US3503393A - Patient controlled respiratory apparatus - Google Patents

Patient controlled respiratory apparatus Download PDF

Info

Publication number
US3503393A
US3503393A US551285A US3503393DA US3503393A US 3503393 A US3503393 A US 3503393A US 551285 A US551285 A US 551285A US 3503393D A US3503393D A US 3503393DA US 3503393 A US3503393 A US 3503393A
Authority
US
United States
Prior art keywords
valve
machine
diaphragm
reservoir
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US551285A
Inventor
Roger E W Manley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blease Anaesthetic Equipment Ltd
Original Assignee
Blease Anaesthetic Equipment Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blease Anaesthetic Equipment Ltd filed Critical Blease Anaesthetic Equipment Ltd
Application granted granted Critical
Publication of US3503393A publication Critical patent/US3503393A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Description

United States Patent 3,503,393 PATIENT CONTROLLED RESPIRATORY APPARATUS Roger E. W. Manley, Chorleywood, England, assignor to Blease Anaesthetic Equipment Limited, Chesham, England Filed May 19, 1966, Ser. No. 551,285
Int. Cl. A62b 7/00; A61m 17/00 Us. (:1. 128-145.6 Claims ABSTRACT OF THE DISCLOSURE This invention relates to a respiratory machine and particularly though not exclusively to a resipratory machine of such a character as regards size, complexity, and safety that it can be conveniently utilized in the home to assist the breathing of persons suffering from bronchial troubles, asthma, and the like.
According to the present invention, a respiratory machine adapted to supply a user according to his requirements when fed with gas comprises an expansible and contractible reservoir having an outlet valve which when open permits gas to pass to the user, means for opening the outlet valve in response to a predetermined contraction of the reservoir, a vent valve which when open permits escape of the contents of the reservoir and consequent contraction thereof, and means for opening the vent valve in response to a sub-atmospheric pressure applied by the user to the machine.
The reservoir of the machine is preferably continuously fed with gas (e.g. atmospheric air) through a flow control valve by a turbine pump. The turbine pump is preferably of the type which can be electrically driven from an electricity supply. The reservoir may be a cylindrical chamber having a rubber or like resilient diaphragm as one of its end walls, and a valve actuating mechanism may be mechanically connected to the diaphragm. Such a mechanism may include a lever connected to a rod or the like secured to the valve member of the outlet valve, the arrangement being such that a predetermined contraction of the reservoir effects pivoting of the lever to open the outlet valve. The vent valve may be a valve having a simple plate-like valve member and the arrangement may be such that the vent valve is kept closed by pressure within the reservoir but is opened by a pressure-responsive operating mechanism. Such an operating mechanism may include a chamber closed by a flexible diaphragm and connected to the exhalation side of a users face mask.
The outlet valve actuating mechanism may co-operate with an operating mechanism adapted to closing an exhalation valve connected to the face mask in response to contraction of the reservoir, and such an Operating mechanism may be arranged so that the outlet valve shuts just before the exhalation valve opens.
The invention will now be more particularly described with reference to the accompanying drawings, which show an illustrative embodiment of a machine according to the invention, and in which:
FIG. 1 shows the machine in its first steady state with the outlet valve open, the vent valve shut, and the gas supplied by the turbine pump passing directly through to the face mask; and
FICC
FIG. 2 shows the machine in its second steady state with the outlet valve shut, the vent valve shut, the exhalation valve open, and the user breathing out freely.
The illustrated machine includes a turbine pump 10, of the type which can be driven by an electric power supply fed along leads 12 from the mains, and which can deliver a flow of about 50 litres per minutes at a pressure of about 50 centimetres of water. The output from the turbine pump 10 is fed through a flow control valve 14 to a cylindrical chamber 16, whose upper wall is formed by a resilient diaphragm 18. This diaphragm 18 may be strengthened over the major part of its area by being clamped between a pair of disc-shaped plates 20. These plates are secured to a rod 22. Alternatively the diaphragm 18 may be bonded to a rigid plate.
