US3527331A - Reagent for assaying aldolase - Google Patents

Reagent for assaying aldolase Download PDF

Info

Publication number
US3527331A
US3527331A US735999A US3527331DA US3527331A US 3527331 A US3527331 A US 3527331A US 735999 A US735999 A US 735999A US 3527331D A US3527331D A US 3527331DA US 3527331 A US3527331 A US 3527331A
Authority
US
United States
Prior art keywords
assay
reagent
enzyme
specimen
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US735999A
Inventor
Alfred Deutsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMD Chemicals Inc
Original Assignee
Calbiochem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US561757A external-priority patent/US3413198A/en
Application filed by Calbiochem Corp filed Critical Calbiochem Corp
Application granted granted Critical
Publication of US3527331A publication Critical patent/US3527331A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/008Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions for determining co-enzymes or co-factors, e.g. NAD, ATP
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/50Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving creatine phosphokinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/904Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)

Definitions

  • Substantially anhydrous, solid assay materials for the determination, inter alia, of reagent for assaying aldolase are rendered storage stable by the presence of certain polyhydric compounds preferably mannitol, sorbitol, lactose or polyvinyl alcohol.
  • the present invention relates to processes and compositions for preparing reagent mixtures for detecting and measuring the presence of certain components in a biological sample. It also relates to the novel reagent mixtures.
  • reagents contain one or more biological components such as enzymes, coenzymes and/or substrates, etc.
  • the reagent has inherently been of a very unstable nature and has very little if any shelf life. To insure the reagent being at optimum strength it must be prepared at or immediately prior to the time the assay is made.
  • the various components such as the enzymes, coenzymes, substrates, etc., included in the reagent have been very unstable. To insure these components being at their optimum it has been necessary for the components to be stabilized in a concentrated form.
  • kits containing the several dilferent components which may be dry, or in solutions, has been obtained. If the components are in a dry form, aqueous solutions are formed, and maintained separately until just prior to use.
  • the various components for the reagent are present in separate containers and maintained separated from each other. Some of these solutions and particularly those containing the enzymes are necessarily in a concentrated form in order to preserve their activity.
  • kits have been capable of producing the desired reactions and permitting the desired assays to be made they have not been entirely satisfactory for numerous reasons. For example, they have not only been very time-consuming and wasteful, but have also required a person of suflicient skill to insure the accurate preparation of the reagents and their being used in the proper manner. Also, because of the possibility of substantial human errors such reagents have induced a certain degree of unpredictable error in the results of the assay.
  • the assay materials are in a dry, solid state that may be easily handled and used.
  • the assay materials include components such as enzymes, coenzymes and/or substrates which have heretofore been very unstable. Moreover, the combining of such components tends to reduce their stability. However, stabilizers are included that are effective to maintain or preserve the activity of each of the components and of the entire assay material. Each of the components including those containing the enzymes may be stabilized individually and used as such for any desired purpose. Also, the compounds may be combined together to form a new and novel assay material.
  • the resultant assay material contains all of the components except water, for making a liquid reagent that can be used to make a biological assay of the above described type.
  • the assay material contains various components such as enzymes, coenzymes and/or substrates, etc.
  • the material is in a dry, solid form and will be very stable and have a long shelf life. This will permit the assay material to be packaged into containers which are easy to handle and use.
  • Each of the containers may include a quantity of the assay material that is just the right amount for making a particular number of assays, for example a single assay.
  • the assay material may desirably include an agent which, among other things, is effective to increase the volume of the assay material to a standard size whereby the quantity of the assay material required to produce a single assay will always be a standard amount.
  • an agent which, among other things, is effective to increase the volume of the assay material to a standard size whereby the quantity of the assay material required to produce a single assay will always be a standard amount.
  • mannitol is preferred agent. It will thus be seen that.
  • enzymatic assay is defined as the use of an enzyme as a component of a reagent for the determination of a substance or another enzyme, or for the determination of an enzyme in a biological sample.
  • the present invention is particularly adapted to be embodied in a dry assay material for determining in a specimen of fluid, particularly of biological origin, the quantity or the amount of activity of a certain unknown.
  • the unknowns are in a class which for convenience may be divided into four separate groups.
  • the groups include enzymes such as carboxylases, dehydrogenases, hydrolases, isomerases, oxidases, phophorylases and transferases.
  • this group includes: lactate dehydrogenase, alkaline phosphatase, glucose oxidase, muscle phosproylase, glutamate-oxaloacetate transaminase, phophoenol-pyruvate carboxylase, cholinesterase, glutamate-pyruvate transaminase, malate dehydrogenase, acid phosphatase, prostatic acid phosphatase, esterase, diesterase, lipase, amylase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, aldolase glutamate decarboxylase, uricase, galactowaldenase, triose phosphate, isomerase, carbonic anhydrase, leucine aminopeptidase, 3- phosphoglyceraldehyde dehydrogena
  • the second group includes biochemical intermediates or metabolites.
  • the second group includes: glucose, lactic acid, pyruvic acid, adenosine triphosphate, phenylpyruvic acid, 3 methoxy-4-hydroxymandelic acid, cholesterol, creatinine, urea, uric acid, aspartic acid and glycine.
  • the third group includes chemical constituents of cells or biological fluids which, by way of example, may include dissolved carbon dioxide, triglycerides, protein, starch, glycogen, hemoglobin and insulin.
  • the fourth group includes drugs and toxins such as antimycin A, diisopropylfluorophosphate, sulfathiazole, ethanol, acetaldehyde and barbiturates.
  • drugs and toxins such as antimycin A, diisopropylfluorophosphate, sulfathiazole, ethanol, acetaldehyde and barbiturates.
  • a liquid reagent may be mixed with the specimen to produce an enzymatic reaction.
  • the particular reaction that occurs should produce an effect which can be easily measured by way of example, the optical density of the assay mixture at some predetermined wavelength may change in proportion to the extent of the reaction.
  • the liquid reagent is prepared by dissolving a dry, solid assay material in water.
  • an assay mixture will be formed that includes a substrate that will enter into the reaction, an enzyme that will catalyze the reaction, and a coenzyme that will be oxidized or reduced in the course of the reaction so as to produce a desired change in the assay mixture, for example, its optical density. All of the components that are not present in the speciman are contained in the assay material.
  • one or more substances are included in the assay material to stabilize the assay material and preserve the activity of the various components.
  • one or more bufier substances may also be provided that will beeffectvie to maintain the conditions in the assay mixture suitable for the reaction to occur at an optimum rate.
  • the assay material is in a dry, powdered form and contains all of the components except water, for producing an enzymatic assay when combined with the specimen.
  • the powder may be pre-measured into portions which are of just the right amounts for producing an assay reaction in a single specimen or an integral number of specimens.
  • the premeasured quantity of the assay material may be dissolved directly in to a suitable quantity of water to form a liquid reagent.
  • the liquid reagent may then be mixed with the specimen to induce the assay reaction in the assay mixture.
  • the reagent will not necessarily include an enzyme.
  • the assay material is free of any enzymes but includes one or more components such as a substrate that will react at a rate or to the extent that is determined by the amount of activity of the unknown or enzyme originally present in the specimen.
  • a substrate is included which will react with the unknown and an enzyme included in the reagent, that will catalyze the reaction.
  • the first step is to select one or more substrates and one or more enzymes that will be efiective to produce an enzymatic assay reaction and insure its occurring in the desired manner.
  • the particular enzymes that are chosen will, of course, depend upon the particular unknown to be assayed and the particular reaction which it is desired to create. However, the enzymes will normally be chosen from a class that includes carboxylases, dehydrogenases, hydrolases, isomerases, oxidase, phosphorylases, and transferases.
  • this class includes: lactate dehydrogenase, alkaline phosphatase, glucose oxidase, muscle phosphorylase, glutamate oxaloacetate transaminase, phosphoenolpyruvate carboxylase, cholinesterase, glutmatepyruvate transaminase, malate dehydrogenase, acid phosphatase, prostatic acid phosphatase, esterase, diesterase, lipase, amylase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, aldolase, glutamate, decarboxylase, uricase, galactowaldenase, triose phosphate isomerase, carbonic anhydrase, leucine aminopeptidase, 3-phosphoglyceraldehyde dehydrogenase, trypsin, chymotrypsin, alpha
  • enzymes of this type are generally very unstable. In fact, heretofore, in order to maintain enzymes of this type in a stable condition, it has been necessary to keep them in a concentrated form and at low temperatures. In addition to being concentrated, it has also been usually necessary for the enzyme solution or suspension to include a substantial amount of a salt such as ammonium sulfate to maintain optimal activity.
  • a salt such as ammonium sulfate
  • one of the steps in the process is to convert the enzyme from a solution to a dry, solid form such as a powder in which the enzyme is very stable.
  • one or more stabilizing compounds may be added to the solution containing the enzymes.
  • the particular stabilizers added to the enzyme solution will, in part, vary with the particular enzyme that is to be stabilized. However, for enzymes of this type, at least one stabilizer is chosen from one or more of the following groups. Under some circumstances it has been found to be advantageous to employ a combination of stabilizers which may include a stabilizer from several of the following groups or even a stabilizer from each group.
  • the stabilizer may include other polymers containing hydroxy groups or other hydrophilic substitute groups which render the resultant polymer essentially soluble in water such as, polyvinylpyrrolidine, carbowax and polyvinyl alcohol. This will also insure all of the assay material dissolving rapidly in the water when the reagent is prepared.
  • any other polymers which because of large chains or hydrophylic substituent is only partially soluble in water but which equilibrate with the aqueous phase such as ion exchange resins, ion exchange cellulose, carboxy-methyl cellulose.
