US3497000A - Bottom hole catalytic heater - Google Patents

Bottom hole catalytic heater Download PDF

Info

Publication number
US3497000A
US3497000A US753383A US3497000DA US3497000A US 3497000 A US3497000 A US 3497000A US 753383 A US753383 A US 753383A US 3497000D A US3497000D A US 3497000DA US 3497000 A US3497000 A US 3497000A
Authority
US
United States
Prior art keywords
heater
air
catalyst
tube
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US753383A
Inventor
Karol L Hujsak
Elton B Hunt Jr
John W Kirkpatrick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan American Petroleum Corp
Original Assignee
Pan American Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan American Petroleum Corp filed Critical Pan American Petroleum Corp
Application granted granted Critical
Publication of US3497000A publication Critical patent/US3497000A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners

Definitions

  • the air-liquid fuel mixture is produced just prior to contacting the oxidation catalyst and is atomized onto the catalyst through an orifice at the top of the catalyst chamber, thus aiding in the prevention of flashback.
  • Air fuel mixtures prepared at ground level cannot, under high pressure, be vaporized to the desired extent and if use is attempted under these conditions, premature ignition can frequently occur up the hole.
  • the design of this unit enables one to operate at high pressures, typically 3,000 p.s.i.
  • the present invention relates to a novel catalytic device for use in heating or igniting underground carbonaceous deposits. More particularly, it is concerned with a heater or igniter than can be operated over a wide temperature range using an air-fuel mixture under conditions such that premature reaction of said mixture is prevented.
  • gas fueled heaters or igniters such as, for example, those described in US. 3,307,609 and US. 3,223,- 165, are very satisfactory under certain conditions of use, in many areas of the world where it is desired to use such devices there is no gas source readily available. It has been suggested that fuels such as LPG be used under these circumstances. However, we have found that they are entirely unsatisfactory and cannot be employed for more than a period of six to eight hours because of excessive coke formation in the vicinity of the burner.
  • our invention comprises an elongated hollow container closed at its lower end and perforated along a portion of the sides thereof exposing catalyst in the container which fills the annular space formed by inserting in said container a tube of relatively small diameter, said tube running substantially the length of the container. Near the base of the centrally spaced tube are openings which place the annular space in communication with the interior of the tube. Air and a suitable liquid fuel such as, for example, methanol, are separately injected into a mixing chamber at the top of said tube and the resulting mixture is forced through a relatively small ice orifice at the top of said tube.
  • a suitable liquid fuel such as, for example, methanol
  • Velocities are used so that the mixture in effect is atomized and then flows down to the bottom of said tube into the aforesaid annular space contacting a bed of suitable oxidation catalyst resulting in a self-starting reaction.
  • Hot production of combustion emerge from the container through perforations or ports extending a length over the heater surface corresponding to about the depth of the catalyst bed contained in the heater.
  • the hot products of combustion make direct contact with the carbonaceous deposit such as coal, oil shale, petroleum, etc., that is to be ignited.
  • the catalyst container uses no cover or shield. On addition of heat in quantities corresponding to about 1 million B.t.u. per foot of formation to be ignited, it generally will be found that a satisfactory combustion zone has been established.
  • FIGURE 1 is an overall elevational view, partly in section, showing the igniter in place in a well and the arrangement of auxiliary equipment required for operation of the igniter.
  • FIGURE 2 is a detailed sectional view of our novel catalytic heater showing the latter resting in the lower portion of tubing string having an appropriate seating or landing collar to hold the heater.
  • FIGURE 3 is a sectional plan view of FIGURE 2 taken along line 3-3.
  • FIGURE 4 is a fragmentary elevational view showing the arrangement of air injection slots 41 in conduit 40.
  • FIGURE 5 is a sectional plan view of FIGURE 4 taken along line 55.
  • a cased well 2 penetrates a tar sand deposit 4.
  • tubing 6 extending down to the uppermost of casing perforations 8.
  • Tubing 6 is held in a fixed position by means of centralizer 10.
  • Catalytic heater 12 hangs from the lowermost end of air tubing 6 and is positioned opposite the main bank of perforations 8.
  • Fuel (methanol) line 14 equipped with filter 16 and check valve 18.
  • Line 14 leads into the base of tubing 6 where a fuel-air mixture is formed before entering heater 12. After ignition is established, heater 12 and associated equipment are pulled from the well and combustion is effected by injection of air at high pressures via line 20.
  • FIGURE 2 is a detailed sectional view of one embodiment of heater 12 shown generally in FIGURE 1 and comprises a catalyst basket 30 having ports 32.
  • Catalytic heater 12 rests in seating collar 34 which is in turn threadedly engaged to tubing 6.
