US3493459A - Complex multilobal textile filament - Google Patents

Complex multilobal textile filament Download PDF

Info

Publication number
US3493459A
US3493459A US795900A US3493459DA US3493459A US 3493459 A US3493459 A US 3493459A US 795900 A US795900 A US 795900A US 3493459D A US3493459D A US 3493459DA US 3493459 A US3493459 A US 3493459A
Authority
US
United States
Prior art keywords
filament
spinneret
filaments
melt
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US795900A
Inventor
Euell K Mcintosh
Paul T Howse Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3493459A publication Critical patent/US3493459A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • a TORNE Y United States Patent O Int. (:1. D02g 3/22 U.S. Cl. 161-178 4 Claims ABSTRACT OF THE DISCLOSURE
  • a multi-lobal textile filament is disclosed, having a centrally axially evtending hole and a smaller axially extending hole in each of the filaments lobes, about 20-50% of the total cross sectional area being void.
  • melt-spun filaments with one or more continuous axially extending holes in order for the filaments to have increased cover when used in the construction of fabrics and the like.
  • a practical way of producing such filaments is to use an orificial grouping of a plurality of elongated segments in a spinneret permitting passage therethrough of molten fiber-forming polymer for each filament produced, such as disclosed in U.S. Patent 3,174,364.
  • the segments are disposed with respect to each other within each orificial group in such a manner that the ends of the plurality of molten streams of polymer extruded through the segments within the orificial group coalesce endwise shortly after issuing from the orifices.
  • a further object is to provide such man-made filaments as just described.
  • a melt-spinning spinneret is made by cutting in a spinneret blank at least one hole of two different diameters.
  • the hole extends from the melt face to the extrusion face with the larger diameter-hole portion opening at the melt face and the smaller diameter hole portion opening at the extrusion face.
  • an elongated insert member of two like outside diameters are shaped and force-fitted into the holes.
  • the length of the insert is preferably greater than the thickness of the spinneret.
  • a counterbore is cut in the larger end of the insert.
  • a series of small passageways are cut between the counterbore and the smaller end of the insert.
  • the small passageways are arranged to produce a complex hollow textile filament by the coalescence of a cluster of small streams of polymer normally issuing therefrom.
  • the spinneret is placed in a conventional spinneret block of a melt-spinning apparatus.
  • An annular member having exhaust ports for directing a stream of coolant onto the coalescing filaments is positioned around the extending ends of the inserts to provide controlled cooling of the streams of molten polymer forced through the spinneret orifices.
  • the resulting filament is multilobal and has a central axially extending hole and a smaller axially extending hole in each of the lobes of the filament.
  • the total cross-sectional area of the filament is 20-50% void; and the cross-sectional area of each of the voids in the lobes being about 1075% of the cross-sectional area of the central void.
  • FIGURE 1 is a cross-sectional view of the spinneret assembly
  • FIGURE 2 is a bottom view of the spinneret plate and the distribution system of the coolant for solidifying the filaments;
  • FIGURE 3 is an enlarged cross-sectional view f the annular ring in the coolant distribution system
  • FIGURE 4 is a bottom view of part of a spinneret plate showing one arrangement of an orificial group for producing a filament of multiple lobes and multiple holes;
  • FIGURE 5 is a view of a second embodiment of a group of orifices
  • FIGURE 6 is a cross-sectional View of a melt-spun filament produced in accordance with the present invention.
  • FIGURE 1 With reference to FIGURE 1 there is shown a spinneret assembly adapted for melt spinning multilobal filaments having a plurality of continuous axially extending holes.
  • the assembly comprises a spinneret block 1 which is a part of conventional melt spinning apparatus.
  • a spin neret plate 2 is carried in the block in sealed relationship.
  • a plurality of holes 3 extend from the melt face 4 of the spinneret to the extrusion face 5 thereof.
  • the holes are provided with an upper hole portion 6 of larger diameter and a lower hole portion 7 of smaller diameter.
  • This elongated insert member has portions of different outside diameters corresponding to upper and lower hole portions.
  • a counterbore 10 extends from the larger end of the insert; and a plurality of small complex extrusion orifices 11 extend from the smaller end of the insert to establish communication with the corresponding counterbore.
  • the smaller end of the insert extends slightly below the plane of the extrusion face of the spinneret face.
  • An annular ring 12 is positioned in encircling relation with each of the portions of the insert member that extend below the plane of the spinneret plate.
  • a source of coolant 13 is provided; and the coolant in the form of air, steam, inert gas, water and the like is supplied through a manifold distributing system 14 to the individual rings.
  • the rings have an exhaust port 15 in the form of an inwardly opening annular slit from which the coolant exists and is directed onto the filaments to solidify the filaments as desired. Where a filament corresponding more closely to the shape assumed at coalescence is wanted, one may induce a quicker quenching of the melt spun filament by providing an increased rate of heat exchange.
  • the exit angle a of the coolant can be any suitable angle of to 80.