  • Group II.A buffer consisting of a hydroxyalkylamine including but not limited to primary amines such as tris (hydroxymethyl) aminomethane or a tertiary amine such as triethanolamine.
  • Group IIL-A sequestering or complexing agent such as ethylene diamine tetracetic acid or one of its salts which has been found to be particularly well suited.
  • Group IV.-An inert soluble protein such as bovine serum albumin.
  • Group Vl.-Sulfhydryl compound such as dithioe rythritol, cysteine, or reduced glutathione, which have been found particularly suitable.
  • the ozyme of enzymes in the solution are very stable. It has been found that by adding these stabilizers to the solution, the activity of the enzymes is often increased. This is believed to result from the elimination of the effects of certain inhibitors which are usually present with the enzymes.
  • the solution may be diluted by adding water.
  • a portion of the liquid may be removed. Preferably, the liquid is removed by evaporation while the solution is maintained at a relatively low temperature. It may thus be seen that a very stable enzyme solution is provided at this point and that the stability of the solution is independent of the concentration of the enzyme or the salts therein and exhibits stability over a wider range of temperature.
  • the above described stabilized enzyme solution may be used for numerous purposes as a solution. However, under some circumstances such as the preparation of the present assay material, it may be desirable to convert the solution into a dry mixture or powder containing the enzyme. This may be accomplished by lyophilizing or freeze drying the solution. More particularly, the entire solution is frozen to provide a solid mass and placed under a vacuum. The vacuum is of sufficient magnitude to cause frozen liquid to sublimate. The frozen mass is kept under this vacuum for a period sufiicient to insure all of the water, etc., being removed. This will leave a solid residue that contains the enzyme or enzymes in intimate relation with the stabilizers, such as acacia, etc. These stabilizers are efiective in preserving the activity of the enzyme for an extended period of time even though the enzyme is in the form of a solid.
  • stabilizer broadly relates to a substance which prevents the change or destruction of a reagent component. It has three major aspects in the present invention, namely: (1) to allow for convenient handling of the components during manufacture; (2) to permit the preparation and storage of a component in dry form; and (3) to provide long-term shelf-life of the finished product.
  • the residue will noramlly be in a fluffy or flaky condition. However, if it is desired, the residue may be ground until it is reduced to a finely powdered mixture.
  • the grinding may be accomplished by any siutable means such as a ball mill.
  • the fact that the powder mixture is substantially dry contributes to the chemical stability of enzymes. It also contributes to the physical stability of the mixture and substantially eliminates the tendency to compact or become lumpy, etc. Since the mixture can be maintained as a loose powder it will be easy to bandle and process. Also, it can be easily measured either volumetrically or gravimetrically.
  • a powder is provided that includes one or more enzymes in a very stable form. Since the powder does not include any form of substrate, it can be used as an enzyme for any desired purpose. For example, among other things, the enzyme powder may be employed to complete the preparation of the present assay material.
  • the other components such as the buffers, substrates, coenzymes, and bulking-stabilizing agents, may be prepared for mixing with the stabilized enzymes. It is one of the primary purposes of the butter materials to maintain the conditions suitable for the assay reaction to occur at an optimum rate.
  • the buffers When the assay material is dissolved in water, the buffers will, among other things, be effective to maintain the pH of the liquid reagent.
  • the pH of the resultant specimen mixture will still be suitable for the assay reaction to occur.
  • the particular buffer material that is employed in any particular assay material will be dependent upon the particular assay reaction to be conducted and the other components in the assay material. However, normally, they will be in a class that includes the salts of polyvalent inorganic anions and organic amines together with the acids and salts thereof.
  • the salts of polyvalent inorganic anions may include at least so dium and potassium phosphates and sodium and potassium pyrophosphates.
  • organic amines and acids, and their salts may include at least tris (hydroxymethyl) amino-methane and imidazole (and their salts, such as the hydrochloride, succinate, sulfate), succinic, aspartic, and glutamic acids (and their salts such as the sodium, potassium, and lithium), glycylglycine, and glycine.
  • the buffer materials may be prepared in the form of a dry powder that is mixed directly with the lyophilized powder containing the enzyme and the stabilizer.
  • the resultant powder will contain the enzymes required for the assay reaction. Because of the stabilizers and buffers present in the powder, the enzymes will be very stable. This resultant powder like the enzyme powder first described, will not be hygroscopic, in contrast to corresponding mixtures prepared by lyophilization of the combined buffer and enzyme solutions.
  • the substrate is effective for reaction with the unknown in the specimen. Accordingly, the particular substrate that is employed in any particular assay material will be dependent upon the nature of the unknown and the particular assay reaction that it is desired to produce. Normally, the substrate will be in a class of biochemicals whose chemical reactions will be specifically catalyzed by the classes of enzymes previously described.
  • the substrate When the assay material is dissolved to form a liquid reagent and the reagent is mixed with the specimen, the substrate will react with the unknown. However, in order for the reaction to occur successfully, it is necessary for the enzyme to catalyze the reaction. The quantity of the substrate and the amount of activity of the enzyme contained in the reagent are in excess of that required to cause all of the unknown to completely react or to react at a desired rate. As a result the only factor that limits the assay reaction will be the quantity or amount of activity of the unknown.
  • the substrates When the substrates are in a pure solid dry form, they may be ground into a dry powder suitable for mixing with the lyophilized powder.
  • the coenzyme enters into the reaction and is converted from one form to another form.
  • the extent to which the coenzyme is converted is determined by the extent to which the assay reaction progresses.
  • the coenzyme may be readily converted from one form (such as oxidized) to another form (such as reduced).
  • the coenzyme has a light absorption at some particular wavelength only when it is in one of these forms. When it is in the other form, it is transparent at the designated wavelength, although the absorption band may be any desired wavelength that is convenient to use. However, it is desirable that it be distinct from the intense absorption bands of the rest of the components in the assay material and the substances in the specimen.
  • the amount of the coenzyme converted may be determined. More specifically, by measuring the amount of change or rate of change of the optical density at the designated wavelength, the amount or rate of the assay reaction may be measured. It has been found that the pyridine nucleotides are particularly well suited for this purpose. When they are in their reduced form, they show absorption of ultraviolet light with a maximum value at a wavelength of about 340 millimicrons. By employing a coenzyme of this class in all forms of the assay material, the assay reactions may be observed by always measuring the optical density at this wavelength.
  • Coenzymes of this class have a limited amount of stability in a solid form. They can be stored in a solid form for only short periods of time.
  • the stability of the coenzyme may be increased by preparing a lyophilized powder of the coenzyme and acacia. Further increases in the stability of the coenzyme may be obtained by mixing with mannitol. Accordingly, the coenzyme may be ground into a powder and mixed directly with the lyophilized powder containing the enzyme, stabilizer, and buffer.
  • This invention teaches that by preparing the various components of the assay material such as the substrates and coenzymes in a dry or solid state, and in a stabilized form before the mixing thereof with the lyophilized stabilized enzyme, a much more stable and easily handled assay material is now provided.
  • a bulking-stabilizing agent may be a polyhydric substance such as mannitol, sorbitol, lactose, polyvinyl alcohol or polymers having from 1 to 5 hydroxyl groups per monomeric unit.
  • the bulking agent is not active in the assay reaction. Accordingly, the quantity of the bulking agent added to the assay material is not critical and may be varied throughout a wide range. However, the bulking agent performs several unexpected and useful functions. First of all, the bulking agent tends to further increase the stability of the assay material for several reasons.
  • Such agents have the ability to absorb and retain limited quantities of moisture whereby the assay material is not materially alfected when exposed to reasonable amounts of moisture. This increases the stability of the assay material and prevents its losing its activity. It has also been found that the bulking agent will also be effective in preserving the assay material by increasing the compatibility of its components. It has also been found that bulking agents of this category are also effective in increasing the ability of the assay material to withstand relatively high temperatures, such as 50 C., for longer periods of time. Heretofore, temperatures in this range have caused rapid deterioration of the enzymes, coenzymes, and other components.
  • the quantity of the bulking agent added to the assay material may vary over a wide range. Once a batch of the assay material has been prepared, its strength or amount of activity may be determined. The bulking agent may then be added to standardize the assay material to a predetermined level. This will result in the assay material always having a predetermined amount of activity per unit irrespective of the batch in which it is prepared. Of the agents listed above, mannitol is preferred.
  • the assay material After the assay material has had the bulking agent added, it may be divided into units of a standard predetermined size. The size normally will be just large enough to make a single assay or an integral number of assays. Each of these units may then be packaged into a container such as a capsule, glass vial, etc.
  • a plurality of substantially identical packages such as foil containers or capsules may be provided. Each of these capsules will contain just a sutficient quantity of the assay material for making a single assay of a specimen.
  • a package containing the assay material for making the particular assay is selected.
  • the assay material contained in the package is all pre-measured and of a predetermined activity. Accordingly, it may be dissolved directly in a standard amount of water so as to form a liquid reagent.
  • This liquid reagent is then mixed with the specimen to produce an enzymatic reaction. The extent of or the rate at which the reaction occurs will be a function of the quantlty or amount of activity of the original unknown.
  • Every test irrespective of the particular type of assay, will involve the conversion of a coenzyme from one form to another form wherein one form has an optical absorption at a predetermined wavelength. Accordingly, the optical density of the specimen at the wavelength will vary at a function of the unknown. Thus, by measuring the optical density of the medium at different times, it will be possible to compute the quantity or amount of activity of the unknown in the original specimen.
