US3516122A - Apparatus for making integral containers having parallel vertical walls - Google Patents

Apparatus for making integral containers having parallel vertical walls Download PDF

Info

Publication number
US3516122A
US3516122A US640245A US3516122DA US3516122A US 3516122 A US3516122 A US 3516122A US 640245 A US640245 A US 640245A US 3516122D A US3516122D A US 3516122DA US 3516122 A US3516122 A US 3516122A
Authority
US
United States
Prior art keywords
container
female die
male
containers
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US640245A
Inventor
Jacob L Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NESTIER CORP
Vanguard Ind Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US317355A external-priority patent/US3400111A/en
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3516122A publication Critical patent/US3516122A/en
Assigned to NESTIER CORPORATION reassignment NESTIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MIDLAND-ROSS CORPORATION,
Assigned to MIDLAND-ROSS CORPORATION reassignment MIDLAND-ROSS CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NESTIER CORPORATION
Assigned to NESTIER CORPORATION reassignment NESTIER CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MIDLAND-ROSS CORPORATION
Assigned to VANGUARD INDUSTRIES, INC. reassignment VANGUARD INDUSTRIES, INC. ASSIGNOR WISH TO CORRECT SPELLING OF FIRST WORD OF ASSIGNEES NAME IN ASSIGNMENT DATED DEC. 4, 1972 FROM VANGUARD, INDUSTRIES, INC., TO VANGUARD INDUSTRIES, INC. Assignors: SHELL OIL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/428Heating or cooling of moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • B29C51/06Combined thermoforming and prestretching, e.g. biaxial stretching using pressure difference for prestretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/427Cooling of the material with a fluid blast