  • the plane of the bottom of the insert member will normally be below the lowest point of the ring. In this manner the bottom of the insert member will be easily accessible for removal of any undesirable polymer deposits that may form on the edges of the orifices during spinning.
  • the exit angle requires the ring to be below the face of the capillaries in operation, the ring and distribution system should be designed so as to be recessed against the face of the spinneret during cleaning of the insert member.
  • the distribution system 14 includes a conduit 16 connecting the source of coolant supply 13 to distributor 17 from which the coolant is apportioned to the rings 12 via smaller conduits 18.
  • FIGURE 4 shows one preferred orificial grouping for making the multi-hole, multi-lobe filament of the present invention.
  • three elongated extrusion orifices 20 are cut in insert 8 and arranged in a segmented pattern.
  • Six elongated orifices 21 arranged in pairs corresponding in number to the number of lobes in the filaments branch outwardly from the annularly arranged orifices.
  • the two branching orifices of each pair are bent to provide closely-spaced relation at the ends thereof.
  • All the orifices of the group are spaced and arranged to provide coalescence of the polymer streams normally issuing therefrom into filaments having multiple lobes and axially extending multiple holes.
  • FIGURE shows another preferred orificial grouping for making the type of filaments described herein.
  • six elongated extrusion orifices 22 extend through the insert 8 and are circumferentially arranged in a segmented pattern.
  • One orifice 23 branches outwardly from each of the annular arranged orifices 22.
  • the branching orifices are arranged by pairs, each member of which has ends bent together to provide closely spaced relation. Again, all the orifices of the group are spaced and arranged to provide coalescence of the polymer streams into multi-hole, multi-lobe filaments.
  • FIGURE 6 shows a cross-section of a typical filament 24 obtained by using either of the two disclosed clusters of orificial groupings.
  • the filament if completely solid, would present scintillations of reflected light normally characterizing lobular filaments of this type.
  • the filaments herein have a multitude of axially extending voids and exhibit considerably reduced scintillations. In many cases the scintillations may not be manifest at all. In any event, the scintillations are of a much finer scale and of a reduced intensity.
  • Each lobe of a filament has an axially extending hole 25 which is smaller compared to the one central axially extending hole 26.
  • the total cross-sectional area of the filament is 20-50% void; that is, the percentage of the total area defined by the periphery of the filament and made up of void area is 2050. Below 20% the amount of void area is not sufficient to provide optimum covering power in the filament; and one does not obtain a reduction in scintillation and polymer usage to be practical. Above 50% collapsing of the filament may occur unless expensive care is exercised during filament formation to prevent this.
  • the holes in the lobes are smaller than the central hole in the filaments. It is preferred that the cross-sectional area of each of the voids in the lobes be about 10-75% of the cross-sectional area of the central void in order to obtain optimum balance of greater cover and resistance to collapsing.
  • the spinneret can be used to produce filaments from any suitable substance that can be melt-spun.
  • Specific polymeric materials capable of being melt-spun include: nylon-66 (polyhexamethyleneadipamide), nylon-6 (polycaprolactam), nylon-4, nylon-610, nylon-11, and their filament-forming copolymers thereof, e.g., nylon-6/ 66, 6/610/66, etc.; polyester derived from terephthalic acid or derivatives thereof and ethylene glycol; polyethylene and polypropylene; and other fiber-forming substances.
  • the actual dimensions of the openings comprising an orificial group depend, of course, upon the characteristics of the polymer, the filament size or denier, the spinning speed, the temperature and nature of the coolant, and other factors in the particular melt-spinning processes.
  • a spinneret for melt-spinning nylon-66 into filaments described above was made from a stainless steel spinneret blank of the following dimensions. The blank had a diameter of 2.030 inches and a thickness of 0.190 inch.
  • Six orificial groupings were arranged in the spinneret and equally circumferentially spaced. The centers of each group were on a radial line 0.50 inch from the center of the spinneret blank.
  • Nylon-66 polymer of a relative viscosity of 42 was melted and forced through the spinneret holes.
  • the yarn was given an orientation stretch and woven into fabric. It was noted that the yarn had a cross-section as that in FIGURE 6.
  • the yarn provided increased cover in the fabric, and it was noted that the yarn did not have the tiny sparkle normally associated with trilobal yarn.
  • this invention represents a substantial advance in the art of spinneret manufacture and textile yarn made therefrom.
  • the spinneret can be made with facility. Yarn made therefrom has a considerably large void area. This can be accomplished at high spinning speed.
  • the prismatic luster of thet present lobular yarn is of a much finer scale than that of similar lobular yarn not having the internal void arrangement of the present invention.
  • a multilobal textile filament having a central axially extending hole and a smaller axially extending hole in each of the filaments lobes, the total cross-sectional area of the filament being about 20-50% void, the cross-sectional area of each of the voids in the lobes being about l075% of the cross-sectional area of the central void.
  • the filament of claim 1 made of nylon polymer.