The chamber 16 is provided with an outlet valve generally indicated at 24, and this valve has a valve member 26 which is actuated by a valve actuating mechanism including a lever 28 and a projection 30 secured to rod 22.
The rod 22 passes through a seal 32 in the lower wall 34 of chamber 16, and a vent valve generally indicated at 36 is also provided in this lower wall.
A pipe 38 connects the outlet valve 24 to one branch of a flexible rubber hose serving to connect a face mask 40 with the pipe 38. Another branch of the rubber hose connects the face mask 40 to a pipe 42 which leads to an exhalation valve generally indicated at 44. The exhalation valve 44 is closed by a valve member 46 engageable by a valve operating mechanism comprising a lever 48 and weight 50, the lever being pivotably mounted on a fixed support 52 within the machine.
Returning now to the vent valve 36, this has a platelike valve member 60 connected to a stem 62, and is actuated by means of a lever 64 pivoted at 66, as will be hereinafter described. The lever 64 is connected to a diaphragm 68 which closes one wall of a chamber 70. The chamber 70 is connected by a pipe 72 to the exhalation pipe 42. A tension spring 74, connected between lever 64 and a fixed point on the machine, is arranged to exert a force on lever 64 such that it remains just out of contact with valve stem 62 until a sub-atmospheric pressure of about 1 cm. of water or less exists in chamber 70. A screw adjustment or other conventional mechanism can be arranged to adjust the force exerted by spring 74 for the initial setting up of the machine. Upon say 1 cm. of water sub-atmospheric pressure existing in chamber 70, the lever '64 is pivoted counterclockwise against spring 74, thereby opening vent valve 36. The reason for this arrangement will be understood when the operation of the whole machine is described.
The machine is housed in an external casing diagrammatically indicated by the dotted line 76, and the face mask 40 with its two branch pipes can if desired be disconnected from the casing 76.
The operation of the machine can now be described.
Once the machine is switched on, and electrical power supplied through leads 12 to the turbine pump 10, this pump runs continuously, delivering air into chamber 16. As will be seen, the design of this machine is such that it can operate for long periods in either one of two steady states, the first steady state being illustrated in FIG. 1. In this state, the outlet valve 24 is open, and the air supplied by pump 10 to reservoir 16 leaves the reservoir 16 through outlet valve 24 and passes to the face mask 40 and thence to the user. When the user has inhaled sufliciently, he commences to breath out, and the pressure exerted by the user breathing out is exerted on the exhalation valve 44 tending to lift its valve member 46, and also tends to increase the pressure within the reservoir 16, tending to lift diaphragm 18. Consequently, the rod 22, fixedly secured to diaphragm 18, tends to lift, and stud 30 is thus moved upwardly away from lever 28,
allowing .valve member 26 to fall and close outletvalve 24. The machine is then in the second steady state illustrated in FIG. 2. In this state, outlet valve 24 and vent valve 36 are closed, and the pump supplies air to reservoir 16 which is closed, thereby lifting diaphragm 18 and rod 22 against the force of a spring 78 acting through a bell crank lever 80. The exhalation valve 44 is now open, and the user exhales freely through the face mask 40 and valve 44. An adjustment means, for example an adjusting screw, may be provided to vary the force exerted by the spring 78.
If now the user wishes to breathe in, and attempts to draw breath in, a slight sub-atmospheric pressure is generated within pipe 42, and therefore also in pipe 72 and chamber 70. The negative pressure in chamber 70 causes diaphragm 68 to be drawn downwardly, thereby .opening vent valve 36 as previously described. This permits the gas in reservoir 16 to escape, and with the consequent rapid fall in pressure in reservoir 16, diaphragm 18 moves downwardly, this movement being assisted by spring 78. Towards the end of the movement, projection 30 engages lever 28, pivoting it counterclockwise and opening outlet valve 24. Once the user is supplied through outlet valve 24, the sub-atmospheric pressure no longer exists in chamber 70, and consequently spring 74 is able to pivot lever 64 clockwise, allowing vent valve 36 to close. The machine is then again in the first stable state illustrated in FIG. 1 and air or gas as the case may be passes freely to the face mask via outlet valve 24.
