08 1993-06-10 Jacob Maor Activation of toy device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629203A (en) * 1950-04-14 1953-02-24 Brown Hurley Leon Moving figure wheeled toy
US2983072A (en) * 1961-05-09 Action toy
US3060630A (en) * 1959-02-25 1962-10-30 Georg Kohler Toy figures
US3120079A (en) * 1961-10-09 1964-02-04 Marvin Glass & Associates Wheeled figure toy with sounding and dispensing means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983072A (en) * 1961-05-09 Action toy
US2629203A (en) * 1950-04-14 1953-02-24 Brown Hurley Leon Moving figure wheeled toy
US3060630A (en) * 1959-02-25 1962-10-30 Georg Kohler Toy figures
US3120079A (en) * 1961-10-09 1964-02-04 Marvin Glass & Associates Wheeled figure toy with sounding and dispensing means

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615380A (en) * 1969-11-24 1997-03-25 Hyatt; Gilbert P. Integrated circuit computer system having a keyboard input and a sound output
US3628286A (en) * 1970-03-07 1971-12-21 Gakken Co Ltd An amphibian toy
US4143484A (en) * 1976-07-22 1979-03-13 Kabushiki Kaisha Yoneya Gangu Drive mechanism for a running toy
USRE31667E (en) * 1978-08-07 1984-09-11 Low cost electromechanical electronic simulation circuits
US4737131A (en) * 1985-05-15 1988-04-12 Vladimir Sirota Toy
WO1987006487A1 (en) * 1986-05-02 1987-11-05 Vladimir Sirota Toy
US4795395A (en) * 1986-07-01 1989-01-03 Iwaya Corporation Animal motion toy having an automatic action switching drive mechanism
US4690242A (en) * 1986-11-19 1987-09-01 Mark David S Sound actuated switch
FR2619726A1 (en) * 1987-08-27 1989-03-03 Tomy Kogyo Co TOY REPRESENTING AN ANIMAL AND SWITCH FOR SUCH A TOY
US20090137186A1 (en) * 2006-05-04 2009-05-28 Mattel, Inc. Motorized toy creature
US8376804B2 (en) 2006-05-04 2013-02-19 Mattel, Inc. Motorized toy creature
US20100139146A1 (en) * 2008-12-10 2010-06-10 Rich Elpi Bird decoy system
US8250801B2 (en) * 2008-12-10 2012-08-28 Rich Elpi Bird decoy system
US20140220857A1 (en) * 2013-02-07 2014-08-07 Ta-Wei Hsu Swing-type removable toy
RU2567695C1 (en) * 2014-05-27 2015-11-10 Александр Сергеевич Дорофеев Flying winded helicopter
US20190209935A1 (en) * 2018-01-05 2019-07-11 American Family Life Assurance Company Of Columbus Animatronic toy

Also Published As

Publication number Publication date
DE1941548A1 (en) 1970-08-27
FR2029436A1 (en) 1970-10-23
GB1280028A (en) 1972-07-05

Similar Documents

Publication Publication Date Title
US3538639A (en) Novelty toy duck
US4676764A (en) Dancing doll with hip movement and 180° rotation
US5141464A (en) Touch responsive animated toy figure
US4659919A (en) Optical sensing circuit for audio activation of toys
US7183929B1 (en) Control of toys and devices by sounds
US6089942A (en) Interactive toys
US5820441A (en) Animated doll
US7901265B1 (en) Electromechanical toy
US3834071A (en) Doll with coordinated head and torso movement
US5941755A (en) Toy having jumping action
US2818678A (en) Crying doll
US1992477A (en) Mechanical walking doll
US4943256A (en) Amusement device propelled by an eccentric apparatus
US3443338A (en) Toy including a light in front of a dog which moves in a life-like manner and a sound simulating a bark is emitted
US2505626A (en) Combined doll's cradle and sound-producing means
US3458950A (en) Sound controlled toys having a time delay motor circuit
US4179842A (en) Audible sound emitting toy
US3190037A (en) Electrically actuated sounding doll with illuminating means
US5458524A (en) Toys representing living beings, in particular dolls
US3110980A (en) Mechanical heartbeat mechanism
JPS6341039Y2 (en)
US2641867A (en) Mechanical fiddler
US2559201A (en) Motor actuated display figure
US3483655A (en) Coacting doll and cradle,including electric sounder and time delay device
US2629966A (en) Animated dancing doll