Definitions

  • the present invention relates to apparatus for making integral containers having essentially parallel vertical walls, from a formable material which is characterized by contraction as it cools.
  • One type of integrally formed container which has been in wide usage for a number of years is provided with aligned pairs of vertical grooves on its interior walls, and is designed to slidably receive partitions inserted vertically into these pairs of grooves. It has been desired to provide stackability for this type of compartmentable container, but because of the presence of the grooves on the interior wall surfaces of the container it has heretofore been impossible to design a completely satisfactory stacking arrangement for this kind of container.
  • a primary object of the invention is to provide apparatus for forming integral containers having essentially parallel vertical walls.
  • Another object of the present invention is to provide apparatus for manufacturing stackable containers which do not incorporate stacking posts or convolutions in any of the walls thereof.
  • a further object of the invention is to provide tooling for the manufacture of integral containers, which tooling is adjustable to accommodate the manufacture of otherwise identical containers of varying vertical heights.
  • An additional object of the invention is to provide novel apparatus for manufacturing compartmentable containers of the type having aligned pairs of vertical grooves formed in the interior wall surfaces thereof, but which are also securely stackable in superimposed relationship.
  • Yet another object of the invention is to provide a manufacturing apparatus which is peculiarly adapted to the economical manufacture of integrally formed containers having precisely parallel walls, from a polyolefin material.
  • FIG. 1 is a perspective view of a set of tooling provided in accordance with the present invention, and a sheet of thermoplastic material from which a container is to be formed;
  • FIG. 2 is an elevational view, partially in cross-section, of the apparatus of FIG. 1 as the forming operation is being commenced;
  • FIG. 3 is a vertical cross-sectional view of the apparatus of FIG. 1 as the forming operation is advanced to a later stage;
  • FIG. 4 is a vertical cross-sectional view taken on the line 4-4 of FIG. 3;
  • FIG. 5 is a fragmentary horizontal sectional view taken on the line 5-5 of FIG. 3;
  • FIG. 6 is an enlarged fragmentary vertical sectional view illustrating a detail of construction of the male die
  • FIG. 7 is a perspective upside-down view of a portion of the forming ring of the male die.
  • FIG. 8 is a fragmentary perspective view illustrating the corner portion of a completed container.
  • a sheet 10 of formable material such as polyolefin
  • a female die 30 is disposed beneath the sheet 10 while a male die 40 is disposed above the sheet 10.
  • the initial step in the manufacturing operation is to heat the sheet of material to its sag point in a separate oven location, and thereafter immediately move it by means of the holder 20 to its position as shown in FIG. 1, interposed between the male and female dies.
  • the preliminary forming of the material is done only by the female die 30, by an evacuation process, that is causing a pressure differential across the sheet 10 by evacuating the gas from the interior of the female die to cause a lower pressure in the interior as compared to normal atmospheric pressure.
  • the sheet 10 and the female die 30 are moved relative to each other, so that the upper circumferential edge of the female die sealingly engages the undersurface of the sheet 10.
  • Evacuation of the female die 30 causes the central portion of the sheet to assume the position shown in FIG. 2; and continued evacuation causes the sheet to assume very nearly the form of the interior wall and bottom surfaces of the female die.
  • the female die and male die are moved vertically relative to each other, into engaging relationship as shown in FIG.
  • a significant feature of the illustrated apparatus is that the side 41b and end walls 410 of a plug 41 of the male die 40 are exactly parallel to each other.
  • a forming ring 42, FIG. 2 is vertically movable on plug 41 to any selected position (shown in dotted lines at alternate location to accommodate the male die to any desired container height.
  • a bottom member 33 provides the bottom wall of the female die 30, and is vertically adjustable to any desired vertical position to accommodate the vertical height of a particular container to be formed, and may be fastened in any desired position of vertical adjustment, by means not shown.
  • the temperature of the sheet of material 10 is carefully controlled prior to its application to the female die 30, and the female die is heated by some suitable means such as the external strip heaters 34, FIGS. 1 and 2, which encircle the side and end walls thereof.
  • Female die 30 is provided with an air hose 36, FIG. 2, which communicates with the underside of movable bottom member 33, and a plurality of air openings 37 are formed in the bottom member 33 for allowing an increase or decrease of pressure, as the case may be, to the interior of the female die.
  • the equipment is automatically controlled, by means not shown, so that the reduction of pressure within the interior of the female die occurs after the upper circumferential edge of the female die has engaged, and preliminarily sealed, the undersurface of the Work sheet 10.
  • the upper circumferential edge of the female die 30 is provided with an upstanding portion 38, on the outside of which there is a circumferential shoulder 39. It is the upstanding portion 38 which accomplishes the preliminary sealing action, while as will be subsequently described there is later a final sealing action in which the shoulder 39 is also utilized.
  • the male mold or die 40 includes as its primary element the plug 41 which is of substantially rectangular block configuration.
  • the plug or block 41 is surrounded by a rectangular (as viewed in the horizontal plane) container rim forming ring 42, which ring is vertically adjustable up and down as viewed in FIG. 2 to a selected position of adjustment relative to the plug or block 41.
  • the undersurface of the ring 42 is provided with a groove 43 which, in the position of the apparatus as shown in FIG. 3, effectively engages the edge 38 and shoulder 39 of the female die 30, not directly, but by grasping the corresponding portion of the sheet 10 therebetween.
  • FIGS. 2 and 3 while the male die 40 is suspended underneath a ceiling support device 40a.
  • Ring 42 is suspended from the ceiling support 40a by two ring support plates 44; plug 41 is supported by a plurality of threaded plug support rods 46; and the support rods 46 are adjustable so as to vary the relative vertical positions between the ring 42 and the plug 41.
  • the fully formed container (formerly sheet 10') as shown in FIGS. 3 and 4 has a bottom wall 11, end walls 12, FIG. 2, and side walls 13, FIG. 3; while unused portions 14 of the sheet 10 which lie external to the dies are subsequently cut off and scrapped.
  • the upper circumferential edge of the container has a cross-sectional configuration which is essentially an inverted short-handled dipper.
  • a specific feature of the presently illustrated embodiment of the invention is the provision of the vertical ridges 49a on the exterior of the male plug 41, which permits forming vertical grooves on the interior walls of the completed container.