  • the upper portion of heater 12 includes a seating plug 36 having thin Walled sides 38 which extend downwardly and fit by friction within the upper portion of basket 30.
  • the entire heating unit is held in substantially gas tight relation with the interior of seating collar 34 by means of O-rings 35 which are constructed out of any of a number of high temperature resistant synthetic rubbers.
  • inlet line 40 Extending into the top portion of seating plug 36 is inlet line 40, the uppermost portion of which is threaded and adapted to receive a suitable plug (not shown) making it possible to raise and lower the heater assembly on a wireline.
  • Near the base of line 40 are three air injection ports or slots 41.
  • Line 40 is held in position by means of nut 42.
  • the lower end of line 40 has an annular base 44 which serves as the top enclosure for catalyst basket 30.
  • base 44 Positioned in the center of base 44 is orifice 48 which is of smaller diameter than tube 50.
  • the latter forms an annular space 52 with the walls of basket 30 and this space is filled with a suitable oxidation catalyst slightly above the uppermost row of ports 32.
  • At the base of tube 50 is another set of perforations 54 through which 3 the methanol-air mixture flows from tube 50 into catalyst bed 56.
  • liquid methanol injection port 58 which receives line 14 shown in FIGURE 1.
  • Liquid methanol flows through channels 60 meeting a down flowing stream of air entering from tubing 6 via ports 41.
  • the resulting mixture of air and methanol is forced through orifice 48 thus assuring atomization of the alcohol.
  • Orifice 48 also serves as a flashback arrester to prevent premature reaction of air and alcohol.
  • the airalcohol mixture flows downwardly through tube 50 out of ports 54 and contacts catalyst 56 forming combustion gases having temperature of the order of 500 F. to 1500 F. depending, of course, on the composition of the airmethanol mixture.
  • the heater may vary widely in its dimensions. However, the one that we have used with success and which was employed in the example mentioned below was approximately 8 feet in length and employed a catalyst bed of about 6 feet in depth. Another important dimension is the ratio of diameters of the conduct 50 to the orifice opening 48. It has been found for general purposes that the ratio of conduit diameter to that of the orifice opening should range between about 4:1 to about 6:1. Other dimensions of the apparatus used referring specifically to the embodiment illustrated in FIGURE 2 were as follows:
  • the catalyst used in heaters of the type described above may be selected from a wide list of materials and form no part of out invention.
  • Typical catalysts suitable for oxidation of air-fuel mixtures contemplated herein include platinum, palladium, rhodium, etc. These materials are preferably used in very dilute concentrations, e.g., 0.05 to about 0.5 weight percent and may be supported on materials having a large surface area such as pumice, aluminum oxide, metal wool, for example, stainless steel wool, and the like Supported platinum oxide, which is a suitable catalyst for this purpose, is manufactured by the Chemitron Corporation of Louisville, Kentucky and is identified as 643. This catalyst is available in A x A: tablets which are well suited for use in the igniter of our invention. In operation the portion of catalyst apparently entering into the oxidation reaction is that with which the feed mixture first comes in contact.
  • the materials employed in fabricating the igniter covered by our invention are generally readily available. Ordinarily we prefer to use the heat resistant stainless steels, such as 304 stainless, or similar alloys.
  • a catalytic igniter for underground carbonaceous deposits comprising an elongated hollow uncovered container closed at its lower end and perforated along a portion of the sides thereof, a hollow tube of substantially smaller diameter than the diameter of said container afiixed to and perforated near said lowermost end, said tube forming an annular space with the interior of said container, a conduit afiixed to the uppermost portion of said tube forming essentially a gas tight seal at the upper end of said annular space, an orifice at the uppermost end of said tube having a diameter less than that of said tube, a first means communicating with said orifice via said conduit for the introduction of a fluid, and a second means adjacent said orifice separate from said first means communicating with said orifice for introduction of a fluid into said orifice.
  • a catalytic igniter for underground carbonaceous deposits comprising an elongated hollow uncovered container closed at its lower end and perforated along a portion of the sides thereof, a seating plug afiixed to the uppermost end of said container, a seating collar holding said plug in essentially gas tight relationship, a conduit within and spaced centrally of said container defining an annular space between said container and said conduit, one end of said conduit being secured to said closed end and running substantially the length of said container, means near the lowermost end of said conduit providing direct communication with said annular space, an opening at the opposite end of said conduit smaller in diameter than the diameter of said conduit, and two separate means for the introduction of a fluid both of which are in direct communication with said opening.