  • the invention sought to be patented in a principal process of making aspect is described as residing in the concept of preparing an assay reagent, useful, inter alia, as an aid in the clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of an enzyme in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent While in substantially anhydrous particulate form, comprising a dry coenzyme, a dry bulfer, a dry second enzyme capable of catalyzing the conversion of the coenzyme to the other form of the coenzyme, dry substrates, effective to react with the enzyme of which the present quantity or activity is to be determined.
  • the invention sought to be patented is a second embodiment of a process of making aspect is described as residing in the concept of preparing an assay reagent, useful, inter alia, as an aid in the clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of aldolase in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent while in substantially anhydroux particulate form including the combination of: a dry substrate comprising fructose-1,6-diphosphate; the dry enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; a dry coenzyme consisting of reduced diphosphopyridine nucleotide; a dry stabilizer from the class that includes rnucilagenous gums, hydroxyalkylamines, ethylene diamine tetraacetic acid and its salts, an inert soluble protein and a sulfate anion; a dry buffer from a
  • the invention sought to be patented in a first composition of matter aspect is described as residing in the concept of a substantially anhydrous solid reagent, useful, inter alia, as an aid in clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of aldolase, in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent while in substantially anhydrous particulate form including the combination of: a dry substrate comprising fructose-l,6-diphosphate; the dry enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; a dry coenzyme consisting of diphosphopyridine nucleotide; a dry stabilizer from the class that includes mucilagenous gums, hydroxyalkylamines, ethylene diamine tetraacetic acid and its salts, an inert soluble protein and a sulfate anion; a dry buffer from a class that includes the
  • EXAMPLE A A reagent for measuring or assaying the amount of activity of aldolase present in a serum sample. This reagent when fully prepared will be a dry mixture of the following substances:
  • Enzyme triosephosphate isomerase and glyceraldehydephosphate dehydrogenase Buffer: glycine and sodium pyrophosphate Stabilizer: acacia, albumin, ethylene diamine tetra-acetic acid; and ammonium sulfate Substrate: fructose-1,6-diphosphate Coenzyme: DPN
  • Decoupler sodium arsenate
  • Bulking agent Bulking agent: mannitol
  • the following procedure may be employed to produce a batch of a dry reagent or assay powder that may then by divided into small quantities and packaged into capsules. Wherever quantities are specified in this example, they are suitable for preparing a batch that will yield on the order of about 10,000 capsules. It should be understood, however, that these values are for illustrative purposes only and may be varied to satisfy any particular requirement.
  • the first step is to prepare a standard liquid assay system which may be used at several different points in the procedure.
  • the assay liquid includes the following:
  • Glycine-pyrophosphate buffer containing 998 mg. of glycine and 181 mg. of sodium pyrophosphate decahydrate per ml.l.O ml.
  • Fructose-1,6-diphosphate, sodium salt containing 30 mg. per 5 ml.--O.5 ml.
  • Triosephosphate isomerase (Boheringer) 2. mg. per
  • the resultant mixture is allowed to incubate for some interval of time such as 5 minutes.
  • the optical density of the solution is then measured at 340 millimicrons by means of a suitable spectrophotometer. Thereafter, the optical density is re peatedly measured at this wavelength periodically for some predetermined interval of time such as 3 minutes.
  • a reference indicating the effectiveness or amount of activity in the standard assay liquid will be provided. Future assays in the present process may then be compared with this reference to determine wheather they are within acceptable ranges.
  • an assay powder may be prepared by mixing the following chemicals in about the indicated ranges:
  • the first step in preparing this powder is to mix the sodium pyrophosphate and glycine together to form a buffer powder.
  • This mix is first ground into a fine powder in any suitable means such as a mortar and pestle.
  • the buffer powder may then be placed under a vacuum in the presence of a moisture absorbing agent for a suflicient period of time to insure any moisture being removed.
  • the buffer powder may be further pulverized by placing in a ball mill for an extended period of time.
  • a small sample of the buffer may be dissolved in water and the pH of the solution measured. The pH of this solution should be about 8. If it is not sufiiciently close to this, the required quantities of either salt may be added to the bulfer to adjust the pH to the required level and the grinding repeated.
  • the next step is to grind the sodium arsenate into a fine powder and add it to the glycine-sodium pyrophosphate buffer.
  • the resultant combination is then ball milled to form a fine powder and dried under a vacuum for an extended period of time.
  • this powder has been prepared, it is desirable to test the powder to make sure that there are no inhibitors which may impair the operation of the assays. This determination may be made by preparing a solution similar to the standard liquid assay. However, the just prepared powder is substituted for the first pair of chemicals in the list for the standard assay.
  • the same dilution of the aldolase is then mixed with the new assay liquid and the resultant changes in the opical density at 340 millimicrons measured as described in connection with the standard. If the optical density varies, the same as the reference, the preparation of the lyophilized enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase may proceed.
  • the next step will then be to dissolve the acacia into about one liter of distilled water.
  • the ethylene diamine tetra-acetic acid and the albumin are then added to the solution and the solution thoroughly mixed. It should be noted that during the mixing a certain amount of foaming may occur. Steps should be taken to keep the foaming to a minimum. After the solution is completed, it should be placed under a vacuum for a suflicient period of time to remove any air that may still be trapped in the solution.
  • the enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase are added to the solution.
  • the solution should be very thoroughly mixed to insure a uniform dispersion of the enzymes throughout all portions of the solution. Since these enzymes in this solution tend to be somewhat unstable and lose their activity, the solution should be frozen as soon as they are properly suspended in the liquid.
  • the frozen solution is then placed under a vacuum and all of the water removed therefrom.
  • a sample should be assayed to determine if they still have adequate activity.
  • This assay is made by comparing the activity of the powder with the activity of the standard liquid assay described in the beginning of this example.
  • a new assay solution is prepared by substituting a solution prepared from the lyophilized powder for the enzyme solutions.
  • the optical density should vary in the same manner as the reference. It is desirable that this powder be stored under refrigeration and kept as dry as possible until the process is to be continued.
  • the buffer arsenate mixture and the lyophilized powder containing the enzymes may be mixed together.
  • the frustose-l,6-diphosphate and the DPN are added to the mixture and the entire mixture pulverized to a very fine powder by any suitable means such as ball milling.
  • the resultant powder will constitute, in bulk, a dry powdered reagent containing the enzymes triosephosphate isomerase and glyceraldehydephosphate dehydrogenase and the coenzyme DPN together with stabilizers that will maintain the activity of the enzymes for extended periods of time.
  • this solid reagent In order to make this solid reagent into a form that is more readily usable, it may be divided into units that are of a size suitable for assaying a single specimen. These units may they be enclosed in a suitable package for preventing the absorption of any moisture. Since there may be some variations in the volumes of the units between successive batches, it may be desirable to add a bulking agent such as mannitol to each batch that will bring the volume of each unit up to some predetermined volume. The mannitol likewise aids in conferring additional stability to the reagent. The bulked powder may then be packaged in suitable containers such as capsules.
  • a bulking agent such as mannitol
  • a suitable sample of the serum or biological fluid is first obtained. Following this, the contents of one of the capsules is dissolved into a standard amount of water such as 3 to 5 milliliters. This will produce an active liquid reagent that is of just the right size to make a single assay of one specimen of the foregoing size. Furthermore, the activity of this reagent will be of a predetermined level. The liquid reagent may then be mixed directly with the specimen in a suitable test tube. As soon as the reagent and specimen or serum are mixed together, the following reactions will occur:
  • the rate at which the 3-hydroxyacetonephosphate is produced and converted into the 3-glyceraldehyde phosphate will be limited only by the amount of activity of the aldolase. Since the rate at which the 3-glyceraldehydephosphate is produced is directly related to the amount of activity of the aldolase originally present in the specimen, the rate at which the DPN is converted to DPNH will also be determined by the aldolase. By placing the assayreagent-specimen solution in a spectrophotometer while the foregoing reactions are progressing, the rate at which the DPNH is being produced may be determined by measuring the rate of change of the optical density of the specimen at 340 millimicrons. Knowing this rate of change, by employing well-known equations, the amount of aldolase originally present in the specimen may be computed.
  • An assay material for assaying a specimen for aldolase comprising a solid, water-soluble, substantially anhydrous, storage stable mixture of:
  • a stabilizer selected from the group that includes mucilagenous gums, ethylenediamine tetraacetic acid and its salts, an inert soluble protein, a source of sulfate anion, and mixtures thereof;
  • a stabilizing-bulking agent selected from the group consisting of mannitol, sorbitol, lactose, and polyvinyl alcohol;
  • (h) and (f) are a lyophilized mixture.
  • said stabilizer is from the class that includes acacia, ethylenediamine tetraacetic acid and its salts, albumin; and ammonium sulfate; said buffer is from a class that includes glycine and sodium pyrophosphate; and said bulking agent is mannitol.
  • the method of assaying a specimen for the enzyme aldolase using an assay material comprising a solid, Water soluble, substantially anhydrous, storage stable mixture of (a) the substrate fructose-1,6-diphosphate; (b) the enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; (c) the coenzyme diphosphopyridine nucleotide; (d) a buffer capable of maintaining the pH between 7.8 and 8.2; (e) a decoupler comprising an alkali metal arsenate; (f) a stabilizer selected from the group consisting of mucilagenous gums, ethylenediamine tetraacetic acid and its salts, an inert soluble protein, a source of sulfate anion, and mixtures thereof; and (g) a stabilizing-bulking agent selected from the group consisting of mannitol, sorbitol, lactose, and polyvinyl
  • said stabilizer is from the class that includes acacia, ethylenediamine tetraacetic acid and its salts, albumin and ammonium sulfate; said buffer is from a class that includes glycine and sodium carbonate; and said bulking agent is mannitol.

