US3460405A - Epicyclic trains - Google Patents

Epicyclic trains Download PDF

Info

Publication number
US3460405A
US3460405A US653814A US3460405DA US3460405A US 3460405 A US3460405 A US 3460405A US 653814 A US653814 A US 653814A US 3460405D A US3460405D A US 3460405DA US 3460405 A US3460405 A US 3460405A
Authority
US
United States
Prior art keywords
cylinder
sump
hydraulically
annulus
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US653814A
Inventor
Norman C Simmons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
David Brown Gear Industries Ltd
Original Assignee
Brown Gear Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown Gear Ind filed Critical Brown Gear Ind
Application granted granted Critical
Publication of US3460405A publication Critical patent/US3460405A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/025Support of gearboxes, e.g. torque arms, or attachment to other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19628Pressure distributing

Definitions

  • EPICYCLIC TRAINS Filed July 17. 1967 INVENTOR NoRmAN cYRIu SIMMONS BY ⁇ Mmq-QML ATTORNEYS United States Patent 3,460,405 EPICYCLIC TRAINS Norman C. Simmons, Lockwood, England, assignor to David Brown Gear Industries Limited Filed July 17, 1967, Ser. No. 653,814 Claims priority, application Great Britain, Aug. 12, 1966, 36,165 66 Int. Cl. F16h 1/28, 57/00 US. Cl. 74-801 6 Claims ABSTRACT OF THE DISCLOSURE
  • An epicyclic gear train has an annulus torsionally supported by three piston-and-cylinder assemblies.
  • the supply ot fluid to said assemblies is controlled by a valve which is operated by angular displacement of the annulus to allow fluid to flow to a master-cylinder and then to the assemblies to control the movement of the annulus.
  • the master-cylinder incorporates a spring-loaded piston which allows limited angular displacement of the annulus with low torsional resistance thus reducing vibration.
  • the invention relates to epicyclic gear trains.
  • Previously members of epicyclic gear trains have been resiliently mounted but tend to suffer from the disadvantage of transmitting vibration through such trains.
  • the object of the invention is to minimize the transmission of vibration through epicyclic gear trains.
  • an epicyclic gear train com prises an element supported by a hydraulic mechanism of variable torsional rigidity.
  • an epicyclic gear train comprises a sun 8, planets 9, and an annulus or ring gear 10.
  • the annulus 10 is supported relative to a co-axial case 11 by three symmetrically-disposed piston-and-cylinder assemblies 12, each pivotally connected between a radially-extending lug 13 formed integrally with the annulus 10 and a radially-extending lug 14 formed integrally with the case 11.
  • Congruent ends of the piston-and-cylinder assemblies 12 all communicate hydraulically with a master-cylinder 15 rigidly secured to the case 11 and adapted to be closed at one end by a piston 16 movable against the action of a helical compression spring 17.
  • the bore 20 contains a spool 22 adapted, when 3,460,405 Patented Aug. 12, 1969 ice moved from a neutral position, to cause the master-cylinder 15 to communicate hydraulically with either the accumulator 18 or the sump 19.
  • a rod 23 pivotally connected between the spool 22 and one of the lugs 13 controls the movements of said spool.
  • he accumulator 18 and the sump 19 both communicate hydraulically with a pump 24 drivably conected to the sun 8 of the epicyclic gear train, and those ends of the piston-and-cylinder assemblies 12 not communicating hydraulically with the master-cylinder 15 all communicate hydraulically with the sump 19 via a restricted orifice 25.
  • the annulus 10 is centred by the planets 9 and is subjected to a torque, acting in the direction of the arrow A, which is counteracted by movement of the spool 22 causing the pressure of fluid in the piston-andcylinder assemblies 12 and the master-cylinder 15 to vary appropriately. Consequently, when the torque to which the annulus 10 is subjected becomes substantially constant, i.e. when the epicyclic gear train achieves steady running conditions, the spool 22 assumes its neutral position shown in the drawing.
  • the annulus 10 is eiiectively connected to the case 11 by the spring 17 which is arranged to have a very low rate to minimize the transmission of vibration.
  • Those ends of the pistonand-cylinder assemblies 12 communicating hydraulically with the sump 19 via the restricted orifice 25 act to damp down oscillations of the annulus 10.
  • the hydraulic mechanism is of very low stiffness against a small displacement of the annulus 10 but is infinitely stifi to a larger displacement thereof.
  • the hydraulic mechanism as hereinbefore described can be adapted to support any element of an epicyclic gear train and the response thereof to the initial displacement of the supported element can be accelerated by driving the pump 24 independently of the epicyclic gear train.
  • said means for supplying fluid to the master-cylinder includes a valve hydraulically connecting said master-cylinder selectively to a source of fluid at a predetermined pressure and the sump.
  • valve comprises a spool connected to said element.