Description

Feb. 24,1970 K. L. HUJSAK ETAL 3,497,000
BOTTOM HOLE CATALYTIC HEATER 5 Sheets-Sheet 1 Filed Aug. 19, 1968 KAROL L. HUJSAK ELTON B. HUNT, JR. JOHN W. KIRKPATRICK INVENTORS FIG.
ATTORNEY Feb-'24, 1970 I K.I .HUJSAK ETAL 3,497,000
BOTTOM HOLE CATALYTIC HEATER Filed Aug. 19, 1968 3 Sheets-Sheet 2 000*" OOC) OOO ;OOO
GOO
2 KAROL L. HUJSAK ELTON B. HUNT, JR.
JOHN W. KIRKPATRICK INVENTORS ATTORNEY Feb. 24, 1970 K. L. HUJSAK ET AL 3,
Filed Aug. 19, 1968 3 Sheets-Sheet 5 KAROL L. HUJSAK ELTON B. HUN
JOHN w. KIRKP CK INVEN OR ATTORNEY United States Patent 3,497,000 BOTTOM HOLE CATALYTIC HEATER Karol L. Hujsak, Elton B. Hunt, Jr., and John W. Kirkpatrick, Tulsa, Okla., assignors to Pan American Petroleum Corporation, Tulsa, Okla., a corporation of Delaware Filed Aug. 19, 1968, Ser. No. 753,383 Int. Cl. E21]: 43/24 US. Cl. 166-59 4 Claims ABSTRACT OF THE DISCLOSURE This catalytic heater is designed to operate using fuel in liquid form admixed with air. The air-liquid fuel mixture is produced just prior to contacting the oxidation catalyst and is atomized onto the catalyst through an orifice at the top of the catalyst chamber, thus aiding in the prevention of flashback. Air fuel mixtures prepared at ground level cannot, under high pressure, be vaporized to the desired extent and if use is attempted under these conditions, premature ignition can frequently occur up the hole. The design of this unit enables one to operate at high pressures, typically 3,000 p.s.i.
The present invention relates to a novel catalytic device for use in heating or igniting underground carbonaceous deposits. More particularly, it is concerned with a heater or igniter than can be operated over a wide temperature range using an air-fuel mixture under conditions such that premature reaction of said mixture is prevented.
BACKGROUND OF THE INVENTION Although gas fueled heaters or igniters such as, for example, those described in US. 3,307,609 and US. 3,223,- 165, are very satisfactory under certain conditions of use, in many areas of the world where it is desired to use such devices there is no gas source readily available. It has been suggested that fuels such as LPG be used under these circumstances. However, we have found that they are entirely unsatisfactory and cannot be employed for more than a period of six to eight hours because of excessive coke formation in the vicinity of the burner.
Other catalytic heaters have been used such as are described in US. 3,376,932 with good results where the pressures involved were not excessive. The heater in the patent referred to, however, employed a methanol-air mixture which was formed at the surface. Although this procedure is workable at bottom hole pressures of the order of not more than about 150 p.s.i., it cannot be used conditions of high pressures, e.g., 150 to 3,000 p.s.i. because the methanol cannot be vaporized to the desired extent under the existing bottom hole pressure and temperature. Pre-mixing of air and alcohol at the surface also favors premature ignition of the air-fuel mixture up the hole away from the level where it is desired to supply the heat.
DESCRIPTION OF THE INVENTION Briefly, our invention comprises an elongated hollow container closed at its lower end and perforated along a portion of the sides thereof exposing catalyst in the container which fills the annular space formed by inserting in said container a tube of relatively small diameter, said tube running substantially the length of the container. Near the base of the centrally spaced tube are openings which place the annular space in communication with the interior of the tube. Air and a suitable liquid fuel such as, for example, methanol, are separately injected into a mixing chamber at the top of said tube and the resulting mixture is forced through a relatively small ice orifice at the top of said tube. Velocities are used so that the mixture in effect is atomized and then flows down to the bottom of said tube into the aforesaid annular space contacting a bed of suitable oxidation catalyst resulting in a self-starting reaction. Hot production of combustion emerge from the container through perforations or ports extending a length over the heater surface corresponding to about the depth of the catalyst bed contained in the heater. The hot products of combustion make direct contact with the carbonaceous deposit such as coal, oil shale, petroleum, etc., that is to be ignited. The catalyst container uses no cover or shield. On addition of heat in quantities corresponding to about 1 million B.t.u. per foot of formation to be ignited, it generally will be found that a satisfactory combustion zone has been established.
DESCRIPTION OF THE DRAWINGS FIGURE 1 is an overall elevational view, partly in section, showing the igniter in place in a well and the arrangement of auxiliary equipment required for operation of the igniter.