  • forming ring 42 has an inner flange 39 in which interior grooves 39a are formed to receive the ridges 49a, and has exterior ridges 39! which form grooves 16a of the container.
  • the top of flange 39 forms shoulder 15 of the container.
  • the workpiece 10 is heated in a separate oven before being placed between the two dies of the present invention.
  • the pre-heating temperature is approximately 400 degrees F.
  • Female die 30 is heated to a somewhat lower temperature by means of the strip heaters 34.
  • the male plug 41 is kept at a much lower temperature, in the approximate range from degrees to 200 degrees F., with its specific temperature depending upon the specific material being utilized and the size and height of the container being formed.
  • the pipes or ducts 47 and 48, FIGS. 2 and 4 are coupled in series configuration, and a temperature-controlled fluid, such as water, is circulated therethrough for maintaining the temperature of the male plug 41 at a predetermined level.
  • the shallower the container that is being formed the lower the temperature level that is maintained for the male plug; and for deeper containers, the male plug temperature is established at a higher level.
  • the male plug is maintained at a constant temperature, as nearly as possible, which constant temperature is far below the setting temperature for the material, with the result that as soon as the material commences to be formed on the male plug a cooling action is initiated which causes the material to start to set.
  • Female die is provided with a cooling pipe 35, FIG. 1, which extends around the external circumference of the die, being located near the top of outer walls thereof. Pipe is provided with spaced small openings on its upper surface.
  • Cooling of the material is also initiated on the interior of the female die 30, at the time when the material is pressed against the male plug 41.
  • Female die 30 in one end wall 31, FIG. 3, thereof is provided with a relief valve 36a, which is set at a fixed pressure level such as, for example, pounds per square inch.
  • Air pressure is applied via the air hose 36 to the interior of the female die 30, for the purpose of pressing the material onto the male plug 41; the pressure of the source (not shown) that is connected to air hose 36 is substantially in excess of the pressure level for which the relief valve 36a is set; and the result therefore is that as soon as this control pressure level is reached inside the female die, air continues to flow at a rapid rate from the hose 36 to the openings 37 to the interior of the female die, and to be continuously exhausted from the interior of the female die through the exhaust valve 36a.
  • the cooling and setting of the material are accomplished by means of the flow of air inside the female die 30, by the relatively cold temperature level of the male plug 41 prior to its being contacted by the much hotter material, and by the continued cooling of male plug 41 via the temperature controlled water fluid flowing inside the ducts 47 and 48. At the same time the air supply to pipe 35 ensures the very rapid cooling of the excess of waste material 14.
  • An essential characteristic of the polyolefin or other material used in accordance with the invention is that it contracts during the cooling and setting process.
  • the slower cooling of the rim of the container therefore results in the upper portions of the side and end walls of the container remaining in a slightly expanded condition, at least a few thousandths of an inch, relative to the lower portions of the side and end walls, prior to the material having completed its setting process.
  • the container is then stripped from the mold, before the setting action is completed, and while the upper wall portions are still in this slightly expanded condition.
  • the novel method of the present invention of stripping the container from the male plug just before the setting process is completed, is successful in forming the containers in accordance with a good standard of quality, and at the high rate of speed required in modern manufacturing facilities.
  • the relief valve 36a of the female die is shown located above the particular position in which the movable bottom member 33 has been fastened. However, it is in fact preferred to locate the relief valve near the bottom of the female die, in such position that it will always lie beneath the bottom member 33.
  • the advantage of this arrangement is that it prevents any contact between the container material and the intake port of the relief valve, and therefore precludes the possibility of malforming of the container by virtue of a stoppage of the exhaust flow of air out of the relief valve.
  • Pressure forming on the male plug 41 has at least one advantage which is quite inobvious. This has to do with the adjustability of the tool for different container heights.
  • the exhaust holes 41a, FIG. 6, which lie above the forming ring 42; however, it is not necessary to close oif these unused exhaust ports.
  • the male plug 41 were being exhausted by evacuation of air in its interior, any unused opening communicating between the interior and exterior of the male plug would have to be closed oif, and this requirement would present a very difficult problem relative to the adjustable use of the tool.
  • the manufacturing method described ob viates this problem.
  • the apparatus of the present invention can be used on straight-walled containers, as well as the ridged wall structure as presently illustrated.
  • An advantage of the ridged wall construction is, however, that a lesser amount of material is required to achieve the same degree of struc tural support for stacked or superimposed containers.
  • hose section 48 is carried in the forming ring 42 and movable therewith, and that the hose sections 47 and 48 are coupled together by a flexible intervening section 47a, FIGS. 2 and 4.
  • An apparatus for forming containers of thermoplastic or the like material said apparatus being adjustable to form containers of differing vertical heights, comprising in combination:
  • said outer surface of said male die being essentially parallel to the direction of relative movement between said male and female dies;
  • An apparatus as claimed in claim 1 including means for adjustably moving said male die relative said depth determining means.
  • said depth determining means comprises an element having a groove disposed therein for forming the rim of a container formed by said apparatus.
  • An apparatus as claimed in claim 1 including means for cooling said container to be formed by said dies; and wherein said groove of said depth determining means and said projection of said female die cooperate to retard the cooling by said cooling means of the portion of the container positioned between said groove and said projection.
  • cooling means includes a perforated pipe positioned about said apparatus to spray cooling fluid on said material used to form the container, said perforated pipe being disposed exterior of said dies during the forming of the container.
  • said female die includes a wall portion and a bottom portion, said bottom portion being movable relative said wall portion as a function of the relative positions of the depth determining means and the male die.
  • said bottom portion being movable relative said wall portion as a function of the relative positions of the depth determining means and the male die.