Description

Patented Sept. 8, 1970 3,527,331 REAGENT FOR ASSAYING ALDOLASE Alfred Deutsch, Los Angeles, Calif., assignor to Calbiochem, Los Angeles, Calif., a corporation of California No Drawing. Application June 30, 1966, Ser. No. 561,757, now Patent No. 3,413,198, dated Nov. 26, 1968, which is a continuation-in-part of application Ser. No. 320,004, Oct. 30, 1963. This application June 11, 1968, Ser. No. 735,999
Int. Cl. Gln 31/14 US. Cl. 195103.5 4 Claims ABSTRACT OF THE DISCLOSURE Substantially anhydrous, solid assay materials for the determination, inter alia, of reagent for assaying aldolase are rendered storage stable by the presence of certain polyhydric compounds preferably mannitol, sorbitol, lactose or polyvinyl alcohol.
This appication is a divisional of my copending application Ser. No. 561,757, filed June 30, 1966, now US. Pat. 3,413,198, which in turn is a continuation-in-part of my copending application Ser. No. 320,004, filed Oct. 30, 1963, and now abandoned.
The present invention relates to processes and compositions for preparing reagent mixtures for detecting and measuring the presence of certain components in a biological sample. It also relates to the novel reagent mixtures.
In the clinical diagnosis of certain pathological conditions, it is frequently valuable to know the amount of activity or the quantity of certain substances present in a specimen of a biological or other fluid, or tissue. One of the more effective means that has been proposed for making assays of such specimens is to provide a liquid reagent which contains one or more biological components. When a given reagent is mixed with the specimen, the components are effective to cause an enzymatic reaction that involves the unknown substance. By observing this reaction, it is possible to determine the quantity or amount of activity of the unknown originally present.
Since such reagents contain one or more biological components such as enzymes, coenzymes and/or substrates, etc., the reagent has inherently been of a very unstable nature and has very little if any shelf life. To insure the reagent being at optimum strength it must be prepared at or immediately prior to the time the assay is made. In addition, heretofore the various components such as the enzymes, coenzymes, substrates, etc., included in the reagent have been very unstable. To insure these components being at their optimum it has been necessary for the components to be stabilized in a concentrated form.
When it has been desired to make a biological assay of the present type, a kit containing the several dilferent components which may be dry, or in solutions, has been obtained. If the components are in a dry form, aqueous solutions are formed, and maintained separately until just prior to use.
The various components for the reagent are present in separate containers and maintained separated from each other. Some of these solutions and particularly those containing the enzymes are necessarily in a concentrated form in order to preserve their activity.
When employing a kit of this type, to assay a specimen, it is necessary to first reconstitute the components to the required strength by adding a specified amount of another liquid such as water to various solutions. After all of the various components have been reconstituted, the appropriate quantities of each are combined to form the reagent. A predetermined quantity of the reagent is then mixed with the specimen to produce the desired assay reactions. The accuracy of the final assay is also dependent upon the accuracy with which components are reconstituted, the accuracy with which the reconstituted components are combined to form the resultant reagent and the accuracy with which the reagent is measured when it is mixed with the specimen. It may thus be seen that the accuracy of the assay is dependent upon the skill of the operator and the accuracy with which he prepares and uses the reagent.
It can be readily appreciated that the foregoing process is very time-consuming particularly when considering the time for using and cleaning the substantial amounts of equipment such as various pieces of glassware, measuring instruments, etc. If any of the equipment has any foreign matter thereon, the reagent may easily be contaminated whereby the results of the assay will be misleading.
It should also be noted that after the reagent is fully prepared, at least one of the components therein and particularly the enzymes are quite unstable and rapidly lose their activity. As a consequence, if the reagent is not used within a matter of a few hours following its preparation, it must be discarded and, therefore, wasted. The percentage of the reagent wasted in this manner becomes very large where only a few assays are made at infrequent intervals.
It may thus be seen that although the foregoing kits have been capable of producing the desired reactions and permitting the desired assays to be made they have not been entirely satisfactory for numerous reasons. For example, they have not only been very time-consuming and wasteful, but have also required a person of suflicient skill to insure the accurate preparation of the reagents and their being used in the proper manner. Also, because of the possibility of substantial human errors such reagents have induced a certain degree of unpredictable error in the results of the assay.
It is an object of the present invention to provide means which will be effective to overcome the foregoing difficulties. More particularly, it is proposed to provide new and novel assay materials useful in making biological assays and the method for preparing the materials. All of the assay materials are in a dry, solid state that may be easily handled and used. The assay materials include components such as enzymes, coenzymes and/or substrates which have heretofore been very unstable. Moreover, the combining of such components tends to reduce their stability. However, stabilizers are included that are effective to maintain or preserve the activity of each of the components and of the entire assay material. Each of the components including those containing the enzymes may be stabilized individually and used as such for any desired purpose. Also, the compounds may be combined together to form a new and novel assay material. The resultant assay material contains all of the components except water, for making a liquid reagent that can be used to make a biological assay of the above described type.
Although the assay material contains various components such as enzymes, coenzymes and/or substrates, etc., the material is in a dry, solid form and will be very stable and have a long shelf life. This will permit the assay material to be packaged into containers which are easy to handle and use. Each of the containers may include a quantity of the assay material that is just the right amount for making a particular number of assays, for example a single assay. The assay material may desirably include an agent which, among other things, is effective to increase the volume of the assay material to a standard size whereby the quantity of the assay material required to produce a single assay will always be a standard amount. In order to make an assay,
single assay. In addition this agent can facilitate handling during manufacture and increase shelf life. A
preferred agent is mannitol. It will thus be seen that.
the possibility of human errors is eliminated and a relatively inexperienced person may prepare the liquid reagent and make the desired assay without any timeconsuming measurements, using any large quantities of glassware, etc.
The term enzymatic assay is defined as the use of an enzyme as a component of a reagent for the determination of a substance or another enzyme, or for the determination of an enzyme in a biological sample.
These and other objectives and advantages of the present invention will become readily apparent from the following detailed description of a limited number of embodiments of the present invention.
The present invention is particularly adapted to be embodied in a dry assay material for determining in a specimen of fluid, particularly of biological origin, the quantity or the amount of activity of a certain unknown.
In the present instance, the unknowns are in a class which for convenience may be divided into four separate groups. The groups include enzymes such as carboxylases, dehydrogenases, hydrolases, isomerases, oxidases, phophorylases and transferases. By way of example, this group includes: lactate dehydrogenase, alkaline phosphatase, glucose oxidase, muscle phosproylase, glutamate-oxaloacetate transaminase, phophoenol-pyruvate carboxylase, cholinesterase, glutamate-pyruvate transaminase, malate dehydrogenase, acid phosphatase, prostatic acid phosphatase, esterase, diesterase, lipase, amylase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, aldolase glutamate decarboxylase, uricase, galactowaldenase, triose phosphate, isomerase, carbonic anhydrase, leucine aminopeptidase, 3- phosphoglyceraldehyde dehydrogenase, trypsin and chymotrypsin. Also included are kinases, like creatine kinase.
The second group includes biochemical intermediates or metabolites. By way of example, the second group includes: glucose, lactic acid, pyruvic acid, adenosine triphosphate, phenylpyruvic acid, 3 methoxy-4-hydroxymandelic acid, cholesterol, creatinine, urea, uric acid, aspartic acid and glycine.
The third group includes chemical constituents of cells or biological fluids which, by way of example, may include dissolved carbon dioxide, triglycerides, protein, starch, glycogen, hemoglobin and insulin.
The fourth group includes drugs and toxins such as antimycin A, diisopropylfluorophosphate, sulfathiazole, ethanol, acetaldehyde and barbiturates.
To assay a specimen for one of the unknowns within a class, a liquid reagent may be mixed with the specimen to produce an enzymatic reaction. The particular reaction that occurs should produce an effect which can be easily measured by way of example, the optical density of the assay mixture at some predetermined wavelength may change in proportion to the extent of the reaction.
In the present instance, the liquid reagent is prepared by dissolving a dry, solid assay material in water. When this solution is mixed with the specimen an assay mixture will be formed that includes a substrate that will enter into the reaction, an enzyme that will catalyze the reaction, and a coenzyme that will be oxidized or reduced in the course of the reaction so as to produce a desired change in the assay mixture, for example, its optical density. All of the components that are not present in the speciman are contained in the assay material. In addition, one or more substances are included in the assay material to stabilize the assay material and preserve the activity of the various components. In addition, one or more bufier substances may also be provided that will beeffectvie to maintain the conditions in the assay mixture suitable for the reaction to occur at an optimum rate.
The assay material is in a dry, powdered form and contains all of the components except water, for producing an enzymatic assay when combined with the specimen.
Since the assay material is very stable, the powder may be pre-measured into portions which are of just the right amounts for producing an assay reaction in a single specimen or an integral number of specimens. The premeasured quantity of the assay material may be dissolved directly in to a suitable quantity of water to form a liquid reagent. The liquid reagent may then be mixed with the specimen to induce the assay reaction in the assay mixture.