FIGURE 2 is a detailed sectional view of our novel catalytic heater showing the latter resting in the lower portion of tubing string having an appropriate seating or landing collar to hold the heater.
FIGURE 3 is a sectional plan view of FIGURE 2 taken along line 3-3.
FIGURE 4 is a fragmentary elevational view showing the arrangement of air injection slots 41 in conduit 40.
FIGURE 5 is a sectional plan view of FIGURE 4 taken along line 55.
Referring again to FIGURE 1, a cased well 2 penetrates a tar sand deposit 4. Within the well is tubing 6 extending down to the uppermost of casing perforations 8. Tubing 6 is held in a fixed position by means of centralizer 10. Catalytic heater 12 hangs from the lowermost end of air tubing 6 and is positioned opposite the main bank of perforations 8. Running parallel to tubing 6 is fuel (methanol) line 14 equipped with filter 16 and check valve 18. Line 14 leads into the base of tubing 6 where a fuel-air mixture is formed before entering heater 12. After ignition is established, heater 12 and associated equipment are pulled from the well and combustion is effected by injection of air at high pressures via line 20.
FIGURE 2 is a detailed sectional view of one embodiment of heater 12 shown generally in FIGURE 1 and comprises a catalyst basket 30 having ports 32. Catalytic heater 12 rests in seating collar 34 which is in turn threadedly engaged to tubing 6. The upper portion of heater 12 includes a seating plug 36 having thin Walled sides 38 which extend downwardly and fit by friction within the upper portion of basket 30. The entire heating unit is held in substantially gas tight relation with the interior of seating collar 34 by means of O-rings 35 which are constructed out of any of a number of high temperature resistant synthetic rubbers.
Extending into the top portion of seating plug 36 is inlet line 40, the uppermost portion of which is threaded and adapted to receive a suitable plug (not shown) making it possible to raise and lower the heater assembly on a wireline. Near the base of line 40 are three air injection ports or slots 41. Line 40 is held in position by means of nut 42. The lower end of line 40 has an annular base 44 which serves as the top enclosure for catalyst basket 30. By adjusting nut 42 base 44 can be made to seat flush against inner shoulders 46 of seating plug 36. Positioned in the center of base 44 is orifice 48 which is of smaller diameter than tube 50. The latter forms an annular space 52 with the walls of basket 30 and this space is filled with a suitable oxidation catalyst slightly above the uppermost row of ports 32. At the base of tube 50 is another set of perforations 54 through which 3 the methanol-air mixture flows from tube 50 into catalyst bed 56.
At one side of seating collar 34 is liquid methanol injection port 58 which receives line 14 shown in FIGURE 1. Liquid methanol flows through channels 60 meeting a down flowing stream of air entering from tubing 6 via ports 41. The resulting mixture of air and methanol is forced through orifice 48 thus assuring atomization of the alcohol. Orifice 48 also serves as a flashback arrester to prevent premature reaction of air and alcohol. The airalcohol mixture flows downwardly through tube 50 out of ports 54 and contacts catalyst 56 forming combustion gases having temperature of the order of 500 F. to 1500 F. depending, of course, on the composition of the airmethanol mixture. These hot gases flow out of heater 12 via ports 32 contacting the petroleum deposits and usually within 30-40 hours heat the formation to a depth of .5 to about 1 foot to ignition temperature. Space 52 above the upermost row of ports 32 may, if desired, be filled with inert temperature resistant material such as, for example, ceramic, or be left unfilled. It is generally undesirable to have catalyst in this space owing to the heat that would be generated, possibly resulting in premature reaction of the air-methanol mixture as it entered orifice 48.
The heater may vary widely in its dimensions. However, the one that we have used with success and which was employed in the example mentioned below was approximately 8 feet in length and employed a catalyst bed of about 6 feet in depth. Another important dimension is the ratio of diameters of the conduct 50 to the orifice opening 48. It has been found for general purposes that the ratio of conduit diameter to that of the orifice opening should range between about 4:1 to about 6:1. Other dimensions of the apparatus used referring specifically to the embodiment illustrated in FIGURE 2 were as follows:
Orifice 48 .36 ID.
Ports 41 1 inch long x .25 inch wide Line 40 .93 inch I.D.
Tube 50 1.98 I.D.
Channels 60 .25 inch LD.