Description

June 23, 1970 J. L. SCHWARTZ 3,516,122
APPARATUS FOR MAKING INTEGRAL CONTAINERS HAVING PARALLEL VERTICAL WALLS Original Filed Oct. 18, 1963 4 Sheets-Sheet 1 INVENTOR. JACGE 4. Sty/M4972 BYMVM June 23, 1970 A V L. SCHWARTZ 3,516,122 APPARATUS FOR MAKING INTEGRAL CONTAINERS HAVING PARALLEL VERTICAL WALLS Original Filed on. 12;, 1963 4 Sheets-Sheet 2 'INVENTOR. J4C05 .4. sax/W427:
BYMAVM Aria/9mm C 1970 J. L. SCHWARTZ 3,51
APPARATUS FOR MAKING INTEGRAL CONTAINERS HAVING PARALLEL VERTICAL WALLS h Original Filed Oct. 18, 1963 4 Sheets-Sheet S a W WML m# M y z a June 1970 J. L. SCHWARTZ 3,
APYARATUS FOR MAKING INTEGRAL CONTAINERS HAVING PARALLEL VERTICAL WALLS I Original Filed Oct. 18, 1963 4 Sheets-Sheet 4 INVENTOR.
.1460? A. 5C4W4R7Z United States Patent 3,516,122 APPARATUS FOR MAKING INTEGRAL CON- TAINERS HAVING PARALLEL VERTICAL WALLS Jacob L. Schwartz, Covina, Calif., assignor to Shell Oil Company, New York, N.Y., a corporation of Delaware Original application Oct. 18, 1963, Ser. No. 317,355, now Patent No. 3,400,111, dated Sept. 3, 1968. Divided and this application May 22, 1967, Ser. No. 640,245
Int. Cl. B29c 17/00 US. Cl. 1819 10 Claims ABSTRACT OF THE DISCLOSURE CROSS-REFERENCE TO RELATED APPLICATION The present application is a division of a copending prior application, Ser. No. 317,355, filed Oct. 18, 1963, now Pat. No. 3,400,111, issued Sept. 3, 1968.
BACKGROUND OF INVENTION Field of the invention The present invention relates to apparatus for making integral containers having essentially parallel vertical walls, from a formable material which is characterized by contraction as it cools.
Description of the prior art In the manufacture of otherwise identical containers of different vertical heights it has heretofore been necessary to provide a separate set of tooling for each such container height. The manufacturer has therefore been obliged to keep a great many sets of tooling on hand, although only one or a few sets of the tooling were in use at any given time. The resulting operational costs have been very high because of the initial cost of the various sets of tooling, the cost of storage space for keeping the sets of tooling not being used, and the time and expense of changing from one set of tooling to another in a particular manufacturing set-up each time that the manufacturing run was to be changed to a container of a different height.
In the manufacture of containers designed for stackability it has been necessary to maintain close mechanical tolerances on the parts of the containers that are interengaged when in the stacking position. Some forming processes which might otherwise be acceptable for thermoplastic materials, for example, have not been acceptable in the manufacture of stackable containers because of their failure to meet the necessary mechanical tolerance requirements.
One type of integrally formed container which has been in wide usage for a number of years is provided with aligned pairs of vertical grooves on its interior walls, and is designed to slidably receive partitions inserted vertically into these pairs of grooves. It has been desired to provide stackability for this type of compartmentable container, but because of the presence of the grooves on the interior wall surfaces of the container it has heretofore been impossible to design a completely satisfactory stacking arrangement for this kind of container.
ice
A primary object of the invention, therefore, is to provide apparatus for forming integral containers having essentially parallel vertical walls.
Another object of the present invention is to provide apparatus for manufacturing stackable containers which do not incorporate stacking posts or convolutions in any of the walls thereof.
A further object of the invention is to provide tooling for the manufacture of integral containers, which tooling is adjustable to accommodate the manufacture of otherwise identical containers of varying vertical heights.
An additional object of the invention is to provide novel apparatus for manufacturing compartmentable containers of the type having aligned pairs of vertical grooves formed in the interior wall surfaces thereof, but which are also securely stackable in superimposed relationship.
Yet another object of the invention is to provide a manufacturing apparatus which is peculiarly adapted to the economical manufacture of integrally formed containers having precisely parallel walls, from a polyolefin material.
The present invention is illustrated and described herein as applied to the forming of containers of the type disclosed in US. Pat. No. 3,172,562. It will be understood, however, that the present invention is by no means limited to the forming of the specific type of containers disclosed in that patent.
The objects and advantages of the invention will become more fully apparent from the following description considered in conjunction with the accompanying drawings, wherein:
DRAWING SUMMARY FIG. 1 is a perspective view of a set of tooling provided in accordance with the present invention, and a sheet of thermoplastic material from which a container is to be formed;
FIG. 2 is an elevational view, partially in cross-section, of the apparatus of FIG. 1 as the forming operation is being commenced;
FIG. 3 is a vertical cross-sectional view of the apparatus of FIG. 1 as the forming operation is advanced to a later stage;
FIG. 4 is a vertical cross-sectional view taken on the line 4-4 of FIG. 3;
FIG. 5 is a fragmentary horizontal sectional view taken on the line 5-5 of FIG. 3;
FIG. 6 is an enlarged fragmentary vertical sectional view illustrating a detail of construction of the male die;
FIG. 7 is a perspective upside-down view of a portion of the forming ring of the male die; and
FIG. 8 is a fragmentary perspective view illustrating the corner portion of a completed container.
Referring now to FIG. 1, a sheet 10 of formable material, such as polyolefin, is of fixed dimensions and is firmly grasped around its circumferential edges by a holding device 20. A female die 30 is disposed beneath the sheet 10 while a male die 40 is disposed above the sheet 10. Prior to the positioning of the sheet as shown in FIG. 1, the initial step in the manufacturing operation is to heat the sheet of material to its sag point in a separate oven location, and thereafter immediately move it by means of the holder 20 to its position as shown in FIG. 1, interposed between the male and female dies.
In accordance with the "present invention the preliminary forming of the material is done only by the female die 30, by an evacuation process, that is causing a pressure differential across the sheet 10 by evacuating the gas from the interior of the female die to cause a lower pressure in the interior as compared to normal atmospheric pressure. In order to accomplish this step of the operation the sheet 10 and the female die 30 are moved relative to each other, so that the upper circumferential edge of the female die sealingly engages the undersurface of the sheet 10. Evacuation of the female die 30 causes the central portion of the sheet to assume the position shown in FIG. 2; and continued evacuation causes the sheet to assume very nearly the form of the interior wall and bottom surfaces of the female die. Thereafter the female die and male die are moved vertically relative to each other, into engaging relationship as shown in FIG. 3. After the engagement of the two dies the vacuum in the female die is removed causing the interior of the female die to return to atmospheric pressure; additional pressure from a pressure source (not shown) is then applied, causing the material to be pressure formed upon the face of the male die 40, as indicated in FIGS. 3 and 4. Once again a pressure differential is created across the sheet 10; however, at this step of the process the higher pressure (higher than atmospheric pressure) is between te sheet and the interior walls of the female die 30.
In accordance with the present invention a significant feature of the illustrated apparatus is that the side 41b and end walls 410 of a plug 41 of the male die 40 are exactly parallel to each other. A forming ring 42, FIG. 2, is vertically movable on plug 41 to any selected position (shown in dotted lines at alternate location to accommodate the male die to any desired container height. A bottom member 33 provides the bottom wall of the female die 30, and is vertically adjustable to any desired vertical position to accommodate the vertical height of a particular container to be formed, and may be fastened in any desired position of vertical adjustment, by means not shown.