Abstract

1,140,115. Toothed gearing. DAVID BROWN GEAR INDUSTRIES Ltd. 8 Aug., 1967 [12 Aug., 1966], No. 36165/66. Heading F2Q. An epicyclic gear train comprises an element supported by an hydraulic mechanism of variable torsional rigidity. As shown, an annulus 10 is supported circumferentially by three piston and cylinder assemblies 12, one end of each cylinder being connected hydraulically with a master cylinder 15, and the other end of each cylinder being connected hydraulically with a sump 19. The master cylinder 15, sump 19 and an accumulator 18 all communicate hydraulically with a bore 20 formed in a valve body 21 containing a spool 22 adapted, when moved from a neutral position, to cause the master cylinder to communicate hydraulically with either the accumulator 18 or the sump 19. The spool 22 is connected to annulus 10 by a rod 23. A pump 24, driven from a sun gear 8, is connected hydraulically to sump 19 and accumulator 18. The master cylinder 15 contains a piston 16 acted upon by a spring 17, so that effectively the annulus 10 is connected to its casing by the spring 17, and hence its torsional rigidity increases as its angular displacement increases.

Description

Aug. 12, 1969 N. c. SIMMONS 3,460,405
EPICYCLIC TRAINS Filed July 17. 1967 INVENTOR NoRmAN cYRIu SIMMONS BY \Mmq-QML ATTORNEYS United States Patent 3,460,405 EPICYCLIC TRAINS Norman C. Simmons, Lockwood, England, assignor to David Brown Gear Industries Limited Filed July 17, 1967, Ser. No. 653,814 Claims priority, application Great Britain, Aug. 12, 1966, 36,165 66 Int. Cl. F16h 1/28, 57/00 US. Cl. 74-801 6 Claims ABSTRACT OF THE DISCLOSURE An epicyclic gear train has an annulus torsionally supported by three piston-and-cylinder assemblies. The supply ot fluid to said assemblies is controlled by a valve which is operated by angular displacement of the annulus to allow fluid to flow to a master-cylinder and then to the assemblies to control the movement of the annulus. The master-cylinder incorporates a spring-loaded piston which allows limited angular displacement of the annulus with low torsional resistance thus reducing vibration.
Background of invention The invention relates to epicyclic gear trains. Previously members of epicyclic gear trains have been resiliently mounted but tend to suffer from the disadvantage of transmitting vibration through such trains.
Summary of invention The object of the invention is to minimize the transmission of vibration through epicyclic gear trains.
According to the invention, an epicyclic gear train com prises an element supported by a hydraulic mechanism of variable torsional rigidity.
Brief description of drawings The accompanying drawing, which is by way of example only, is a diagrammatic representation of a preferred form of the invention.
Description of prefered embodiment Referring now to the accompanying drawing, an epicyclic gear train comprises a sun 8, planets 9, and an annulus or ring gear 10. The annulus 10 is supported relative to a co-axial case 11 by three symmetrically-disposed piston-and-cylinder assemblies 12, each pivotally connected between a radially-extending lug 13 formed integrally with the annulus 10 and a radially-extending lug 14 formed integrally with the case 11. Congruent ends of the piston-and-cylinder assemblies 12 all communicate hydraulically with a master-cylinder 15 rigidly secured to the case 11 and adapted to be closed at one end by a piston 16 movable against the action of a helical compression spring 17. The master-cylinder 15, an accumulator 18, and a sump 19, all communicate hydraulically with a bore 20 formed in a valve body 21 rigidly secured to the case 11. The bore 20 contains a spool 22 adapted, when 3,460,405 Patented Aug. 12, 1969 ice moved from a neutral position, to cause the master-cylinder 15 to communicate hydraulically with either the accumulator 18 or the sump 19. A rod 23 pivotally connected between the spool 22 and one of the lugs 13 controls the movements of said spool. he accumulator 18 and the sump 19 both communicate hydraulically with a pump 24 drivably conected to the sun 8 of the epicyclic gear train, and those ends of the piston-and-cylinder assemblies 12 not communicating hydraulically with the master-cylinder 15 all communicate hydraulically with the sump 19 via a restricted orifice 25.
In operation, the annulus 10 is centred by the planets 9 and is subjected to a torque, acting in the direction of the arrow A, Which is counteracted by movement of the spool 22 causing the pressure of fluid in the piston-andcylinder assemblies 12 and the master-cylinder 15 to vary appropriately. Consequently, when the torque to which the annulus 10 is subjected becomes substantially constant, i.e. when the epicyclic gear train achieves steady running conditions, the spool 22 assumes its neutral position shown in the drawing. Then, as the force exerted on the piston 16 by the spring 17 is proportional to the pressure of fluid in the master-cylinder 15, the annulus 10 is eiiectively connected to the case 11 by the spring 17 which is arranged to have a very low rate to minimize the transmission of vibration. Those ends of the pistonand-cylinder assemblies 12 communicating hydraulically with the sump 19 via the restricted orifice 25 act to damp down oscillations of the annulus 10.
In effect, the hydraulic mechanism, is of very low stiffness against a small displacement of the annulus 10 but is infinitely stifi to a larger displacement thereof.
The hydraulic mechanism as hereinbefore described can be adapted to support any element of an epicyclic gear train and the response thereof to the initial displacement of the supported element can be accelerated by driving the pump 24 independently of the epicyclic gear train.
I claim:
1. The combination of an epicyclic gear train at least one element of which is movably supported by a hydraulic mechanism comprising at least three piston-andcylinder assemblies operatively connected between said element and a relatively fixed member, a master-cylinder of variable volume having a piston urged by resilient means towards the minimum volume position, and means for supplying fluid to said master-cylinder; characterized in that one end of each cylinder of said hydraulic mechanism is hydraulically connected to said master-cylinder and the other end of each said cylinder is hydraulically conected through an orifice to a sump.
2. The combination according to claim 1, further characterized in that said means for supplying fluid to the master-cylinder includes a valve hydraulically connecting said master-cylinder selectively to a source of fluid at a predetermined pressure and the sump.
3. The combination according to claim 2, further characterized in that the valve comprises a spool connected to said element.
4. The combination according to claim 3, further characterized in that the spool and associated valve passages are so dimensioned that the valve is inoperative until after a predetermined angular displacement of said element relative to the fixed member.
5. The combination according to claim 1, further characterized in that said piston-and-cylinder assemblies are pivotally conected to radially extending projections on said element and the fixed member.
6. The combination defined in claim 1, wherein said element is a ring gear and said piston-and-cylinder assemblics are cir-cumferentially spaced around said ring gear and pivotally conected at opposite ends to said ring gear and fixed member.
References Cited UNITED STATES PATENTS DONLEY J. STOCKING, Primary Examiner THOMAS C. PERRY, Assistant Examiner US. Cl. X.R.
US653814A 1966-08-12 1967-07-17 Epicyclic trains Expired - Lifetime US3460405A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB36165/66A GB1140115A (en) 1966-08-12 1966-08-12 An improvement in or relating to epicyclic gear trains