In using the above mentioned heater to ignite an underground tar sand formation the latter was first fractured after which the tar was ignited through casing perforations. Good ignition was accomplished by injection of seven million B.t.u. based on the quantity of alcohol (119 gallons) consumed. The ignition required about 34 hours with an alcohol rate of approximately 3.6 gallons per hour and an air rate of 15,000 standard cubic feet per hour. Within a few minutes after the flow of air and methanol was initiated the temperature downhole at a depth of 1106 feet started to increase. After about 30 minutes the temperature at 1103 feet of depth rose to between 1400 and 1500 F. on two different occasions. The temperature was decreased each time by shutting off the alcohol feed for about a minute. Generally the maximum downhole temperature during the ignition was below 1,050 F.
Air injection pressure to the well started at about 500 p.s.i.g. and gradually increased to 810 p.s.i.g. after 26 hours from the start of ignition, then dropped to 765 p.s.i. in one hour. At this same time the temperature at 1105 feet increased and reached 1200" F. An attempt to lower this temperature by decreasing the alcohol rate, reducing fuel alcohol rate as previously employed, was not successful. A temperature survey showed a peak temperature of 1500 F. at 1096 feet. This was about three feet above the igniter seating nipple. After decreasing the alcohol rate to about half, the temperature decreased to 1360 F.
The catalyst used in heaters of the type described above may be selected from a wide list of materials and form no part of out invention. Typical catalysts suitable for oxidation of air-fuel mixtures contemplated herein include platinum, palladium, rhodium, etc. These materials are preferably used in very dilute concentrations, e.g., 0.05 to about 0.5 weight percent and may be supported on materials having a large surface area such as pumice, aluminum oxide, metal wool, for example, stainless steel wool, and the like Supported platinum oxide, which is a suitable catalyst for this purpose, is manufactured by the Chemitron Corporation of Louisville, Kentucky and is identified as 643. This catalyst is available in A x A: tablets which are well suited for use in the igniter of our invention. In operation the portion of catalyst apparently entering into the oxidation reaction is that with which the feed mixture first comes in contact.
The materials employed in fabricating the igniter covered by our invention are generally readily available. Ordinarily we prefer to use the heat resistant stainless steels, such as 304 stainless, or similar alloys.
We claim:
1. In a catalytic igniter for underground carbonaceous deposits the combination comprising an elongated hollow uncovered container closed at its lower end and perforated along a portion of the sides thereof, a hollow tube of substantially smaller diameter than the diameter of said container afiixed to and perforated near said lowermost end, said tube forming an annular space with the interior of said container, a conduit afiixed to the uppermost portion of said tube forming essentially a gas tight seal at the upper end of said annular space, an orifice at the uppermost end of said tube having a diameter less than that of said tube, a first means communicating with said orifice via said conduit for the introduction of a fluid, and a second means adjacent said orifice separate from said first means communicating with said orifice for introduction of a fluid into said orifice.
2. The igniter of claim 1 wherein said annular space contains a catalyst suitable for the oxidation of methanol.
3. In a catalytic igniter for underground carbonaceous deposits the combination comprising an elongated hollow uncovered container closed at its lower end and perforated along a portion of the sides thereof, a seating plug afiixed to the uppermost end of said container, a seating collar holding said plug in essentially gas tight relationship, a conduit within and spaced centrally of said container defining an annular space between said container and said conduit, one end of said conduit being secured to said closed end and running substantially the length of said container, means near the lowermost end of said conduit providing direct communication with said annular space, an opening at the opposite end of said conduit smaller in diameter than the diameter of said conduit, and two separate means for the introduction of a fluid both of which are in direct communication with said opening.
4. The igniter of claim 3 wherein the ratio of said conduit diameter to that of said opening ranges from about 4:1 to about 6:1.
References Cited UNITED STATES PATENTS 2,985,240 5/1961 Emery 166--59 3,113,623 12/1963 Krueger 16659 3,223,166 12/1965 Hunt et al 16659 X 3,244,231 4/ 1966 Grekel et al 16659 X 3,272,262 9/1966 Hujsak 16659 X 3,376,932 4/1968 Hunt 166-59 DAVID H. BROWN, Primary Examiner US. Cl. X.R. 166-300
US753383A 1968-08-19 1968-08-19 Bottom hole catalytic heater Expired - Lifetime US3497000A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75338368A 1968-08-19 1968-08-19