In accordance with conventional practice the temperature of the sheet of material 10 is carefully controlled prior to its application to the female die 30, and the female die is heated by some suitable means such as the external strip heaters 34, FIGS. 1 and 2, which encircle the side and end walls thereof.
Female die 30 is provided with an air hose 36, FIG. 2, which communicates with the underside of movable bottom member 33, and a plurality of air openings 37 are formed in the bottom member 33 for allowing an increase or decrease of pressure, as the case may be, to the interior of the female die. The equipment is automatically controlled, by means not shown, so that the reduction of pressure within the interior of the female die occurs after the upper circumferential edge of the female die has engaged, and preliminarily sealed, the undersurface of the Work sheet 10. As best seen in FIG. 2 the upper circumferential edge of the female die 30 is provided with an upstanding portion 38, on the outside of which there is a circumferential shoulder 39. It is the upstanding portion 38 which accomplishes the preliminary sealing action, while as will be subsequently described there is later a final sealing action in which the shoulder 39 is also utilized.
The male mold or die 40 includes as its primary element the plug 41 which is of substantially rectangular block configuration. The plug or block 41 is surrounded by a rectangular (as viewed in the horizontal plane) container rim forming ring 42, which ring is vertically adjustable up and down as viewed in FIG. 2 to a selected position of adjustment relative to the plug or block 41. The undersurface of the ring 42 is provided with a groove 43 which, in the position of the apparatus as shown in FIG. 3, effectively engages the edge 38 and shoulder 39 of the female die 30, not directly, but by grasping the corresponding portion of the sheet 10 therebetween.
It will therefore be seen that the vertical position of the ring 42 relative to the plug 41 of the male mold 40 is able to conform to the vertical position of the movable bottom member 33 of the female mold 30, the positions of both the ring 42 and the bottom member 33 being selected to provide a container having a desired vertical height. Female die 30 rests on top of a floor support 30a,
FIGS. 2 and 3, while the male die 40 is suspended underneath a ceiling support device 40a. Ring 42 is suspended from the ceiling support 40a by two ring support plates 44; plug 41 is supported by a plurality of threaded plug support rods 46; and the support rods 46 are adjustable so as to vary the relative vertical positions between the ring 42 and the plug 41.
The fully formed container (formerly sheet 10') as shown in FIGS. 3 and 4 has a bottom wall 11, end walls 12, FIG. 2, and side walls 13, FIG. 3; while unused portions 14 of the sheet 10 which lie external to the dies are subsequently cut off and scrapped. The upper circumferential edge of the container has a cross-sectional configuration which is essentially an inverted short-handled dipper. There is a horizontal inner shoulder portion 15, FIGS. 3 and 8, corresponding to the short handle of the dipper; a vertical inner flange portion 16 which extends upwardly; a horizontal rim portion 17 which extends outwardly; and finally an outer flange portion 18 which extends vertically downwardly. This configuration of outer flange 18, and the outer portion of rim 17, is achieved by the compression forming of the material between the ring 42 of the male mold and the upstanding portion 38 of the female mold. It will thus be seen that the mechanical tolerances of the upper circumferential portion of the container are precisely controlled by the configuration of the two dies, with the result that reliable stacking support of a superimposed container may be achieved. From the standpoint of the forming operation the manner in which the upper rim of the container is formed is significant in that it provides a positive final seal, which supersedes or replaces the preliminary seal that was previously referred to.
When the container walls and bottom are pressed upon the exterior surfaces of the male plug 41 there is the possibility of entrapping air therebetween. For that reason a plurality of exhaust holes 41a, such as shown in FIG. 6, are spaced throughout the bottom, side and end walls of the male plug 41 (arrows depict the flow of the entrapped air through the hole 411:). On the side and end walls where vertical ridges 49a, FIGS. 1 and 5, are part of the structure of the male plug, the exhaust openings are preferably formed or located in the valleys on each side of such ridges. Complete escape of air from the interior of the container, through the exhaust holes 41a, into the hollow interior of the male plug 41, is therefore assured.
A specific feature of the presently illustrated embodiment of the invention is the provision of the vertical ridges 49a on the exterior of the male plug 41, which permits forming vertical grooves on the interior walls of the completed container. As shown in FIG. 7, forming ring 42 has an inner flange 39 in which interior grooves 39a are formed to receive the ridges 49a, and has exterior ridges 39!) which form grooves 16a of the container. The top of flange 39 forms shoulder 15 of the container. The specific advantages of the ridged and grooved container construction are fully described in the above referred to Pat. No. 3,172,562.
As, previously explained, the workpiece 10 is heated in a separate oven before being placed between the two dies of the present invention. When polyolefin material is utilized the pre-heating temperature is approximately 400 degrees F. Female die 30 is heated to a somewhat lower temperature by means of the strip heaters 34. The male plug 41 is kept at a much lower temperature, in the approximate range from degrees to 200 degrees F., with its specific temperature depending upon the specific material being utilized and the size and height of the container being formed. The pipes or ducts 47 and 48, FIGS. 2 and 4, are coupled in series configuration, and a temperature-controlled fluid, such as water, is circulated therethrough for maintaining the temperature of the male plug 41 at a predetermined level. -In general, the shallower the container that is being formed the lower the temperature level that is maintained for the male plug; and for deeper containers, the male plug temperature is established at a higher level. In any event the male plug is maintained at a constant temperature, as nearly as possible, which constant temperature is far below the setting temperature for the material, with the result that as soon as the material commences to be formed on the male plug a cooling action is initiated which causes the material to start to set.
Female die is provided with a cooling pipe 35, FIG. 1, which extends around the external circumference of the die, being located near the top of outer walls thereof. Pipe is provided with spaced small openings on its upper surface. When the material commences to be formed on the male plug 41, cooling of the material is initiated; air is forced under pressure into the pipe 35, FIG. 4, and is blown upwardly and outwardly onto the under surface of the scrap material 14, with consequent rapid cooling thereof (the cooling area is designated 35a).
Cooling of the material is also initiated on the interior of the female die 30, at the time when the material is pressed against the male plug 41. Female die 30 in one end wall 31, FIG. 3, thereof is provided with a relief valve 36a, which is set at a fixed pressure level such as, for example, pounds per square inch. Air pressure is applied via the air hose 36 to the interior of the female die 30, for the purpose of pressing the material onto the male plug 41; the pressure of the source (not shown) that is connected to air hose 36 is substantially in excess of the pressure level for which the relief valve 36a is set; and the result therefore is that as soon as this control pressure level is reached inside the female die, air continues to flow at a rapid rate from the hose 36 to the openings 37 to the interior of the female die, and to be continuously exhausted from the interior of the female die through the exhaust valve 36a.
Thus, the cooling and setting of the material are accomplished by means of the flow of air inside the female die 30, by the relatively cold temperature level of the male plug 41 prior to its being contacted by the much hotter material, and by the continued cooling of male plug 41 via the temperature controlled water fluid flowing inside the ducts 47 and 48. At the same time the air supply to pipe 35 ensures the very rapid cooling of the excess of waste material 14.