It will be appreciatedthat if desired the machine can be employed to administer an anaesthetic gas merely by connecting the inlet of pump 10 to a supply of the appropriate nature.
In a practical embodiment, the type of turbine pump 10 used is such that it generates a pressure of cms. water maximum. This means that the'pressure on;the top of valve member is never greater than 50 cms. water. The ratio of the area of diaphragm 68 to the area of the top of valve member 60 is roughly :1, so that a sub-atmospheric pressure of /2 cm. water will overcome this pressure.
Valve 44 is a non-return valve which operates in both cycles so that when the. weight 50 is lifted up by the lever 48, the non-return valve remains closed until the user 'exhales. The reason for this is so that the patient can breathe out through the non-return valve, but when he generates a sub-atmospheric pressure it is transferred to chamber 70, as valve 44 is then closed.
Modifications can be made within the scope of the invention, for example, other forms of mechanical linkage could be used as the actuating mechanism for opening the outlet valvein the manner described, and equally other mechanisms will occur to those skilled in the art as possible substitutes for the exhalation valve operating mechanism and the vent valve pressure responsive actuating means. a
I claim:
1. A respiratory machine adapted to supply a user according to his requirements when fed with gas comprising:
(a) an expansible and contractible reservoir in the form of a chamber having one wall constituted by a flexible diaphragm;
(b) astrengthening disc mounted. on the said diaphragm;
(c) a rod secured to the said disc;
(d) a projection extending laterally from the rod;
(e) an outlet valve mounted in a wall of the said chamber;
(f) means connecting the outlet valve to a user,s face mask or the like so that when the outlet valveis open gas can pass from the interior of the chamber to the user;
(g) an actuating mechanism for the outlet valve ineluding a pivotable lever adapted to engage the said projection whereby axial movement of the rod in one ,direction consequentnpon contraction of the said reservoir opens the outlet valve;
(h) a vent valve for the chamber which'when open permits escape of the contents of the reservoir through the said vent valve;
(i) a diaphragm-actuated mechanism operatively connected to the vent valve for opening the same in response to a sub-atmospheric pressure applied by the user to the machine and sensed by the diaphragm of the said mechanism; and
(j) a source of breathable gas in fluid communication with said chamber.
2. A machine according to claim 1 including a pivoted and spring-biased lever operatively connected with the diaphragm of the said mechanism in which the spring biasing of the said lever is such that the said vent valve is opened in response to a pressure of about 1 cm. of water below atmospheric.
3. A machine according to claim 1 including an exhalation valve for the user connected to the said means connecting the outlet valve to a users face mask or the like and an exhalation valve operating mechanism adapted to cooperate with the outlet valve actuating mechanism so that the outlet valve shuts just before the exhalation valve opens.
4. A machine according to claim 1 including a spring or the like arranged to bias the diaphragm in a direction tending to reduce the volume of the reservoir.
5. A machine according to claim 4 including adjusting means adapted to vary the force exerted by the spring or the like.
References Cited UNITED STATES PATENTS Re. 25,871 10/ 1965 Andreasen 128145.8 3,057,346 10/1962 Goodner 138l45.6 3,068,857 12/1962 Black 128-145.8 3,101,708 8/1963 Perry et al 128-145.-5
' 3,167,070 1/1965 Silverman 128-145.6 3,362,404 1/1968 'Beasley' 128145.8
FOREIGN PATENTS 1,126,07 3 3/ 1962 Germany.
7 971,953 10/ 1964 Great Britain.
RICHARD A. GAUDET, Primary Examiner KYLE HOWELL, Assistant Examiner US. Cl. X.R. l28-145.8, l88
US551285A 1966-05-19 1966-05-19 Patient controlled respiratory apparatus Expired - Lifetime US3503393A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US55128566A 1966-05-19 1966-05-19