Publications (1)

Publication Number Publication Date
US3497000A true US3497000A (en) 1970-02-24

Family

ID=25030398

Family Applications (1)

Application Number Title Priority Date Filing Date
US753383A Expired - Lifetime US3497000A (en) 1968-08-19 1968-08-19 Bottom hole catalytic heater

Country Status (1)

Country Link
US (1) US3497000A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680636A (en) * 1969-12-30 1972-08-01 Sun Oil Co Method and apparatus for ignition and heating of earth formations
US3780803A (en) * 1971-05-17 1973-12-25 Sun Oil Co Downhole control valve for catalytic wellbore heaters
US3817332A (en) * 1969-12-30 1974-06-18 Sun Oil Co Method and apparatus for catalytically heating wellbores
US3880235A (en) * 1969-12-30 1975-04-29 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US4250962A (en) * 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4471839A (en) * 1983-04-25 1984-09-18 Mobil Oil Corporation Steam drive oil recovery method utilizing a downhole steam generator
EP0442408A2 (en) * 1990-02-12 1991-08-21 Forschungszentrum Jülich Gmbh Device for sealing a steam injection pipe in an oil layer
US5443118A (en) * 1994-06-28 1995-08-22 Amoco Corporation Oxidant enhanced water injection into a subterranean formation to augment hydrocarbon recovery
US20020029882A1 (en) * 2000-04-24 2002-03-14 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20030062164A1 (en) * 2000-04-24 2003-04-03 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030062154A1 (en) * 2000-04-24 2003-04-03 Vinegar Harold J. In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066644A1 (en) * 2000-04-24 2003-04-10 Karanikas John Michael In situ thermal processing of a coal formation using a relatively slow heating rate
US20030085034A1 (en) * 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030130136A1 (en) * 2001-04-24 2003-07-10 Rouffignac Eric Pierre De In situ thermal processing of a relatively impermeable formation using an open wellbore
US20030137181A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US20030173072A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030178191A1 (en) * 2000-04-24 2003-09-25 Maher Kevin Albert In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20040140095A1 (en) * 2002-10-24 2004-07-22 Vinegar Harold J. Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040193082A1 (en) * 2003-03-28 2004-09-30 Cofre Ruth P. Dynamic position adjustment device for portions of the human body
US20060201668A1 (en) * 2005-03-09 2006-09-14 391854 Alberta Ltd. Heat exchanging apparatus
US20090183868A1 (en) * 2008-01-21 2009-07-23 Baker Hughes Incorporated Annealing of materials downhole
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20110209869A1 (en) * 2010-02-16 2011-09-01 Smith David R Method and apparatus to release energy in a well
US20120205109A1 (en) * 2008-11-06 2012-08-16 American Shale Oil, Llc Heater and method for recovering hydrocarbons from underground deposits
EP3179166A1 (en) * 2015-12-08 2017-06-14 Wintershall Holding GmbH Device and method for thermo-mechanical treatment of underground geologic formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985240A (en) * 1959-05-21 1961-05-23 Sinclair Oil & Gas Company Bottom hole burner
US3113623A (en) * 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3223166A (en) * 1963-05-27 1965-12-14 Pan American Petroleum Corp Method of controlled catalytic heating of a subsurface formation
US3244231A (en) * 1963-04-09 1966-04-05 Pan American Petroleum Corp Method for catalytically heating oil bearing formations
US3272262A (en) * 1964-01-23 1966-09-13 Pan American Petroleum Corp Ignition of thick pay formations
US3376932A (en) * 1966-03-04 1968-04-09 Pan American Petroleum Corp Catalytic heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985240A (en) * 1959-05-21 1961-05-23 Sinclair Oil & Gas Company Bottom hole burner
US3113623A (en) * 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3244231A (en) * 1963-04-09 1966-04-05 Pan American Petroleum Corp Method for catalytically heating oil bearing formations
US3223166A (en) * 1963-05-27 1965-12-14 Pan American Petroleum Corp Method of controlled catalytic heating of a subsurface formation
US3272262A (en) * 1964-01-23 1966-09-13 Pan American Petroleum Corp Ignition of thick pay formations
US3376932A (en) * 1966-03-04 1968-04-09 Pan American Petroleum Corp Catalytic heater