It is of basic importance in accordance with the present invention that the upper circumferential edge, or rim portion, of the container is cooled more slowly than the remainder thereof. There are three separate factors which contribute to this slower cooling of the rim portion of the container:
(1) The initial distribution of the material is controlled in such a way that the rim portion of the container is slightly thicker than the side and bottom wall portions;
(2) The compression forming of the rim portion of the container, by engagement between the male and female dies, results in the material being of higher density in that area;
(3) The compression forming of the rim portion of the container results in its having a lesser degree of exposure to the source of the cooling action in the female die, namely the flowing air inside the female die.
It is true that the flow of air inside the female die cools the metal side and end walls of the female die, which in turn have some cooling effect on the rim portion of the container. It is also true, however, that the cooling action of the air flowing inside the female die upon the side and end walls of the container is far more direct, and consequently far more rapid in its effect.
An essential characteristic of the polyolefin or other material used in accordance with the invention is that it contracts during the cooling and setting process. The slower cooling of the rim of the container therefore results in the upper portions of the side and end walls of the container remaining in a slightly expanded condition, at least a few thousandths of an inch, relative to the lower portions of the side and end walls, prior to the material having completed its setting process. The container is then stripped from the mold, before the setting action is completed, and while the upper wall portions are still in this slightly expanded condition.
It is necessary that the forming ring 42 have a tight running fit with the male plug 41 in any position of vertical adjustment of the forming ring. From this requirement it necessarily follows that the side 41b and end walls 41c of the male plug 41 are essentially parallel to each other. Nevertheless, despite this lack of draft on the mold, the novel method of the present invention, of stripping the container from the male plug just before the setting process is completed, is successful in forming the containers in accordance with a good standard of quality, and at the high rate of speed required in modern manufacturing facilities.
In the present drawings the relief valve 36a of the female die is shown located above the particular position in which the movable bottom member 33 has been fastened. However, it is in fact preferred to locate the relief valve near the bottom of the female die, in such position that it will always lie beneath the bottom member 33. The advantage of this arrangement is that it prevents any contact between the container material and the intake port of the relief valve, and therefore precludes the possibility of malforming of the container by virtue of a stoppage of the exhaust flow of air out of the relief valve.
Pressure forming on the male plug 41 has at least one advantage which is quite inobvious. This has to do with the adjustability of the tool for different container heights. When a container of low height is being formed there are quite a number of the exhaust holes 41a, FIG. 6, which lie above the forming ring 42; however, it is not necessary to close oif these unused exhaust ports. If, on the other hand, the male plug 41 were being exhausted by evacuation of air in its interior, any unused opening communicating between the interior and exterior of the male plug would have to be closed oif, and this requirement would present a very difficult problem relative to the adjustable use of the tool. The manufacturing method described ob viates this problem.
The apparatus of the present invention can be used on straight-walled containers, as well as the ridged wall structure as presently illustrated. An advantage of the ridged wall construction is, however, that a lesser amount of material is required to achieve the same degree of struc tural support for stacked or superimposed containers.
It will be seen that hose section 48, FIGS. 1 and 2, is carried in the forming ring 42 and movable therewith, and that the hose sections 47 and 48 are coupled together by a flexible intervening section 47a, FIGS. 2 and 4.
The invention has been described in considerable detail in order to comply with the patent laws by providing a full public disclosure of at least one of its forms. However, such detailed description is not intended in any way to limit the broad features or principles of the invention, or the scope of patent monopoly to be granted.
Having described the invention, What is claimed as new in support of Letters Patent is:
1. An apparatus for forming containers of thermoplastic or the like material, said apparatus being adjustable to form containers of differing vertical heights, comprising in combination:
(a) a male die having an outer surface;
(b) a female die positioned to receive said male die, said male and female dies being movable relative to one another,
said outer surface of said male die being essentially parallel to the direction of relative movement between said male and female dies; and
(c) means, located about said male dies and slidably positionable to a preselected fixed position relative to said outer surface of said male die, for determining the depth to which said male die is received by said female die, thereby selectively fixing the height of the contained to be formed.
2. An apparatus as claimed in claim 1 including means for adjustably moving said male die relative said depth determining means.
3. An apparatus as claimed in claim 1 wherein said depth determining means comprises an element having a groove disposed therein for forming the rim of a container formed by said apparatus.
4. An apparatus as claimed in claim 3 wherein the groove of said element has a U-shaped cross section and is positioned to receive a projection on said female die.
5. An apparatus as claimed in claim 1 including means for cooling said container to be formed by said dies; and wherein said groove of said depth determining means and said projection of said female die cooperate to retard the cooling by said cooling means of the portion of the container positioned between said groove and said projection.
6. An apparatus as claimed in claim 5 wherein said cooling means includes a perforated pipe positioned about said apparatus to spray cooling fluid on said material used to form the container, said perforated pipe being disposed exterior of said dies during the forming of the container.
7. An apparatus as claimed in claim 5 wherein said female die includes a wall portion and a bottom portion, said bottom portion being movable relative said wall portion as a function of the relative positions of the depth determining means and the male die.
8. An apparatus as claimed in claim 1 wherein said female die includes a wall portion and a bottom portion,
said bottom portion being movable relative said wall portion as a function of the relative positions of the depth determining means and the male die.
9. An apparatus as claimed in claim 1 wherein said outer surface of said male die has spaced ridges extending generally parallel to the direction of the relative movement between said male and female dies; and said depth determining means has grooves corresponding to the ridges of said male die, said grooves being in slidable contact with said ridges.
10. An apparatus as claimed in claim 1 wherein said male die has a hollow interior and has spaced exhaust ports throughout said outer surface communicating the environment external said male die with said hollow interior.
References Cited UNITED STATES PATENTS 2,129,268 9/1938 Fuhrmann. 2,230,189 1/1941 Ferngren. 2,254,376 9/1941 Lyon. 3,342,914 9/1967 Edwards. 3,218,379 11/1965 Edwards. 3,224,239 12/ 1965 Hansson. 3,235,639 2/1966 Knowles. 3,258,813 7/1966 Groth et a1. 3,338,997 8/ 1967 Tigner. 3,342,914 9/1967 Edwards.
I. HOWARD FLINT JR., Primary Examiner US. Cl. X.'R.
US640245A 1963-10-18 1967-05-22 Apparatus for making integral containers having parallel vertical walls Expired - Lifetime US3516122A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US317355A US3400111A (en) 1963-10-18 1963-10-18 Method for making integral containers having precisely parallel vertical walls
US64024567A 1967-05-22 1967-05-22