Publications (1)

Publication Number Publication Date
US3503393A true US3503393A (en) 1970-03-31

Family

ID=24200626

Family Applications (1)

Application Number Title Priority Date Filing Date
US551285A Expired - Lifetime US3503393A (en) 1966-05-19 1966-05-19 Patient controlled respiratory apparatus

Country Status (1)

Country Link
US (1) US3503393A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224940A (en) * 1976-03-19 1980-09-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Respirators
US4784130A (en) * 1986-12-04 1988-11-15 The John Bunn Company Flow controller
US4925698A (en) * 1988-02-23 1990-05-15 Tekmat Corporation Surface modification of polymeric materials
US5492115A (en) * 1993-12-08 1996-02-20 Abramov; Vladimir V. Resuscitation breathing apparatus
US6269811B1 (en) 1998-11-13 2001-08-07 Respironics, Inc. Pressure support system with a primary and a secondary gas flow and a method of using same
US20030190258A1 (en) * 2000-11-04 2003-10-09 Smith Francis X. Ophthalmic and contact lens solutions using low molecular weight amines
US20050042198A1 (en) * 1999-11-04 2005-02-24 Smith Francis X. Ophthalmic and contact lens wetting solutions
US20060078626A1 (en) * 2000-11-08 2006-04-13 Bioconcept Laboratories Opthalmic and contact lens solutions with a peroxide source and a cationic polymeric preservative
US20060142169A1 (en) * 2000-11-08 2006-06-29 Bioconcept Laboratories Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US20060148665A1 (en) * 2000-11-08 2006-07-06 Bioconcept Laboratories Ophthalmic and contact lens solutions containing forms of vitamin b
US20070098813A1 (en) * 2000-11-08 2007-05-03 Fxs Ventures, Llc Ophthalmic and contact lens solutions with a peroxide source and a preservative
US20070098818A1 (en) * 2000-11-08 2007-05-03 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US20070104744A1 (en) * 2000-11-08 2007-05-10 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing forms of vitamin b
US20080167246A1 (en) * 2003-04-15 2008-07-10 Bioconcept Laboratories Ophthalmic and Contact Lens Solutions Containing Peptides as Preservative
US9308264B2 (en) 2000-11-08 2016-04-12 Fxs Ventures, Llc Ophthalmic contact lens solutions containing forms of vitamin B
WO2017190157A1 (en) * 2016-04-27 2017-11-02 Suspended Animation, Inc. Apparatus and method for delivering fluids and/or gases to the lungs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1126073B (en) * 1955-01-31 1962-03-22 Draegerwerk Ag Device for artificial respiration
US3057346A (en) * 1958-07-09 1962-10-09 Stephenson Corp Apparatus for selectively providing controlled breathing or assisted breathing
US3068857A (en) * 1958-11-19 1962-12-18 British Oxygen Co Ltd Apparatus for controlling or assisting respiration
US3101708A (en) * 1959-02-06 1963-08-27 Pye Ltd Electronic time cycled respirator
GB971953A (en) * 1962-06-15 1964-10-07 Blease Anaesthetic Equip Ltd Improvements in or relating to respirator machines
US3167070A (en) * 1961-06-14 1965-01-26 Silverman Leslie Respirator with positive air seal
USRE25871E (en) * 1958-12-05 1965-10-05 Lung ventilators and control mechanism therefor
US3362404A (en) * 1964-11-16 1968-01-09 Bennett Respiration Products I Respiration apparatus for administering intermittent positive pressure breathing therapy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1126073B (en) * 1955-01-31 1962-03-22 Draegerwerk Ag Device for artificial respiration
US3057346A (en) * 1958-07-09 1962-10-09 Stephenson Corp Apparatus for selectively providing controlled breathing or assisted breathing
US3068857A (en) * 1958-11-19 1962-12-18 British Oxygen Co Ltd Apparatus for controlling or assisting respiration
USRE25871E (en) * 1958-12-05 1965-10-05 Lung ventilators and control mechanism therefor
US3101708A (en) * 1959-02-06 1963-08-27 Pye Ltd Electronic time cycled respirator
US3167070A (en) * 1961-06-14 1965-01-26 Silverman Leslie Respirator with positive air seal
GB971953A (en) * 1962-06-15 1964-10-07 Blease Anaesthetic Equip Ltd Improvements in or relating to respirator machines
US3362404A (en) * 1964-11-16 1968-01-09 Bennett Respiration Products I Respiration apparatus for administering intermittent positive pressure breathing therapy