.If the unknown being assayed is an enzyme, the reagent will not necessarily include an enzyme. Accordingly in one embodiment, the assay material is free of any enzymes but includes one or more components such as a substrate that will react at a rate or to the extent that is determined by the amount of activity of the unknown or enzyme originally present in the specimen.
In a second embodiment of the assay material, a substrate is included which will react with the unknown and an enzyme included in the reagent, that will catalyze the reaction. In order to prepare an assay material of this embodiment, the first step is to select one or more substrates and one or more enzymes that will be efiective to produce an enzymatic assay reaction and insure its occurring in the desired manner. The particular enzymes that are chosen will, of course, depend upon the particular unknown to be assayed and the particular reaction which it is desired to create. However, the enzymes will normally be chosen from a class that includes carboxylases, dehydrogenases, hydrolases, isomerases, oxidase, phosphorylases, and transferases. By way of example, this class includes: lactate dehydrogenase, alkaline phosphatase, glucose oxidase, muscle phosphorylase, glutamate oxaloacetate transaminase, phosphoenolpyruvate carboxylase, cholinesterase, glutmatepyruvate transaminase, malate dehydrogenase, acid phosphatase, prostatic acid phosphatase, esterase, diesterase, lipase, amylase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, aldolase, glutamate, decarboxylase, uricase, galactowaldenase, triose phosphate isomerase, carbonic anhydrase, leucine aminopeptidase, 3-phosphoglyceraldehyde dehydrogenase, trypsin, chymotrypsin, alpha-hydroxybutyrate dehydrogenase and beta-hydroxybutyrate dehydrogenase.
As is well known, enzymes of this type are generally very unstable. In fact, heretofore, in order to maintain enzymes of this type in a stable condition, it has been necessary to keep them in a concentrated form and at low temperatures. In addition to being concentrated, it has also been usually necessary for the enzyme solution or suspension to include a substantial amount of a salt such as ammonium sulfate to maintain optimal activity.
In the present invention, to prepare the assay material in a dry form, one of the steps in the process is to convert the enzyme from a solution to a dry, solid form such as a powder in which the enzyme is very stable. To accomplish this, one or more stabilizing compounds may be added to the solution containing the enzymes. The particular stabilizers added to the enzyme solution will, in part, vary with the particular enzyme that is to be stabilized. However, for enzymes of this type, at least one stabilizer is chosen from one or more of the following groups. Under some circumstances it has been found to be advantageous to employ a combination of stabilizers which may include a stabilizer from several of the following groups or even a stabilizer from each group.
Group I.--Mucilagenous gums or polysaccharides such gum acacia, gum caarageenan, tragacanthin, aliginic acid and pectin substances. Gum acacia has been found to be particularly well suited for this purpose. In addition to or as an alternative to the gums, the stabilizer may include other polymers containing hydroxy groups or other hydrophilic substitute groups which render the resultant polymer essentially soluble in water such as, polyvinylpyrrolidine, carbowax and polyvinyl alcohol. This will also insure all of the assay material dissolving rapidly in the water when the reagent is prepared. However, it is also possible to use any other polymers which because of large chains or hydrophylic substituent is only partially soluble in water but which equilibrate with the aqueous phase such as ion exchange resins, ion exchange cellulose, carboxy-methyl cellulose.
Group II.A buffer consisting of a hydroxyalkylamine including but not limited to primary amines such as tris (hydroxymethyl) aminomethane or a tertiary amine such as triethanolamine.
Group IIL-A sequestering or complexing agent such as ethylene diamine tetracetic acid or one of its salts which has been found to be particularly well suited.
Group IV.-An inert soluble protein such as bovine serum albumin.
Group V.Salts of a polyvalent anion such as ammonium sulfate, or sodium potassium tartarte, which have been found particularly suitable.
Group Vl.-Sulfhydryl compound such as dithioe rythritol, cysteine, or reduced glutathione, which have been found particularly suitable.
After one or more of the stabilizers of the class described above has been completely dissolved or uniform- 1y dispersed throughout the entire mixture, the ozyme of enzymes in the solution are very stable. It has been found that by adding these stabilizers to the solution, the activity of the enzymes is often increased. This is believed to result from the elimination of the effects of certain inhibitors which are usually present with the enzymes. In the event it is desired to decrease the activity of the solution, the solution may be diluted by adding water. Conversely, if it is desired to concentrate or incerase the amount of activity of this enzyme solution, a portion of the liquid may be removed. Preferably, the liquid is removed by evaporation while the solution is maintained at a relatively low temperature. It may thus be seen that a very stable enzyme solution is provided at this point and that the stability of the solution is independent of the concentration of the enzyme or the salts therein and exhibits stability over a wider range of temperature.
It is an over all objective to provide an integrated assay material, which is dry, stable, enzymatic, pyridine nucleotide linked, and uniform in results under varying climatic and storage conditions.
The above described stabilized enzyme solution may be used for numerous purposes as a solution. However, under some circumstances such as the preparation of the present assay material, it may be desirable to convert the solution into a dry mixture or powder containing the enzyme. This may be accomplished by lyophilizing or freeze drying the solution. More particularly, the entire solution is frozen to provide a solid mass and placed under a vacuum. The vacuum is of sufficient magnitude to cause frozen liquid to sublimate. The frozen mass is kept under this vacuum for a period sufiicient to insure all of the water, etc., being removed. This will leave a solid residue that contains the enzyme or enzymes in intimate relation with the stabilizers, such as acacia, etc. These stabilizers are efiective in preserving the activity of the enzyme for an extended period of time even though the enzyme is in the form of a solid.
The term stabilizer, as used herein, broadly relates to a substance which prevents the change or destruction of a reagent component. It has three major aspects in the present invention, namely: (1) to allow for convenient handling of the components during manufacture; (2) to permit the preparation and storage of a component in dry form; and (3) to provide long-term shelf-life of the finished product.
The residue will noramlly be in a fluffy or flaky condition. However, if it is desired, the residue may be ground until it is reduced to a finely powdered mixture. The grinding may be accomplished by any siutable means such as a ball mill. The fact that the powder mixture is substantially dry contributes to the chemical stability of enzymes. It also contributes to the physical stability of the mixture and substantially eliminates the tendency to compact or become lumpy, etc. Since the mixture can be maintained as a loose powder it will be easy to bandle and process. Also, it can be easily measured either volumetrically or gravimetrically. At this point a powder is provided that includes one or more enzymes in a very stable form. Since the powder does not include any form of substrate, it can be used as an enzyme for any desired purpose. For example, among other things, the enzyme powder may be employed to complete the preparation of the present assay material.
In order to complete the preparation of the assay material the other components such as the buffers, substrates, coenzymes, and bulking-stabilizing agents, may be prepared for mixing with the stabilized enzymes. It is one of the primary purposes of the butter materials to maintain the conditions suitable for the assay reaction to occur at an optimum rate. When the assay material is dissolved in water, the buffers will, among other things, be effective to maintain the pH of the liquid reagent. In addition, when the liquid reagent is, in turn, mixed with a specimen containing the unknown, the pH of the resultant specimen mixture will still be suitable for the assay reaction to occur.
The particular buffer material that is employed in any particular assay material will be dependent upon the particular assay reaction to be conducted and the other components in the assay material. However, normally, they will be in a class that includes the salts of polyvalent inorganic anions and organic amines together with the acids and salts thereof. By way of example, the salts of polyvalent inorganic anions may include at least so dium and potassium phosphates and sodium and potassium pyrophosphates. By way of example, organic amines and acids, and their salts may include at least tris (hydroxymethyl) amino-methane and imidazole (and their salts, such as the hydrochloride, succinate, sulfate), succinic, aspartic, and glutamic acids (and their salts such as the sodium, potassium, and lithium), glycylglycine, and glycine.
The buffer materials may be prepared in the form of a dry powder that is mixed directly with the lyophilized powder containing the enzyme and the stabilizer. The resultant powder will contain the enzymes required for the assay reaction. Because of the stabilizers and buffers present in the powder, the enzymes will be very stable. This resultant powder like the enzyme powder first described, will not be hygroscopic, in contrast to corresponding mixtures prepared by lyophilization of the combined buffer and enzyme solutions.
The substrate is effective for reaction with the unknown in the specimen. Accordingly, the particular substrate that is employed in any particular assay material will be dependent upon the nature of the unknown and the particular assay reaction that it is desired to produce. Normally, the substrate will be in a class of biochemicals whose chemical reactions will be specifically catalyzed by the classes of enzymes previously described.
The following are specific examples of some of the substrates that fall within this class: Alanine, alphaor betaketoglutaric acid, aspartic acid, fructose-1, 6-diphosphate and glucose.
When the assay material is dissolved to form a liquid reagent and the reagent is mixed with the specimen, the substrate will react with the unknown. However, in order for the reaction to occur successfully, it is necessary for the enzyme to catalyze the reaction. The quantity of the substrate and the amount of activity of the enzyme contained in the reagent are in excess of that required to cause all of the unknown to completely react or to react at a desired rate. As a result the only factor that limits the assay reaction will be the quantity or amount of activity of the unknown.
When the substrates are in a pure solid dry form, they may be ground into a dry powder suitable for mixing with the lyophilized powder.