Description

Feb. 3, 1970 E. K. M INTOSH ETAI- COMPLEX HUL'IILOBAL TEXTILE FILAMENT Original Filed Dec. 23,.1966
INVENTORS EUELL K. MCINTOSH PAUL T: HOWSE, JR.
A TORNE Y United States Patent O Int. (:1. D02g 3/22 U.S. Cl. 161-178 4 Claims ABSTRACT OF THE DISCLOSURE A multi-lobal textile filament is disclosed, having a centrally axially evtending hole and a smaller axially extending hole in each of the filaments lobes, about 20-50% of the total cross sectional area being void.
The present application is a divisional application of application Ser. No. 604,287, filed Dec. 23, 1966.
BACKGROUND OF THE INVENTION It is Well known to provide melt-spun filaments with one or more continuous axially extending holes in order for the filaments to have increased cover when used in the construction of fabrics and the like. A practical way of producing such filaments is to use an orificial grouping of a plurality of elongated segments in a spinneret permitting passage therethrough of molten fiber-forming polymer for each filament produced, such as disclosed in U.S. Patent 3,174,364. The segments are disposed with respect to each other within each orificial group in such a manner that the ends of the plurality of molten streams of polymer extruded through the segments within the orificial group coalesce endwise shortly after issuing from the orifices. There are definite limitations as to the total amount of void that one can obtain in a filament produced by the coalesce of small polymer streams. For example, when one uses nylon-66 polymer of normal relative viscosity of, say 30-55 and conventional filament solidifying equipment, a void percentage of the total area occupied by the filament usually will not exceed ll5%. Accordingly, it would be desirable to increase the amount of void that one can obtain at practical melt spinning speeds.
It has been suggested to provide lobes or branches in textile filaments to obtain increased cover. However, multilobal filaments possessing cross-sectional symmetry exhibit sparkles of light as can be seen from U.S. Patents 2,939,2012. Such sparkle is referred to as prismatic luster because the filaments actually reflect and refract light as a prism. In many end uses filaments having such sparkle are not desirable because fabrics made therefrom may be regarded by customers as being garish.
It has been disclosed in U.S. 2,965,925 to provide continuous axially extending holes in the lobular sections of man-made filaments. However, the prismatic phenomenon causing the garish sparkle in certain multilobar filaments still occurs. To even a greater extent it would be desirable to increase the amount of void in man-made filaments while at the same time substantially to reduce or eliminate entirely the garish sparkle.
"ice
Therefore, it is an object of this invention to provide a spinneret and a spinneret assembly adapted for the practical production of man-made filaments providing increased cover by a reduction in the amount of polymer employed to constitute a filament through the presence of a multitude of holes and lobes and exhibiting reduced prismatic luster.
A further object is to provide such man-made filaments as just described.
Other objects may become apparent.
SUMMARY OF THE INVENTION A melt-spinning spinneret is made by cutting in a spinneret blank at least one hole of two different diameters. The hole extends from the melt face to the extrusion face with the larger diameter-hole portion opening at the melt face and the smaller diameter hole portion opening at the extrusion face. For each hole an elongated insert member of two like outside diameters are shaped and force-fitted into the holes. The length of the insert is preferably greater than the thickness of the spinneret. A counterbore is cut in the larger end of the insert. A series of small passageways are cut between the counterbore and the smaller end of the insert. The small passageways are arranged to produce a complex hollow textile filament by the coalescence of a cluster of small streams of polymer normally issuing therefrom. The spinneret is placed in a conventional spinneret block of a melt-spinning apparatus. An annular member having exhaust ports for directing a stream of coolant onto the coalescing filaments is positioned around the extending ends of the inserts to provide controlled cooling of the streams of molten polymer forced through the spinneret orifices. The resulting filament is multilobal and has a central axially extending hole and a smaller axially extending hole in each of the lobes of the filament. The total cross-sectional area of the filament is 20-50% void; and the cross-sectional area of each of the voids in the lobes being about 1075% of the cross-sectional area of the central void.
DESCRIPTION OF THE DRAWING The invention can best be understood by reference to the following description taken in conjunction with the accompanying drawing in which:
FIGURE 1 is a cross-sectional view of the spinneret assembly;