Publications (1)

Publication Number Publication Date
US3460405A true US3460405A (en) 1969-08-12

Family

ID=10385570

Family Applications (1)

Application Number Title Priority Date Filing Date
US653814A Expired - Lifetime US3460405A (en) 1966-08-12 1967-07-17 Epicyclic trains

Country Status (4)

Country Link
US (1) US3460405A (en)
DE (1) DE1650631A1 (en)
FR (1) FR1533774A (en)
GB (1) GB1140115A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654815A (en) * 1970-12-14 1972-04-11 Crane Co Mechanical gear drive
US3738031A (en) * 1971-01-21 1973-06-12 Westinghouse Air Brake Co Resiliently mounted elevator drive housing
FR2558552A1 (en) * 1984-01-24 1985-07-26 Castellani Giovanni SPEED REDUCER, PLANETARY, PROVIDED WITH A BALANCED CROWN WITH AUTOMATIC CENTERING AND ALIGNMENT
EP0274052A1 (en) * 1986-12-03 1988-07-13 Asea Brown Boveri Aktiengesellschaft Device for generating predetermined rotational vibrations in a mechanical gearing
DE19822093A1 (en) * 1998-05-16 1999-11-18 Zf Luftfahrttechnik Gmbh Stress test bed for helicopter drive
US20040154416A1 (en) * 2001-07-24 2004-08-12 Brueggemann Detlef Test bed comprising elastic connector elements for helicopter gearboxes
US20070012130A1 (en) * 2005-06-27 2007-01-18 Chevalier Steven J Gear-driven balance shaft apparatus with backlash control
US20140000398A1 (en) * 2012-06-27 2014-01-02 Caterpillar Inc. Compliant Gear Assembly Having Variable Spring Force