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680636A (en) * 1969-12-30 1972-08-01 Sun Oil Co Method and apparatus for ignition and heating of earth formations
US3817332A (en) * 1969-12-30 1974-06-18 Sun Oil Co Method and apparatus for catalytically heating wellbores
US3880235A (en) * 1969-12-30 1975-04-29 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US3780803A (en) * 1971-05-17 1973-12-25 Sun Oil Co Downhole control valve for catalytic wellbore heaters
US4250962A (en) * 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4471839A (en) * 1983-04-25 1984-09-18 Mobil Oil Corporation Steam drive oil recovery method utilizing a downhole steam generator
EP0442408A2 (en) * 1990-02-12 1991-08-21 Forschungszentrum Jülich Gmbh Device for sealing a steam injection pipe in an oil layer
EP0442408A3 (en) * 1990-02-12 1991-12-18 Forschungszentrum Juelich Gmbh Device for sealing a steam injection pipe in an oil layer
US5443118A (en) * 1994-06-28 1995-08-22 Amoco Corporation Oxidant enhanced water injection into a subterranean formation to augment hydrocarbon recovery
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020035307A1 (en) * 2000-04-24 2002-03-21 Vinegar Harold J. In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020029884A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020029881A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020033253A1 (en) * 2000-04-24 2002-03-21 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources
US20020033255A1 (en) * 2000-04-24 2002-03-21 Fowler Thomas David In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20030164234A1 (en) * 2000-04-24 2003-09-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20020036103A1 (en) * 2000-04-24 2002-03-28 Rouffignac Eric Pierre De In situ thermal processing of a coal formation by controlling a pressure of the formation
US20020038069A1 (en) * 2000-04-24 2002-03-28 Wellington Scott Lee In situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020036084A1 (en) * 2000-04-24 2002-03-28 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036089A1 (en) * 2000-04-24 2002-03-28 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources
US20020036083A1 (en) * 2000-04-24 2002-03-28 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020039486A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038705A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038709A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038712A1 (en) * 2000-04-24 2002-04-04 Vinegar Harold J. In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020038710A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020040177A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020040780A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020040779A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020046838A1 (en) * 2000-04-24 2002-04-25 Karanikas John Michael In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020049360A1 (en) * 2000-04-24 2002-04-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020046832A1 (en) * 2000-04-24 2002-04-25 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020050353A1 (en) * 2000-04-24 2002-05-02 Berchenko Ilya Emil In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020050356A1 (en) * 2000-04-24 2002-05-02 Vinegar Harold J. In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050352A1 (en) * 2000-04-24 2002-05-02 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to control product composition
US20020050357A1 (en) * 2000-04-24 2002-05-02 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020052297A1 (en) * 2000-04-24 2002-05-02 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020053435A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020053431A1 (en) * 2000-04-24 2002-05-09 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020053429A1 (en) * 2000-04-24 2002-05-09 Stegemeier George Leo In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20030164238A1 (en) * 2000-04-24 2003-09-04 Vinegar Harold J. In situ thermal processing of a coal formation using a controlled heating rate
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020062052A1 (en) * 2000-04-24 2002-05-23 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US20020062051A1 (en) * 2000-04-24 2002-05-23 Wellington Scott L. In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062959A1 (en) * 2000-04-24 2002-05-30 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020062961A1 (en) * 2000-04-24 2002-05-30 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020066565A1 (en) * 2000-04-24 2002-06-06 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020074117A1 (en) * 2000-04-24 2002-06-20 Shahin Gordon Thomas In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020076212A1 (en) * 2000-04-24 2002-06-20 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320A1 (en) * 2000-04-24 2002-07-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753A1 (en) * 2000-04-24 2002-08-15 Vinegar Harold J. In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303A1 (en) * 2000-04-24 2002-08-29 Vinegar Harold J. Production of synthesis gas from a hydrocarbon containing formation
US20020132862A1 (en) * 2000-04-24 2002-09-19 Vinegar Harold J. Production of synthesis gas from a coal formation
US20020170708A1 (en) * 2000-04-24 2002-11-21 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US20020191969A1 (en) * 2000-04-24 2002-12-19 Wellington Scott Lee In situ thermal processing of a coal formation in reducing environment
US20020191968A1 (en) * 2000-04-24 2002-12-19 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20030006039A1 (en) * 2000-04-24 2003-01-09 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626A1 (en) * 2000-04-24 2003-01-30 Vinegar Harold J. In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699A1 (en) * 2000-04-24 2003-02-06 Vinegar Harold J. In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872A1 (en) * 2000-04-24 2003-03-20 De Rouffignac Eric Pierre In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062164A1 (en) * 2000-04-24 2003-04-03 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030062154A1 (en) * 2000-04-24 2003-04-03 Vinegar Harold J. In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066644A1 (en) * 2000-04-24 2003-04-10 Karanikas John Michael In situ thermal processing of a coal formation using a relatively slow heating rate
US20030085034A1 (en) * 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20030141065A1 (en) * 2000-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of hydrocarbons within a relatively permeable formation
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US20030178191A1 (en) * 2000-04-24 2003-09-25 Maher Kevin Albert In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040015023A1 (en) * 2000-04-24 2004-01-22 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20040069486A1 (en) * 2000-04-24 2004-04-15 Vinegar Harold J. In situ thermal processing of a coal formation and tuning production
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US20020029882A1 (en) * 2000-04-24 2002-03-14 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6782947B2 (en) 2001-04-24 2004-08-31 Shell Oil Company In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US6877555B2 (en) * 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030130136A1 (en) * 2001-04-24 2003-07-10 Rouffignac Eric Pierre De In situ thermal processing of a relatively impermeable formation using an open wellbore
US20030137181A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20080314593A1 (en) * 2001-04-24 2008-12-25 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20060213657A1 (en) * 2001-04-24 2006-09-28 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US20030192691A1 (en) * 2001-10-24 2003-10-16 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using barriers
US20030196789A1 (en) * 2001-10-24 2003-10-23 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196788A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20040211569A1 (en) * 2001-10-24 2004-10-28 Vinegar Harold J. Installation and use of removable heaters in a hydrocarbon containing formation
US20030183390A1 (en) * 2001-10-24 2003-10-02 Peter Veenstra Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030173072A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Forming openings in a hydrocarbon containing formation using magnetic tracking
US20040146288A1 (en) * 2002-10-24 2004-07-29 Vinegar Harold J. Temperature limited heaters for heating subsurface formations or wellbores
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US20050006097A1 (en) * 2002-10-24 2005-01-13 Sandberg Chester Ledlie Variable frequency temperature limited heaters
US20040144540A1 (en) * 2002-10-24 2004-07-29 Sandberg Chester Ledlie High voltage temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US20040140095A1 (en) * 2002-10-24 2004-07-22 Vinegar Harold J. Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040193082A1 (en) * 2003-03-28 2004-09-30 Cofre Ruth P. Dynamic position adjustment device for portions of the human body
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7293606B2 (en) 2005-03-09 2007-11-13 391854 Alberta Limited Heat exchanging apparatus
US20060201668A1 (en) * 2005-03-09 2006-09-14 391854 Alberta Ltd. Heat exchanging apparatus
US8020622B2 (en) * 2008-01-21 2011-09-20 Baker Hughes Incorporated Annealing of materials downhole
US20090183868A1 (en) * 2008-01-21 2009-07-23 Baker Hughes Incorporated Annealing of materials downhole
US20120205109A1 (en) * 2008-11-06 2012-08-16 American Shale Oil, Llc Heater and method for recovering hydrocarbons from underground deposits
US9127541B2 (en) * 2008-11-06 2015-09-08 American Shale Oil, Llc Heater and method for recovering hydrocarbons from underground deposits
US20110209869A1 (en) * 2010-02-16 2011-09-01 Smith David R Method and apparatus to release energy in a well
US8789591B2 (en) * 2010-02-16 2014-07-29 David R. Smith Method and apparatus to release energy in a well
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
EP3179166A1 (en) * 2015-12-08 2017-06-14 Wintershall Holding GmbH Device and method for thermo-mechanical treatment of underground geologic formations