FIGURE 2 is a bottom view of the spinneret plate and the distribution system of the coolant for solidifying the filaments;
FIGURE 3 is an enlarged cross-sectional view f the annular ring in the coolant distribution system;
FIGURE 4 is a bottom view of part of a spinneret plate showing one arrangement of an orificial group for producing a filament of multiple lobes and multiple holes;
FIGURE 5 is a view of a second embodiment of a group of orifices;
FIGURE 6 is a cross-sectional View of a melt-spun filament produced in accordance with the present invention.
With reference to FIGURE 1 there is shown a spinneret assembly adapted for melt spinning multilobal filaments having a plurality of continuous axially extending holes. The assembly comprises a spinneret block 1 which is a part of conventional melt spinning apparatus. A spin neret plate 2 is carried in the block in sealed relationship. A plurality of holes 3 extend from the melt face 4 of the spinneret to the extrusion face 5 thereof. The holes are provided with an upper hole portion 6 of larger diameter and a lower hole portion 7 of smaller diameter. In each of the holes 3 is an insert member 8. This elongated insert member has portions of different outside diameters corresponding to upper and lower hole portions.
A counterbore 10 extends from the larger end of the insert; and a plurality of small complex extrusion orifices 11 extend from the smaller end of the insert to establish communication with the corresponding counterbore. The smaller end of the insert extends slightly below the plane of the extrusion face of the spinneret face.
An annular ring 12 is positioned in encircling relation with each of the portions of the insert member that extend below the plane of the spinneret plate. A source of coolant 13 is provided; and the coolant in the form of air, steam, inert gas, water and the like is supplied through a manifold distributing system 14 to the individual rings. As can be seen in FIGURE 3 the rings have an exhaust port 15 in the form of an inwardly opening annular slit from which the coolant exists and is directed onto the filaments to solidify the filaments as desired. Where a filament corresponding more closely to the shape assumed at coalescence is wanted, one may induce a quicker quenching of the melt spun filament by providing an increased rate of heat exchange.
The exit angle a of the coolant can be any suitable angle of to 80. The plane of the bottom of the insert member will normally be below the lowest point of the ring. In this manner the bottom of the insert member will be easily accessible for removal of any undesirable polymer deposits that may form on the edges of the orifices during spinning. However, if the exit angle requires the ring to be below the face of the capillaries in operation, the ring and distribution system should be designed so as to be recessed against the face of the spinneret during cleaning of the insert member.
In FIGURE 2 it is seen that the distribution system 14 includes a conduit 16 connecting the source of coolant supply 13 to distributor 17 from which the coolant is apportioned to the rings 12 via smaller conduits 18.
FIGURE 4 shows one preferred orificial grouping for making the multi-hole, multi-lobe filament of the present invention. In this arrangement three elongated extrusion orifices 20 are cut in insert 8 and arranged in a segmented pattern. Six elongated orifices 21 arranged in pairs corresponding in number to the number of lobes in the filaments branch outwardly from the annularly arranged orifices. The two branching orifices of each pair are bent to provide closely-spaced relation at the ends thereof. All the orifices of the group are spaced and arranged to provide coalescence of the polymer streams normally issuing therefrom into filaments having multiple lobes and axially extending multiple holes.
FIGURE shows another preferred orificial grouping for making the type of filaments described herein. In this case six elongated extrusion orifices 22 extend through the insert 8 and are circumferentially arranged in a segmented pattern. One orifice 23 branches outwardly from each of the annular arranged orifices 22. The branching orifices are arranged by pairs, each member of which has ends bent together to provide closely spaced relation. Again, all the orifices of the group are spaced and arranged to provide coalescence of the polymer streams into multi-hole, multi-lobe filaments.