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2154489A (en) * 1937-09-28 1939-04-18 United Aircraft Corp Vibration damper
US2233498A (en) * 1939-01-12 1941-03-04 Wright Aeronautical Corp Resilient torque meter
US2562710A (en) * 1949-10-01 1951-07-31 Wright Aeronautical Corp Torque meter
US2715834A (en) * 1953-02-27 1955-08-23 Napier & Son Ltd Transmission gearing, including means for measuring torque
US2724266A (en) * 1950-09-30 1955-11-22 Curtiss Wright Corp Torque measuring device
US2825247A (en) * 1955-01-18 1958-03-04 Rolls Royce Torque-responsive arrangements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2154489A (en) * 1937-09-28 1939-04-18 United Aircraft Corp Vibration damper
US2233498A (en) * 1939-01-12 1941-03-04 Wright Aeronautical Corp Resilient torque meter
US2562710A (en) * 1949-10-01 1951-07-31 Wright Aeronautical Corp Torque meter
US2724266A (en) * 1950-09-30 1955-11-22 Curtiss Wright Corp Torque measuring device
US2715834A (en) * 1953-02-27 1955-08-23 Napier & Son Ltd Transmission gearing, including means for measuring torque
US2825247A (en) * 1955-01-18 1958-03-04 Rolls Royce Torque-responsive arrangements

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654815A (en) * 1970-12-14 1972-04-11 Crane Co Mechanical gear drive
US3738031A (en) * 1971-01-21 1973-06-12 Westinghouse Air Brake Co Resiliently mounted elevator drive housing
FR2558552A1 (en) * 1984-01-24 1985-07-26 Castellani Giovanni SPEED REDUCER, PLANETARY, PROVIDED WITH A BALANCED CROWN WITH AUTOMATIC CENTERING AND ALIGNMENT
EP0274052A1 (en) * 1986-12-03 1988-07-13 Asea Brown Boveri Aktiengesellschaft Device for generating predetermined rotational vibrations in a mechanical gearing
DE3641338A1 (en) * 1986-12-03 1988-09-22 Bbc Brown Boveri & Cie DEVICE FOR GENERATING DEFINED TURNS IN A MECHANICAL GEARBOX
US4825692A (en) * 1986-12-03 1989-05-02 Brown Bovery Ag Apparatus for producing torsional vibrations
DE19822093A1 (en) * 1998-05-16 1999-11-18 Zf Luftfahrttechnik Gmbh Stress test bed for helicopter drive
US6393904B1 (en) 1998-05-16 2002-05-28 Zf Luftfahrttechnik Gmbh Stress test rig for helicopter transmissions
US20040154416A1 (en) * 2001-07-24 2004-08-12 Brueggemann Detlef Test bed comprising elastic connector elements for helicopter gearboxes
US7066040B2 (en) 2001-07-24 2006-06-27 Zf Luftfahrttechnik Gmbh Test bed comprising elastic connector elements for helicopter gearboxes
DE10135976B4 (en) * 2001-07-24 2012-02-23 Zf Luftfahrttechnik Gmbh Test bench for helicopter transmissions
US20070012130A1 (en) * 2005-06-27 2007-01-18 Chevalier Steven J Gear-driven balance shaft apparatus with backlash control
US7748288B2 (en) 2005-06-27 2010-07-06 Metaldyne Bsm, Llc Gear-driven balance shaft apparatus with backlash control
US20140000398A1 (en) * 2012-06-27 2014-01-02 Caterpillar Inc. Compliant Gear Assembly Having Variable Spring Force
US8915162B2 (en) * 2012-06-27 2014-12-23 Caterpillar Inc. Compliant gear assembly having variable spring force

Also Published As

Publication number Publication date
FR1533774A (en) 1968-07-19
DE1650631A1 (en) 1970-11-05
GB1140115A (en) 1969-01-15

Similar Documents

Publication Publication Date Title
US2799995A (en) Power transmission
SU1181565A3 (en) Device for controlling transmission ratio of continuously variable v-belt regulated transmission
US2336912A (en) Power transmission and steering control for traction devices
US2920924A (en) Airplane brake control
GB1435233A (en) Clutches with a fluid and cam operated pressure modulating valve
GB1333485A (en) Hydromechanical transmission
US3460405A (en) Epicyclic trains
US3142190A (en) Ratio control system for toroidal transmission
US2424901A (en) Valve for pressure fluid servomotors
US3345882A (en) Toric race transmission units
GB1362118A (en) Hydraulic transmission with acceleration control
US3176721A (en) Hydraulic valve
US2778339A (en) By-pass valve means for hydraulic servo system
US2916927A (en) Variable speed belt drive
US2529489A (en) Torque dividing driving and control mechanism for vehicles
US3037574A (en) Vehicle driving systems
US3593592A (en) Steering gear
US2658344A (en) Rotary pump and motor hydraulic transmission
US2244850A (en) Control
US2998243A (en) Fluid suspension leveling valve
US2827974A (en) Power steering gear of the hydraulic type
US2960891A (en) Gearing for machine drives
US2675678A (en) english
US2256324A (en) Transmission
US2418625A (en) Hydraulic power transmitting mechanism