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224940A (en) * 1976-03-19 1980-09-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Respirators
US4784130A (en) * 1986-12-04 1988-11-15 The John Bunn Company Flow controller
US4925698A (en) * 1988-02-23 1990-05-15 Tekmat Corporation Surface modification of polymeric materials
US5492115A (en) * 1993-12-08 1996-02-20 Abramov; Vladimir V. Resuscitation breathing apparatus
US6269811B1 (en) 1998-11-13 2001-08-07 Respironics, Inc. Pressure support system with a primary and a secondary gas flow and a method of using same
US20100122918A1 (en) * 1999-11-04 2010-05-20 Smith Francis X Ophthalmic and contact lens solution
US20050042198A1 (en) * 1999-11-04 2005-02-24 Smith Francis X. Ophthalmic and contact lens wetting solutions
US8247461B2 (en) 1999-11-04 2012-08-21 Smith Francis X Ophthalmic and contact lens solution
US8557868B2 (en) 2000-11-04 2013-10-15 Fxs Ventures, Llc Ophthalmic and contact lens solutions using low molecular weight amines
US20030190258A1 (en) * 2000-11-04 2003-10-09 Smith Francis X. Ophthalmic and contact lens solutions using low molecular weight amines
US9492581B2 (en) 2000-11-08 2016-11-15 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US9492582B2 (en) 2000-11-08 2016-11-15 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US20070104744A1 (en) * 2000-11-08 2007-05-10 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing forms of vitamin b
US10595532B2 (en) 2000-11-08 2020-03-24 Fxs Ventures, Llc Ophthalmic contact lens solutions containing forms of vitamin B
US20070098813A1 (en) * 2000-11-08 2007-05-03 Fxs Ventures, Llc Ophthalmic and contact lens solutions with a peroxide source and a preservative
US10064410B2 (en) 2000-11-08 2018-09-04 Fxs Ventures, Llc Ophthalmic contact lens solutions containing forms of vitamin B
US20070098818A1 (en) * 2000-11-08 2007-05-03 Fxs Ventures, Llc Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US9585394B2 (en) 2000-11-08 2017-03-07 Fxs Ventures, Llc Ophthalmic contact lens solutions containing forms of vitamin B
US20060142169A1 (en) * 2000-11-08 2006-06-29 Bioconcept Laboratories Ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US9308264B2 (en) 2000-11-08 2016-04-12 Fxs Ventures, Llc Ophthalmic contact lens solutions containing forms of vitamin B
US20060078626A1 (en) * 2000-11-08 2006-04-13 Bioconcept Laboratories Opthalmic and contact lens solutions with a peroxide source and a cationic polymeric preservative
US20060148665A1 (en) * 2000-11-08 2006-07-06 Bioconcept Laboratories Ophthalmic and contact lens solutions containing forms of vitamin b
US20110212885A1 (en) * 2003-04-15 2011-09-01 Smith Francis X Ophthalmic and contact lens solutions containing peptides as preservative
US7939501B2 (en) 2003-04-15 2011-05-10 Smith Francis X Ophthalmic and contact lens solutions containing peptides as preservative
US20080167246A1 (en) * 2003-04-15 2008-07-10 Bioconcept Laboratories Ophthalmic and Contact Lens Solutions Containing Peptides as Preservative
WO2017190157A1 (en) * 2016-04-27 2017-11-02 Suspended Animation, Inc. Apparatus and method for delivering fluids and/or gases to the lungs

Similar Documents

Publication Publication Date Title
US3503393A (en) Patient controlled respiratory apparatus
US3933171A (en) Anesthesia breathing circuit with positive end expiratory pressure valve
US4278110A (en) Demand responsive flow controller
JP3433397B2 (en) Float valve device and humidifier for breathing
US4640277A (en) Self-contained breathing apparatus
US8365728B2 (en) Portable gas powered positive pressure breathing apparatus and method
US4082093A (en) Compensator valve
US3216413A (en) Portable artificial respirator
US5492115A (en) Resuscitation breathing apparatus
US4176663A (en) Medical ventilation apparatus
US5787882A (en) Demand valve resuscitator
CA1086604A (en) Ventilator
GB983192A (en) Respiratory assister
GB1377069A (en) Lung ventilator
US3581742A (en) Intermittent positive pressure breathing device
US4167184A (en) Lung-venting apparatus
US3385295A (en) Apparatus for use in administering intermittent positive pressure breathing therapy
DK147096B (en) RESPIRATORY VALVE FOR ARTIFICIAL RESPIRATORY APPLIANCES
US4566450A (en) Device to discourage growth of respiratory viruses
GB1528583A (en) Lung ventilating apparatus
GB649229A (en) Improvements in apparatus for the control of respiration, resuscitation and anaesthesia
US20060124130A1 (en) Ventilation system for respiratory devices
US4793340A (en) Breathing system for divers
GB1212529A (en) Improvements in or relating to mechanical ventilators for the lungs
US2391877A (en) Respiration apparatus