FIGURE 6 shows a cross-section of a typical filament 24 obtained by using either of the two disclosed clusters of orificial groupings. The filament, if completely solid, would present scintillations of reflected light normally characterizing lobular filaments of this type. However, the filaments herein have a multitude of axially extending voids and exhibit considerably reduced scintillations. In many cases the scintillations may not be manifest at all. In any event, the scintillations are of a much finer scale and of a reduced intensity. Each lobe of a filament has an axially extending hole 25 which is smaller compared to the one central axially extending hole 26. The total cross-sectional area of the filament is 20-50% void; that is, the percentage of the total area defined by the periphery of the filament and made up of void area is 2050. Below 20% the amount of void area is not sufficient to provide optimum covering power in the filament; and one does not obtain a reduction in scintillation and polymer usage to be practical. Above 50% collapsing of the filament may occur unless expensive care is exercised during filament formation to prevent this. The holes in the lobes are smaller than the central hole in the filaments. It is preferred that the cross-sectional area of each of the voids in the lobes be about 10-75% of the cross-sectional area of the central void in order to obtain optimum balance of greater cover and resistance to collapsing.
The spinneret can be used to produce filaments from any suitable substance that can be melt-spun. Specific polymeric materials capable of being melt-spun include: nylon-66 (polyhexamethyleneadipamide), nylon-6 (polycaprolactam), nylon-4, nylon-610, nylon-11, and their filament-forming copolymers thereof, e.g., nylon-6/ 66, 6/610/66, etc.; polyester derived from terephthalic acid or derivatives thereof and ethylene glycol; polyethylene and polypropylene; and other fiber-forming substances. By providing a proper molten polymer distribution system the spinnerets herein can be used to produce multicomponent crimpable filaments having a side-by-side arrangement of dissimilar polymers.
The actual dimensions of the openings comprising an orificial group depend, of course, upon the characteristics of the polymer, the filament size or denier, the spinning speed, the temperature and nature of the coolant, and other factors in the particular melt-spinning processes. However, a spinneret for melt-spinning nylon-66 into filaments described above was made from a stainless steel spinneret blank of the following dimensions. The blank had a diameter of 2.030 inches and a thickness of 0.190 inch. Six orificial groupings were arranged in the spinneret and equally circumferentially spaced. The centers of each group were on a radial line 0.50 inch from the center of the spinneret blank. Six flat bottom round counterbores of 0.125 inch were drilled in the spinneret to a point of 0.020 inch from the face of the spinneret. From the bottom of the counterbore to the face of the spinneret a cluster of orifices as shown in FIGURE 5 was machined using an electro-erosive technique. The circumferentially arranged slots were 0.003 inch thick and 0.027 inch long. Each was spaced 0.002 inch apart. The branching slots were 0.003 inch thick, 0.031 inch long, and were separated at their point of nearest approach of 0.003 inch. The spinneret was placed in a conventional melt-spinning equipment. The coolant supply system was installed as shown in FIGURE 2. Nitrogen gas at 68 C. was supplied to the six spinning points via the system at a rate of 5 cubic feet per minute. Nylon-66 polymer of a relative viscosity of 42 was melted and forced through the spinneret holes. The yarn was given an orientation stretch and woven into fabric. It was noted that the yarn had a cross-section as that in FIGURE 6. The yarn provided increased cover in the fabric, and it was noted that the yarn did not have the tiny sparkle normally associated with trilobal yarn.
It is apparent from the foregoing description that this invention represents a substantial advance in the art of spinneret manufacture and textile yarn made therefrom. The spinneret can be made with facility. Yarn made therefrom has a considerably large void area. This can be accomplished at high spinning speed. The prismatic luster of thet present lobular yarn is of a much finer scale than that of similar lobular yarn not having the internal void arrangement of the present invention.
We claim:
1. A multilobal textile filament having a central axially extending hole and a smaller axially extending hole in each of the filaments lobes, the total cross-sectional area of the filament being about 20-50% void, the cross-sectional area of each of the voids in the lobes being about l075% of the cross-sectional area of the central void.
2. The filament of claim 1 wherein the number of lobes is three.
3. The filament of claim 1 made of nylon polymer.
4. The filament of claim 1 wherein the nylon is nylon- 66.
6 References Cited UNITED STATES PATENTS 2,939,202 6/1960 Holland. 5 2,965,925 12/ 1960 Dietzsch. 3,095,258 6/1963 Scott 264209 ROBERT F. BURNETT, Primary Examiner 10 LINDA M. CARLIN, Assistant Examiner
US795900A 1966-12-23 1969-02-03 Complex multilobal textile filament Expired - Lifetime US3493459A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60428766A 1966-12-23 1966-12-23
US79590069A 1969-02-03 1969-02-03