Publications (1)

Publication Number Publication Date
US3516122A true US3516122A (en) 1970-06-23

Family

ID=26980907

Family Applications (1)

Application Number Title Priority Date Filing Date
US640245A Expired - Lifetime US3516122A (en) 1963-10-18 1967-05-22 Apparatus for making integral containers having parallel vertical walls

Country Status (1)

Country Link
US (1) US3516122A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659991A (en) * 1970-04-03 1972-05-02 Plasti Vac Inc Clamping frame for plastic vacuum forming machine
US3771155A (en) * 1970-09-09 1973-11-06 Hitachi Ltd Color display system
US3867085A (en) * 1974-01-03 1975-02-18 Nrm Corp Thermoforming apparatus with web support means
US3926708A (en) * 1972-10-25 1975-12-16 Teledyne Ryan Aeronautical Method of manufacturing high strength fiber reinforced thermo plastic parts
US3986809A (en) * 1971-02-25 1976-10-19 Ball Corporation Apparatus and method for removing molds from articles with undercut pieces
US4009981A (en) * 1975-11-10 1977-03-01 Rosen Stanley R Universal mold tooling system for thermoforming molds
US4080416A (en) * 1975-03-20 1978-03-21 International Fabric Molders, Inc. Method for making multi-layer molded padded products
US4162884A (en) * 1976-12-10 1979-07-31 Multivac Sepp Haggenmuller Kg Apparatus for shaping plastics foils
US4278414A (en) * 1979-02-16 1981-07-14 Kennedy Sky-Lites, Inc. Apparatus for making plastic skylights
US4381910A (en) * 1981-02-23 1983-05-03 Aisin Seiki Kabushiki Kaisha Apparatus for molding pulley for toothed belts
CH673603A5 (en) * 1987-09-22 1990-03-30 Alusuisse Press blowing super-plastically deformable metal sheet - using cooling nozzle to decrease metal expansion in areas to be most highly deformed