Similar Documents

Publication Publication Date Title
US3497000A (en) Bottom hole catalytic heater
US3254721A (en) Down-hole fluid fuel burner
US3050123A (en) Gas fired oil-well burner
US3181613A (en) Method and apparatus for subterranean heating
US2997105A (en) Burner apparatus
US3244231A (en) Method for catalytically heating oil bearing formations
US3982592A (en) In situ hydrogenation of hydrocarbons in underground formations
US3113623A (en) Apparatus for underground retorting
US3004603A (en) Heater
US3095031A (en) Burners for use in bore holes in the ground
US2895555A (en) Gas-air burner with check valve
US4050515A (en) Insitu hydrogenation of hydrocarbons in underground formations
US3241615A (en) Downhole burner for wells
US3817332A (en) Method and apparatus for catalytically heating wellbores
US20070042306A1 (en) Apparatus for igniting combustible mediums
US5488990A (en) Apparatus and method for generating inert gas and heating injected gas
US2913050A (en) Preventing explosions in bore holes during underground combustion operations for oil recovery
US3410347A (en) Heater apparatus for use in wells
US3376932A (en) Catalytic heater
US2985240A (en) Bottom hole burner
US3055427A (en) Self contained igniter-burner and process
US3223165A (en) Method for heating or igniting well formations with pyrophoric materials
US3712375A (en) Method for catalytically heating wellbores
US3420300A (en) Method and apparatus for heating a subsurface formation
US3713482A (en) Gas flow regulator for wellbore catalytic heaters