Publications (1)

Publication Number Publication Date
US3493459A true US3493459A (en) 1970-02-03

Family

ID=27084631

Family Applications (1)

Application Number Title Priority Date Filing Date
US795900A Expired - Lifetime US3493459A (en) 1966-12-23 1969-02-03 Complex multilobal textile filament

Country Status (1)

Country Link
US (1) US3493459A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016450A1 (en) * 1979-03-26 1980-10-01 Teijin Limited Synthetic fur and process for preparation thereof
US4245383A (en) * 1978-11-08 1981-01-20 Baxter Travenol Laboratories, Inc. Centrifugal processing apparatus with reduced-load tubing
US4336307A (en) * 1978-01-27 1982-06-22 Teijin Limited Hollow water absorbing polyester filaments and a process for producing the same
US4376746A (en) * 1980-04-01 1983-03-15 Ametek, Inc. Formation of hollow tapered brush bristles
US4432923A (en) * 1981-07-01 1984-02-21 Bayer Aktiengesellschaft Process for the production of dry-spun hollow polyacrylonitrile fibers and filaments
EP0201812A2 (en) * 1985-05-13 1986-11-20 AlliedSignal Inc. Hollow trilobal cross-section filament
US4770938A (en) * 1985-05-13 1988-09-13 Allied Corporation Hollow trilobal cross-section filament
US5057368A (en) * 1989-12-21 1991-10-15 Allied-Signal Filaments having trilobal or quadrilobal cross-sections
US5125818A (en) * 1991-02-05 1992-06-30 Basf Corporation Spinnerette for producing bi-component trilobal filaments
US5128208A (en) * 1990-12-14 1992-07-07 E. I. Du Pont De Nemours And Company Flaggable synthetic tapered paintbrush bristles
US5129812A (en) * 1991-03-28 1992-07-14 Basf Corporation Multiple profile filaments from a single counterbore
US5208107A (en) * 1991-05-31 1993-05-04 Basf Corporation Hollow trilobal cross-section filament
US5322736A (en) * 1993-06-24 1994-06-21 Alliedsignal Inc. Hollow-trilobal cross-section filaments
EP0661391A1 (en) * 1993-12-28 1995-07-05 E.I. Du Pont De Nemours And Company Trilobal and tetralobal cross-section filaments containing voids
US5540994A (en) * 1993-02-16 1996-07-30 E. I. Du Pont De Nemours And Company Fiber identification
US5540993A (en) * 1993-02-16 1996-07-30 E. I. Du Pont De Nemours And Company Relating to fiber identification
US5591525A (en) * 1994-04-07 1997-01-07 Shakespeare Polymeric cable
EP0982414A1 (en) * 1998-08-27 2000-03-01 E.I. Du Pont De Nemours And Company Multilobal hollow filaments having stiffening ribs and stiffening webs
US6048615A (en) * 1998-01-30 2000-04-11 E. I. Du Pont De Nemours And Company Filament having a trilobal cross-section and a trilobal void
US6447903B1 (en) 1998-08-27 2002-09-10 E. I. Du Pont De Nemours And Company Multilobal hollow filaments having stiffening ribs and stiffening webs
US6589653B2 (en) 2001-08-08 2003-07-08 E. I. Du Pont De Nemours And Company Filament having a quadrilobate exterior cross-section and a four-sided void
US20050095312A1 (en) * 2000-07-10 2005-05-05 Invista North America S.A R.L. Polymer filaments having profiled cross-section
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
DE102010050336A1 (en) 2009-11-09 2011-05-12 Intier Automotive Eybl Gmbh (Ebergassing) & Co. Ohg Vehicle interior trim part
EP2431514A1 (en) 2010-09-17 2012-03-21 Intier Automotive Eybl GmbH (Ebergassing) & Co. OHG Coating compound for noise attenuating lining of a motor vehicle section and method for producing same
USD841838S1 (en) 2016-11-04 2019-02-26 Mohawk Industries, Inc. Filament
US11608571B2 (en) 2016-08-18 2023-03-21 Aladdin Manufacturing Corporation Trilobal filaments and spinnerets for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939202A (en) * 1959-12-31 1960-06-07 Du Pont Synthetic polymer textile filament
US2965925A (en) * 1956-10-30 1960-12-27 Sr Otto Dietzsch Artificial hollow thread and device for making same
US3095258A (en) * 1962-06-22 1963-06-25 Du Pont Melt spinning process for producing hollow-core filament