The coenzyme enters into the reaction and is converted from one form to another form. The extent to which the coenzyme is converted is determined by the extent to which the assay reaction progresses. The coenzyme may be readily converted from one form (such as oxidized) to another form (such as reduced). In addition the coenzyme has a light absorption at some particular wavelength only when it is in one of these forms. When it is in the other form, it is transparent at the designated wavelength, although the absorption band may be any desired wavelength that is convenient to use. However, it is desirable that it be distinct from the intense absorption bands of the rest of the components in the assay material and the substances in the specimen. This will insure all of the substances in the reagent and the specimen, except the coenzyme, being transparent or substantially transparent although some of the various components may absorb limited quantities of light in the region of the selected wavelength and they will not vary during the period of assay whereby the only variable will be the coenzyme in the absorbing form. Thus by measuring the optical density at the designated wavelength, the amount of the coenzyme converted may be determined. More specifically, by measuring the amount of change or rate of change of the optical density at the designated wavelength, the amount or rate of the assay reaction may be measured. It has been found that the pyridine nucleotides are particularly well suited for this purpose. When they are in their reduced form, they show absorption of ultraviolet light with a maximum value at a wavelength of about 340 millimicrons. By employing a coenzyme of this class in all forms of the assay material, the assay reactions may be observed by always measuring the optical density at this wavelength.
Coenzymes of this class have a limited amount of stability in a solid form. They can be stored in a solid form for only short periods of time. The stability of the coenzyme may be increased by preparing a lyophilized powder of the coenzyme and acacia. Further increases in the stability of the coenzyme may be obtained by mixing with mannitol. Accordingly, the coenzyme may be ground into a powder and mixed directly with the lyophilized powder containing the enzyme, stabilizer, and buffer.
Heretofore, substrates, enzymes and coenzymes, and butters have been dissolved in the solution containing the enzyme before lyophilization. The complete solution may then be lyophilized to provide a dry residue containing all of the components of the assay. However, it has been found, as a practical matter, the resultant assay material is often hygroscopic. As a consequence, the residue sometimes tends to absorb varying or unpredict able quantities of moisture. As a result when prepared in this manner it is desirable for the resultant mixtures to be hermetically within a container. However, even when hermetically sealed, the mixture may still be unstable and tend to develop colored specks due to local decompositions and in a fairly short time completely decompose or lose its activity. It has also been found that the mixture tends to form into lumps which makes it diflicult to handle and measure into small units of identical amounts on a volumetric or weight basis.
This invention teaches that by preparing the various components of the assay material such as the substrates and coenzymes in a dry or solid state, and in a stabilized form before the mixing thereof with the lyophilized stabilized enzyme, a much more stable and easily handled assay material is now provided.
In addition to the foregoing components, it has also been found desirable to add a bulking-stabilizing agent to the mixture. This agent may be a polyhydric substance such as mannitol, sorbitol, lactose, polyvinyl alcohol or polymers having from 1 to 5 hydroxyl groups per monomeric unit. The bulking agent is not active in the assay reaction. Accordingly, the quantity of the bulking agent added to the assay material is not critical and may be varied throughout a wide range. However, the bulking agent performs several unexpected and useful functions. First of all, the bulking agent tends to further increase the stability of the assay material for several reasons. Such agents have the ability to absorb and retain limited quantities of moisture whereby the assay material is not materially alfected when exposed to reasonable amounts of moisture. This increases the stability of the assay material and prevents its losing its activity. It has also been found that the bulking agent will also be effective in preserving the assay material by increasing the compatibility of its components. It has also been found that bulking agents of this category are also effective in increasing the ability of the assay material to withstand relatively high temperatures, such as 50 C., for longer periods of time. Heretofore, temperatures in this range have caused rapid deterioration of the enzymes, coenzymes, and other components.
Secondly, it has been found that the use of the bulking agent in the assay material results in the assay material dissolving more rapidly into water. This not only reduces the time required for preparing the liquid reagent but also increases the convenience of preparation by reducing the amount of stirring or shaking.
Thirdly, since the bulking agent does not enter into the reaction or affect the components in the assay material, the quantity of the bulking agent added to the assay material may vary over a wide range. Once a batch of the assay material has been prepared, its strength or amount of activity may be determined. The bulking agent may then be added to standardize the assay material to a predetermined level. This will result in the assay material always having a predetermined amount of activity per unit irrespective of the batch in which it is prepared. Of the agents listed above, mannitol is preferred.
After the assay material has had the bulking agent added, it may be divided into units of a standard predetermined size. The size normally will be just large enough to make a single assay or an integral number of assays. Each of these units may then be packaged into a container such as a capsule, glass vial, etc.
It will thus be seen that a plurality of substantially identical packages such as foil containers or capsules may be provided. Each of these capsules will contain just a sutficient quantity of the assay material for making a single assay of a specimen. In order to make an assay, a package containing the assay material for making the particular assay is selected. The assay material contained in the package is all pre-measured and of a predetermined activity. Accordingly, it may be dissolved directly in a standard amount of water so as to form a liquid reagent. This liquid reagent is then mixed with the specimen to produce an enzymatic reaction. The extent of or the rate at which the reaction occurs will be a function of the quantlty or amount of activity of the original unknown. Every test, irrespective of the particular type of assay, will involve the conversion of a coenzyme from one form to another form wherein one form has an optical absorption at a predetermined wavelength. Accordingly, the optical density of the specimen at the wavelength will vary at a function of the unknown. Thus, by measuring the optical density of the medium at different times, it will be possible to compute the quantity or amount of activity of the unknown in the original specimen.
The invention sought to be patented in a principal process of making aspect, is described as residing in the concept of preparing an assay reagent, useful, inter alia, as an aid in the clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of an enzyme in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent While in substantially anhydrous particulate form, comprising a dry coenzyme, a dry bulfer, a dry second enzyme capable of catalyzing the conversion of the coenzyme to the other form of the coenzyme, dry substrates, effective to react with the enzyme of which the present quantity or activity is to be determined.
The invention sought to be patented is a second embodiment of a process of making aspect is described as residing in the concept of preparing an assay reagent, useful, inter alia, as an aid in the clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of aldolase in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent while in substantially anhydroux particulate form including the combination of: a dry substrate comprising fructose-1,6-diphosphate; the dry enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; a dry coenzyme consisting of reduced diphosphopyridine nucleotide; a dry stabilizer from the class that includes rnucilagenous gums, hydroxyalkylamines, ethylene diamine tetraacetic acid and its salts, an inert soluble protein and a sulfate anion; a dry buffer from a class that includes the salts of phosphate, organic acids and amines, and the salts of said acids and amines; a dry stabilizing-bulking agent comprising polyhydric substances and polymers of said polyhydric substances with from 1 to 5 hydroxyl groups per monomeric unit; which involves determining the optical density of the solid re agent after forming a liquid reagent therefrom, and again following a predetermined incubation period after admixing the specimen.
The invention sought to be patented in a first composition of matter aspect is described as residing in the concept of a substantially anhydrous solid reagent, useful, inter alia, as an aid in clinical diagnosis of pathological conditions to determine the presence of, quantity of, or amount of activity of aldolase, in a biological specimen by mixing therewith a lyophilized, stabilized, catalytic reagent while in substantially anhydrous particulate form including the combination of: a dry substrate comprising fructose-l,6-diphosphate; the dry enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; a dry coenzyme consisting of diphosphopyridine nucleotide; a dry stabilizer from the class that includes mucilagenous gums, hydroxyalkylamines, ethylene diamine tetraacetic acid and its salts, an inert soluble protein and a sulfate anion; a dry buffer from a class that includes the salts of phosphate, organic acids and amines, a dry stabilizing-bulking agent comprising polyhydric substances and polymers of said polyhydric substances with from 1 to 5 hydroxyl groups per monomeric unit.
EXAMPLE A A reagent for measuring or assaying the amount of activity of aldolase present in a serum sample. This reagent when fully prepared will be a dry mixture of the following substances:
Enzyme: triosephosphate isomerase and glyceraldehydephosphate dehydrogenase Buffer: glycine and sodium pyrophosphate Stabilizer: acacia, albumin, ethylene diamine tetra-acetic acid; and ammonium sulfate Substrate: fructose-1,6-diphosphate Coenzyme: DPN
Decoupler: sodium arsenate Bulking agent: Bulking agent: mannitol In order to prepare large numbers of units of this reagent, the following procedure may be employed to produce a batch of a dry reagent or assay powder that may then by divided into small quantities and packaged into capsules. Wherever quantities are specified in this example, they are suitable for preparing a batch that will yield on the order of about 10,000 capsules. It should be understood, however, that these values are for illustrative purposes only and may be varied to satisfy any particular requirement.
Normally, the first step is to prepare a standard liquid assay system which may be used at several different points in the procedure. The assay liquid includes the following:
Glycine-pyrophosphate buffer, containing 998 mg. of glycine and 181 mg. of sodium pyrophosphate decahydrate per ml.l.O ml.
Sodium acid arsenate, containing 1.63 g. per 100 ml.l.0 ml.
Fructose-1,6-diphosphate, sodium salt, containing 30 mg. per 5 ml.--O.5 ml. Ethylenediamine tetra-acetic acid, tetrasodium, 100 mg.
per 10 ml.-0.1 ml.
DPN, 12 mg. per ml.-0.l ml.
Triosephosphate isomerase (Boheringer) 2. mg. per
rnl.-5 ,LLI.
Glyceraldephydephosphate dehydrogenase (Boheringer),