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129268A (en) * 1936-05-15 1938-09-06 Nat Battery Co Mold for plastic materials and method of making the same
US2230189A (en) * 1933-01-31 1941-01-28 Plax Corp Apparatus for forming articles from organic sheet material
US2254376A (en) * 1938-06-04 1941-09-02 Lyon George Albert Method for making wheel disks
US3218379A (en) * 1963-01-02 1965-11-16 Illinois Tool Works Process and apparatus for forming plastic cups or the like
US3224239A (en) * 1962-08-17 1965-12-21 Continental Can Co Pneumatic reshaping of cans
US3235639A (en) * 1963-05-07 1966-02-15 American Can Co Solid flanged thermoplastic articles and apparatus and method for making the same
US3258813A (en) * 1963-01-28 1966-07-05 Dynamics Corp America Pressure forming of plastic film
US3338997A (en) * 1963-03-14 1967-08-29 Dow Chemical Co Method and apparatus for forming plastic containers
US3342914A (en) * 1964-07-13 1967-09-19 Illinois Tool Works Method and apparatus for deep draw molding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2230189A (en) * 1933-01-31 1941-01-28 Plax Corp Apparatus for forming articles from organic sheet material
US2129268A (en) * 1936-05-15 1938-09-06 Nat Battery Co Mold for plastic materials and method of making the same
US2254376A (en) * 1938-06-04 1941-09-02 Lyon George Albert Method for making wheel disks
US3224239A (en) * 1962-08-17 1965-12-21 Continental Can Co Pneumatic reshaping of cans
US3218379A (en) * 1963-01-02 1965-11-16 Illinois Tool Works Process and apparatus for forming plastic cups or the like
US3258813A (en) * 1963-01-28 1966-07-05 Dynamics Corp America Pressure forming of plastic film
US3338997A (en) * 1963-03-14 1967-08-29 Dow Chemical Co Method and apparatus for forming plastic containers
US3235639A (en) * 1963-05-07 1966-02-15 American Can Co Solid flanged thermoplastic articles and apparatus and method for making the same
US3342914A (en) * 1964-07-13 1967-09-19 Illinois Tool Works Method and apparatus for deep draw molding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659991A (en) * 1970-04-03 1972-05-02 Plasti Vac Inc Clamping frame for plastic vacuum forming machine
US3771155A (en) * 1970-09-09 1973-11-06 Hitachi Ltd Color display system
US3986809A (en) * 1971-02-25 1976-10-19 Ball Corporation Apparatus and method for removing molds from articles with undercut pieces
US3926708A (en) * 1972-10-25 1975-12-16 Teledyne Ryan Aeronautical Method of manufacturing high strength fiber reinforced thermo plastic parts
US3867085A (en) * 1974-01-03 1975-02-18 Nrm Corp Thermoforming apparatus with web support means
US4080416A (en) * 1975-03-20 1978-03-21 International Fabric Molders, Inc. Method for making multi-layer molded padded products
US4009981A (en) * 1975-11-10 1977-03-01 Rosen Stanley R Universal mold tooling system for thermoforming molds
US4162884A (en) * 1976-12-10 1979-07-31 Multivac Sepp Haggenmuller Kg Apparatus for shaping plastics foils
US4278414A (en) * 1979-02-16 1981-07-14 Kennedy Sky-Lites, Inc. Apparatus for making plastic skylights
US4381910A (en) * 1981-02-23 1983-05-03 Aisin Seiki Kabushiki Kaisha Apparatus for molding pulley for toothed belts
CH673603A5 (en) * 1987-09-22 1990-03-30 Alusuisse Press blowing super-plastically deformable metal sheet - using cooling nozzle to decrease metal expansion in areas to be most highly deformed

Similar Documents

Publication Publication Date Title
US3516122A (en) Apparatus for making integral containers having parallel vertical walls
US3159695A (en) Process for pneumatic formation of thermoplastic foils
US3218379A (en) Process and apparatus for forming plastic cups or the like
US3338997A (en) Method and apparatus for forming plastic containers
US3386503A (en) Differential heating plate
US3596869A (en) Mold forming device
US4521175A (en) Apparatus for producing containers from thermoplastic sheet material
US3214797A (en) Methods and devices for making cups and similar vessels of a thermoplastic material
US3235639A (en) Solid flanged thermoplastic articles and apparatus and method for making the same
US3546740A (en) Diaphragm-type sheet forming apparatus
US2348921A (en) Draw press
US3566650A (en) Diaphragm-type sheet forming method
US3893882A (en) Method for lining drums with plastic material
US3172927A (en) Method and apparatus for molding plastic articles
US3551954A (en) Container forming apparatus
US4932856A (en) Apparatus for thermoforming hollow articles
US3450807A (en) Thermoplastic sheet formation
US3737496A (en) Method of reinforcing the wall of a thermo-formed article
US3244779A (en) Selective heating and drawing of plastics
US3400111A (en) Method for making integral containers having precisely parallel vertical walls
US3461756A (en) Method for trimming plastic preforms
US3746497A (en) Apparatus for making articles of manufacture from a thin film of plastic
US3527854A (en) Method for the continuous production of open top containers
US3061873A (en) Means for embossing plastic belts
US2952875A (en) Apparatus for the drawing of plastics

Legal Events

Date Code Title Description
AS Assignment

Owner name: NESTIER CORPORATION

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MIDLAND-ROSS CORPORATION;REEL/FRAME:003921/0855

Effective date: 19811029

Owner name: MIDLAND-ROSS CORPORATION, 20600 CHAGRIN BLVD. CLEV

Free format text: SECURITY INTEREST;ASSIGNOR:NESTIER CORPORATION;REEL/FRAME:003921/0847

Effective date: 19811030

AS Assignment

Owner name: VANGUARD INDUSTRIES, INC., VIRGINIA

Free format text: ASSIGNOR WISH TO CORRECT SPELLING OF FIRST WORD OF ASSIGNEES NAME IN ASSIGNMENT DATED DEC. 4, 1972 FROM VANGUARD, INDUSTRIES, INC., TO VANGUARD INDUSTRIES, INC;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:004048/0013

Effective date: 19800410

Owner name: VANGUARD INDUSTRIES, INC.

Free format text: ASSIGNOR WISH TO CORRECT SPELLING OF FIRST WORD OF ASSIGNEES NAME IN ASSIGNMENT DATED DEC. 4, 1972 FROM VANGUARD, INDUSTRIES, INC., TO VANGUARD INDUSTRIES, INC.;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:004048/0013

Effective date: 19800410