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965925A (en) * 1956-10-30 1960-12-27 Sr Otto Dietzsch Artificial hollow thread and device for making same
US2939202A (en) * 1959-12-31 1960-06-07 Du Pont Synthetic polymer textile filament
US3095258A (en) * 1962-06-22 1963-06-25 Du Pont Melt spinning process for producing hollow-core filament

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336307A (en) * 1978-01-27 1982-06-22 Teijin Limited Hollow water absorbing polyester filaments and a process for producing the same
US4245383A (en) * 1978-11-08 1981-01-20 Baxter Travenol Laboratories, Inc. Centrifugal processing apparatus with reduced-load tubing
EP0016450A1 (en) * 1979-03-26 1980-10-01 Teijin Limited Synthetic fur and process for preparation thereof
US4376746A (en) * 1980-04-01 1983-03-15 Ametek, Inc. Formation of hollow tapered brush bristles
US4432923A (en) * 1981-07-01 1984-02-21 Bayer Aktiengesellschaft Process for the production of dry-spun hollow polyacrylonitrile fibers and filaments
EP0201812A3 (en) * 1985-05-13 1987-07-29 Allied Corporation Hollow trilobal cross-section filament
EP0201812A2 (en) * 1985-05-13 1986-11-20 AlliedSignal Inc. Hollow trilobal cross-section filament
US4770938A (en) * 1985-05-13 1988-09-13 Allied Corporation Hollow trilobal cross-section filament
US5057368A (en) * 1989-12-21 1991-10-15 Allied-Signal Filaments having trilobal or quadrilobal cross-sections
US5128208A (en) * 1990-12-14 1992-07-07 E. I. Du Pont De Nemours And Company Flaggable synthetic tapered paintbrush bristles
US5125818A (en) * 1991-02-05 1992-06-30 Basf Corporation Spinnerette for producing bi-component trilobal filaments
EP0498220A2 (en) * 1991-02-05 1992-08-12 Basf Corporation Spinnerette for producing bi-component trilobal filaments
EP0498220A3 (en) * 1991-02-05 1993-09-01 Basf Corporation Spinnerette for producing bi-component trilobal filaments
US5129812A (en) * 1991-03-28 1992-07-14 Basf Corporation Multiple profile filaments from a single counterbore
US5208107A (en) * 1991-05-31 1993-05-04 Basf Corporation Hollow trilobal cross-section filament
US5540994A (en) * 1993-02-16 1996-07-30 E. I. Du Pont De Nemours And Company Fiber identification
US5540993A (en) * 1993-02-16 1996-07-30 E. I. Du Pont De Nemours And Company Relating to fiber identification
US5322736A (en) * 1993-06-24 1994-06-21 Alliedsignal Inc. Hollow-trilobal cross-section filaments
WO1995000685A1 (en) * 1993-06-24 1995-01-05 Alliedsignal Inc. Hollow trilobal cross-section filaments
EP0661391A1 (en) * 1993-12-28 1995-07-05 E.I. Du Pont De Nemours And Company Trilobal and tetralobal cross-section filaments containing voids
AU674800B2 (en) * 1993-12-28 1997-01-09 E.I. Du Pont De Nemours And Company Trilobal and tetralobal cross-section filaments containing voids
US5591525A (en) * 1994-04-07 1997-01-07 Shakespeare Polymeric cable
US6048615A (en) * 1998-01-30 2000-04-11 E. I. Du Pont De Nemours And Company Filament having a trilobal cross-section and a trilobal void
US6447903B1 (en) 1998-08-27 2002-09-10 E. I. Du Pont De Nemours And Company Multilobal hollow filaments having stiffening ribs and stiffening webs
AU749162B2 (en) * 1998-08-27 2002-06-20 Invista Technologies S.A.R.L. Multilobal hollow filaments having stiffening ribs and stiffening webs