10 mg. per ml.15 ,ul.
Distilled water, to bring volume to-3 ml.
All of the foregoing liquids are mixed together to form the standard liquid assay. This solution may then be allowed to stand for a relatively short time such as several minutes. After the standard liquid assay reagent has been completed, a 1 to 400 dilution of the enzyme aldolase is prepared by diluting 5 lambdas of the concentrated aldolase Boheringer, 10 mg. per ml., to 2 milliliters with a 2 molar ammonium sulfate solution. 5 lamdbas of the diluted enzyme are then added to a part of the standard liquid. In order to obtain an accurate indication, it is necessary the enzyme be at its maximum activity at the time of the test. Accordingly, it is desirable that this solution be prepared immediately prior to the making of the test.
After the solution containing the enzyme has been added to the standard assay system, the resultant mixture is allowed to incubate for some interval of time such as 5 minutes. The optical density of the solution is then measured at 340 millimicrons by means of a suitable spectrophotometer. Thereafter, the optical density is re peatedly measured at this wavelength periodically for some predetermined interval of time such as 3 minutes. By recording these readings, a reference indicating the effectiveness or amount of activity in the standard assay liquid will be provided. Future assays in the present process may then be compared with this reference to determine wheather they are within acceptable ranges.
Following this, an assay powder may be prepared by mixing the following chemicals in about the indicated ranges:
Glycine-90480 g.
Sodium pyrophosphate-4546 g.
Sodium arsenate-125450 g. Fructosel,6-diphosphate2735 g.
Ethylene diamine tetra-acetic acid--8-20 g. DPN10-18 g.
T riose phosphate isomerase-80400 mg. Glyceraldehyde phosphate dehydrogenasel.2-2.0 g. Albumin-308O g.
Acacia USP-4090 g.
The first step in preparing this powder is to mix the sodium pyrophosphate and glycine together to form a buffer powder. This mix is first ground into a fine powder in any suitable means such as a mortar and pestle. The buffer powder may then be placed under a vacuum in the presence of a moisture absorbing agent for a suflicient period of time to insure any moisture being removed. Following the drying, the buffer powder may be further pulverized by placing in a ball mill for an extended period of time. A small sample of the buffer may be dissolved in water and the pH of the solution measured. The pH of this solution should be about 8. If it is not sufiiciently close to this, the required quantities of either salt may be added to the bulfer to adjust the pH to the required level and the grinding repeated.
The next step is to grind the sodium arsenate into a fine powder and add it to the glycine-sodium pyrophosphate buffer. The resultant combination is then ball milled to form a fine powder and dried under a vacuum for an extended period of time. After this powder has been prepared, it is desirable to test the powder to make sure that there are no inhibitors which may impair the operation of the assays. This determination may be made by preparing a solution similar to the standard liquid assay. However, the just prepared powder is substituted for the first pair of chemicals in the list for the standard assay.
The same dilution of the aldolase is then mixed with the new assay liquid and the resultant changes in the opical density at 340 millimicrons measured as described in connection with the standard. If the optical density varies, the same as the reference, the preparation of the lyophilized enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase may proceed.
The next step will then be to dissolve the acacia into about one liter of distilled water. The ethylene diamine tetra-acetic acid and the albumin are then added to the solution and the solution thoroughly mixed. It should be noted that during the mixing a certain amount of foaming may occur. Steps should be taken to keep the foaming to a minimum. After the solution is completed, it should be placed under a vacuum for a suflicient period of time to remove any air that may still be trapped in the solution.
When the solution has been cleared of all air, the enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase are added to the solution. The solution should be very thoroughly mixed to insure a uniform dispersion of the enzymes throughout all portions of the solution. Since these enzymes in this solution tend to be somewhat unstable and lose their activity, the solution should be frozen as soon as they are properly suspended in the liquid.
The frozen solution is then placed under a vacuum and all of the water removed therefrom.
After the enzyme mixture has been lyophilized in the foregoing manner, a sample should be assayed to determine if they still have adequate activity. This assay is made by comparing the activity of the powder with the activity of the standard liquid assay described in the beginning of this example. To accomplish this, a new assay solution is prepared by substituting a solution prepared from the lyophilized powder for the enzyme solutions. The optical density should vary in the same manner as the reference. It is desirable that this powder be stored under refrigeration and kept as dry as possible until the process is to be continued.
If the results of the foregoing assay are within acceptable limits, the buffer arsenate mixture and the lyophilized powder containing the enzymes may be mixed together. Following this, the frustose-l,6-diphosphate and the DPN are added to the mixture and the entire mixture pulverized to a very fine powder by any suitable means such as ball milling. The resultant powder will constitute, in bulk, a dry powdered reagent containing the enzymes triosephosphate isomerase and glyceraldehydephosphate dehydrogenase and the coenzyme DPN together with stabilizers that will maintain the activity of the enzymes for extended periods of time. In order to make this solid reagent into a form that is more readily usable, it may be divided into units that are of a size suitable for assaying a single specimen. These units may they be enclosed in a suitable package for preventing the absorption of any moisture. Since there may be some variations in the volumes of the units between successive batches, it may be desirable to add a bulking agent such as mannitol to each batch that will bring the volume of each unit up to some predetermined volume. The mannitol likewise aids in conferring additional stability to the reagent. The bulked powder may then be packaged in suitable containers such as capsules.
In order to make an assay of a serum for aldolase using one of the foregoing capsules of this example, a suitable sample of the serum or biological fluid is first obtained. Following this, the contents of one of the capsules is dissolved into a standard amount of water such as 3 to 5 milliliters. This will produce an active liquid reagent that is of just the right size to make a single assay of one specimen of the foregoing size. Furthermore, the activity of this reagent will be of a predetermined level. The liquid reagent may then be mixed directly with the specimen in a suitable test tube. As soon as the reagent and specimen or serum are mixed together, the following reactions will occur:
aldolase frutose-l, G-diphosphate 3-hydroxyacetone phosphate 3-glyceraldehydephosphate triosephosphate isomerase 3-hydroxacetonephosphate 3-glyceraldehydephosphato glyceraldehydephosphate 3-glyceraldehydephosphate DPN dehydrogenase A O 3-phosphoglycerate DPNH Since the fructose-1,6-diphosphate is supplied by the capsule, it will be present in an abundant quantity. As a result, the rate at which it is converted directly into 3- glyceraldehyde phosphate will be limited only by the amount of activity of the aldolase. In addition, since the triosephosphate isomerase is supplied in abundant quantities, the rate at which the 3-hydroxyacetonephosphate is produced and converted into the 3-glyceraldehyde phosphate will be limited only by the amount of activity of the aldolase. Since the rate at which the 3-glyceraldehydephosphate is produced is directly related to the amount of activity of the aldolase originally present in the specimen, the rate at which the DPN is converted to DPNH will also be determined by the aldolase. By placing the assayreagent-specimen solution in a spectrophotometer while the foregoing reactions are progressing, the rate at which the DPNH is being produced may be determined by measuring the rate of change of the optical density of the specimen at 340 millimicrons. Knowing this rate of change, by employing well-known equations, the amount of aldolase originally present in the specimen may be computed.
What is claimed is:
1. An assay material for assaying a specimen for aldolase, comprising a solid, water-soluble, substantially anhydrous, storage stable mixture of:
(a) the substrate fructose-1,6-diphosphate;
(b) the enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase;
(c) the coenzyme diphosphopyridine nucleotide;
(d) a buffer capable of maintaining the pH between 7.8 and 8.2;
(e) a decoupler;
(f) a stabilizer selected from the group that includes mucilagenous gums, ethylenediamine tetraacetic acid and its salts, an inert soluble protein, a source of sulfate anion, and mixtures thereof; and
(g) a stabilizing-bulking agent selected from the group consisting of mannitol, sorbitol, lactose, and polyvinyl alcohol;
13 further wherein (h) and (f) are a lyophilized mixture. 2. The material of claim 1 wherein said stabilizer is from the class that includes acacia, ethylenediamine tetraacetic acid and its salts, albumin; and ammonium sulfate; said buffer is from a class that includes glycine and sodium pyrophosphate; and said bulking agent is mannitol. 3. The method of assaying a specimen for the enzyme aldolase, using an assay material comprising a solid, Water soluble, substantially anhydrous, storage stable mixture of (a) the substrate fructose-1,6-diphosphate; (b) the enzymes triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase; (c) the coenzyme diphosphopyridine nucleotide; (d) a buffer capable of maintaining the pH between 7.8 and 8.2; (e) a decoupler comprising an alkali metal arsenate; (f) a stabilizer selected from the group consisting of mucilagenous gums, ethylenediamine tetraacetic acid and its salts, an inert soluble protein, a source of sulfate anion, and mixtures thereof; and (g) a stabilizing-bulking agent selected from the group consisting of mannitol, sorbitol, lactose, and polyvinyl alcohol; further wherein (b) and (f) are a lyophilized mixture; which includes the steps of:
14 (i) dissolving in water said material, thereby to produce a liquid reagent having a measurable optical density;
(ii) mixing said liquid reagent with said specimen to form a specimen-reagent assay mixture; and
(iii) determining the rate of change of the optical density of the reacting specimen-reagent assay mixture.
4. The method of claim 3 wherein said stabilizer is from the class that includes acacia, ethylenediamine tetraacetic acid and its salts, albumin and ammonium sulfate; said buffer is from a class that includes glycine and sodium carbonate; and said bulking agent is mannitol.
References Cited UNITED STATES PATENTS 2,987,450 6/1961 Albaum et a1 103.5 3,072,532 1/ 1963 Innen'ield 19563 3,133,001 5/1964 Puig 19563 ALVIN E. TANENHOLTZ, Primary Examiner U.S. C1. X.R. 195--63
US735999A 1966-06-30 1968-06-11 Reagent for assaying aldolase Expired - Lifetime US3527331A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US561757A US3413198A (en) 1966-06-30 1966-06-30 Reagents and method for assaying biological samples
US73599968A 1968-06-11 1968-06-11