EP0982414A1 (en) * 1998-08-27 2000-03-01 E.I. Du Pont De Nemours And Company Multilobal hollow filaments having stiffening ribs and stiffening webs
WO2000012789A1 (en) * 1998-08-27 2000-03-09 E.I. Du Pont De Nemours And Company Multilobal hollow filaments having stiffening ribs and stiffening webs
US6660377B2 (en) 1998-08-27 2003-12-09 E. I. Du Pont De Nemours And Company Multilobal hollow filament carpet yarn having stiffening ribs and stiffening webs and spinneret for producing the same
US20040086594A1 (en) * 1998-08-27 2004-05-06 E.I. Du Pont De Nemours And Company Multilobal hollow filament carpet yearn having stiffening ribs and stiffening webs and spinneret for producing the same
US20050095312A1 (en) * 2000-07-10 2005-05-05 Invista North America S.A R.L. Polymer filaments having profiled cross-section
US6589653B2 (en) 2001-08-08 2003-07-08 E. I. Du Pont De Nemours And Company Filament having a quadrilobate exterior cross-section and a four-sided void
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
DE102010050336A1 (en) 2009-11-09 2011-05-12 Intier Automotive Eybl Gmbh (Ebergassing) & Co. Ohg Vehicle interior trim part
EP2431514A1 (en) 2010-09-17 2012-03-21 Intier Automotive Eybl GmbH (Ebergassing) & Co. OHG Coating compound for noise attenuating lining of a motor vehicle section and method for producing same
US11608571B2 (en) 2016-08-18 2023-03-21 Aladdin Manufacturing Corporation Trilobal filaments and spinnerets for producing the same
US11692284B2 (en) 2016-08-18 2023-07-04 Aladdin Manufacturing Corporation Trilobal filaments and spinnerets for producing the same
USD841838S1 (en) 2016-11-04 2019-02-26 Mohawk Industries, Inc. Filament
USD909628S1 (en) 2016-11-04 2021-02-02 Aladdin Manufacturing Corporation Filament

Similar Documents

Publication Publication Date Title
US3493459A (en) Complex multilobal textile filament
US3716317A (en) Pack for spinning heterofilament fibers
JPS6115163B2 (en)
US3531368A (en) Synthetic filaments and the like
US5162074A (en) Method of making plural component fibers
US3814561A (en) Spinnerets for producing multi-segment filaments
US3700545A (en) Novel synthetic multi-segmented fibers
US3457342A (en) Method and apparatus for spinning heterofilaments
US3465618A (en) Method of manufacturing a meltspinning spinneret
US2945739A (en) Process of melt spinning
US4712988A (en) Apparatus for quenching melt sprun filaments
US3135811A (en) Process and apparatus for uniformly cooling melt-spun filaments
US3387327A (en) Filament spinning apparatus
EP0662533B1 (en) High speed spinning of multicomponent fibers with high hole surface density spinnerettes and high velocity quench
US3546328A (en) Methods for the production of heterofilaments
US3109195A (en) Spinneret plate
US3780149A (en) Conjugate spinning process
JPS6197417A (en) Production of aromatic polyamide
US3585684A (en) Spinneret for making complex hollow filaments
US4429006A (en) Filament-like fibers and bundles thereof, and novel process and apparatus for production thereof
JPS6252047B2 (en)
US3549734A (en) Method of forming microfibers
US4091065A (en) Melt spinning process
CA1123280A (en) Continuous filament yarn with wool-like hand
US3861843A (en) Apparatus for forming laminar crimpable filaments