Publications (1)

Publication Number Publication Date
US3527331A true US3527331A (en) 1970-09-08

Family

ID=27072741

Family Applications (1)

Application Number Title Priority Date Filing Date
US735999A Expired - Lifetime US3527331A (en) 1966-06-30 1968-06-11 Reagent for assaying aldolase

Country Status (1)

Country Link
US (1) US3527331A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130708A1 (en) * 1983-06-06 1985-01-09 Gilford Instrument Laboratories, Inc. Stabilized clinical control reagents
US4663295A (en) * 1983-06-29 1987-05-05 Ciba Corning Diagnostics Corp. Estrogen-progesterone control reagents and methods for making same
EP0238951A2 (en) * 1986-03-24 1987-09-30 MERCK PATENT GmbH Particles suitable for tabletting into diagnostic reagents
US5009994A (en) * 1986-03-24 1991-04-23 Em Diagnostic Systems, Inc. Particles containing mannitol suitable for tabletting into diagnostic reagents
US5332662A (en) * 1992-07-31 1994-07-26 Syntex (U.S.A.) Inc. Methods for determining peroxidatively active substances
US5532138A (en) * 1990-04-26 1996-07-02 Behringwerke Ag Method and kits for determining peroxidatively active catalysts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987450A (en) * 1959-03-16 1961-06-06 Miles Lab Test composition for serum enzymes
US3072532A (en) * 1958-11-04 1963-01-08 Innerfield Irving Administration of enzymic composition
US3133001A (en) * 1959-11-26 1964-05-12 Muset Pedro Puig Stabilization of enzymes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072532A (en) * 1958-11-04 1963-01-08 Innerfield Irving Administration of enzymic composition
US2987450A (en) * 1959-03-16 1961-06-06 Miles Lab Test composition for serum enzymes
US3133001A (en) * 1959-11-26 1964-05-12 Muset Pedro Puig Stabilization of enzymes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130708A1 (en) * 1983-06-06 1985-01-09 Gilford Instrument Laboratories, Inc. Stabilized clinical control reagents
US4663295A (en) * 1983-06-29 1987-05-05 Ciba Corning Diagnostics Corp. Estrogen-progesterone control reagents and methods for making same
EP0238951A2 (en) * 1986-03-24 1987-09-30 MERCK PATENT GmbH Particles suitable for tabletting into diagnostic reagents
EP0238951A3 (en) * 1986-03-24 1988-01-07 Merck Patent Gesellschaft Mit Beschrankter Haftung Particles suitable for tabletting into diagnostic reagents
US5009994A (en) * 1986-03-24 1991-04-23 Em Diagnostic Systems, Inc. Particles containing mannitol suitable for tabletting into diagnostic reagents
US5532138A (en) * 1990-04-26 1996-07-02 Behringwerke Ag Method and kits for determining peroxidatively active catalysts
US5332662A (en) * 1992-07-31 1994-07-26 Syntex (U.S.A.) Inc. Methods for determining peroxidatively active substances
US5445944A (en) * 1992-07-31 1995-08-29 Syntex (U.S.A.) Inc. Methods for determining peroxidately active substances

Similar Documents

Publication Publication Date Title
US3413198A (en) Reagents and method for assaying biological samples
US3539450A (en) Stabilization of enzymes
US3540984A (en) Reagent material and method for creative kinase assay
US3527674A (en) Reagent material and method for urea assay
US4101382A (en) Novel reagent and method for the determination of urea in biological fluids
US4282316A (en) Stabilized enzymic solutions for determining urea
US4343897A (en) Reagent for the determination of lipase and process for preparing same
US3997470A (en) Surfactant containing reagent formulations for assaying biological specimens and methods of preparing same
EP0054096B1 (en) Method of forming stabilized urease solutions
US3816262A (en) Reagent formulations for assaying biological specimens amd methods of preparing and using same
US3527331A (en) Reagent for assaying aldolase
CN113092746B (en) Biochemical calibration material
US4189536A (en) Reagent systems, enzymatic assays and compositions therefor
US3539453A (en) Reagent and method for assaying lactate dehydrogenase
CA2028593C (en) Stabilized enzyme compositions
US4465770A (en) Stabilized enzymic solutions for determining urea
US3546074A (en) Reagent for assaying glutamate oxaloacetate transaminase
US3528888A (en) Reagent and method for assaying alpha-hydroxybutyrate dehydrogenase
US3493467A (en) Reversible biochemical reaction employing a trapping agent
US3551296A (en) Reagent and method for assaying malate dehydrogenase
US3527332A (en) Method for assaying glutamate pyruvate transaminase
US3876502A (en) Reagent formulations for assaying urea nitrogen in biological specimens and methods of preparing and using same
JPH04229192A (en) Stable aqueous nadh reagent and kit
US3573171A (en) Laboratory reagent for assay of lactic acid
Bruce et al. Two-point determination of plasma ammonia with the centrifugal analyzer.