US3460248A - Method for making micromagnets - Google Patents

Method for making micromagnets Download PDF

Info

Publication number
US3460248A
US3460248A US708270A US3460248DA US3460248A US 3460248 A US3460248 A US 3460248A US 708270 A US708270 A US 708270A US 3460248D A US3460248D A US 3460248DA US 3460248 A US3460248 A US 3460248A
Authority
US
United States
Prior art keywords
micromagnets
sheet
particles
magnetic
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US708270A
Inventor
Clarence R Tate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAIRFIELD NATIONAL BANK SOUTHEAST 3RD AND DELAWARE STREET WAYNE IL A NATIONAL BANKING CORP
CLARENCE R TATE
Original Assignee
CLARENCE R TATE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US553087A external-priority patent/US3406363A/en
Application filed by CLARENCE R TATE filed Critical CLARENCE R TATE
Application granted granted Critical
Publication of US3460248A publication Critical patent/US3460248A/en
Anticipated expiration legal-status Critical
Assigned to FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY, ILLINOIS, A NATIONAL BANKING CORP. reassignment FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY, ILLINOIS, A NATIONAL BANKING CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZYEXX, INC.,
Assigned to FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWARE STREET, WAYNE, IL A NATIONAL BANKING CORP. reassignment FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWARE STREET, WAYNE, IL A NATIONAL BANKING CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ZZEXX, INC., FORMERLY THALATTA, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/375Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the position of the elements being controlled by the application of a magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated

Definitions

  • YQARENCER 7272- B MG VMML United States Patent M Int. Cl. H01f 7/06 US. Cl. 29-607 7 Claims ABSTRACT OF THE DISCLOSURE Method for producing magnetically actuatable particles comprising providing at least two moldable compositions of contrasting colors, forming the compositions into a composite sheet, hardening the sheet, inducing a constant magnetization vector in the material and fracturing the sheet into tiny magnetized multi-colored particles.
  • This invention relates to a method for forming improved micromagnets for magnetically actuatable visual display devices.
  • the present invention provides an improved method for the manufacture of magnetically orientable particles having two or more color zones.
  • the method of this invention permits high production rates using relatively simple equipment.
  • the method of this invention involves the steps of providing at least two moldable compositions of contrasting colors, at least one of which contains finely divided magnetic material of high retentivity, then forming the compositions into thin superposed layers to form a composite sheet, hardening the sheet, subjecting the magnetic material in the sheet to a magnetic field of suflicient intensity and duration to produce a constant magnetization vector in the material, and then fracturing the sheet into irregularly shaped particles equal in thickness to the thickness of the original sheet and having a broad dimension at least as great as the thickness of the sheet.
  • the fractured particles may be screened to select an optimum size range.
  • FIGURE 1 is a magnified perspective view of a typical two-colored magnetically orientable particle produced by the method of this invention.
  • FIGURE 2 is a magnified view in elevation of a magnetically orientable shaped particle having three different color zones.
  • the tiny particles are conveniently described as having a constant magnetization vector, the term including both direction and magnitude.
  • the direction of magnetization i.e., the permanent magnetic axis, may have any desired relationship to the surface color zones, as will be further described.
  • the magnetic particles shall be referred to hereinafter as micromagnets.
  • micromagnets it is preferred to suspend the micromagnets in a suspending fluid in which the micromagnets will rotate therein upon the application of a magnetic field. It is desirable to provide this fluid with a viscosity and thixotropy such that a certain minimum force must be applied in order to rotate the micromagnets. Such viscosity and thixotropy provide a degree of stability to the display device, minimizing unwanted disorientation of the micromagnets. Finely divided magnesium aluminum silicate (Bentone) may be dispersed in a light oil, for example, to provide the desired viscosity and thixotropy.
  • Micromagnets can be manufactured rapidly and economically by forming appropriately colored compositions containing magnetizable material into thin flat sheets made up of two or more distinctly colored layers.
  • different colored hardenable solutions or suspensions can be cast successively onto a smooth carrier web or other suitable casting surface to form a layered sheet.
  • the sheet is subjected to a strong magnetic field to magnetize the magnetizable material, hardened, and broken up into a finely divided state by impacting in an agitator or in other suitable fragmentizer such as a mechanical blender.
  • the order of these steps may be interchanged if desired.
  • Hardening can be accomplished by curing and/or drying the compositions until relatively brittle.
  • micromagnet 10 shown in FIGURE 1 is typical of those produced by this method. As shown, the individual micromagnets have flat, generally parallel top and bottom surfaces and irregularly shaped edges. The particles illustrated are magnetized so that the magnetic axis of each micromagnet is substantialy normal to the flat parallel surfaces.
  • Micromagnet 10 shown in FIGURE 1 has a first color 12 adjacent the north pole and a different color 14 adjacent the south pole.
  • FIGURE 2 an edge view of a three-colored micromagnet I16 which may be made by a similar procedure to that just described.
  • Micromagnet 16 is provided with a first color 18, for example blue, on the surface ad jacent to the north pole and second color 20, for example White, on the surface adjacent the south pole.
  • Sandwiched between layers 18 and 20 is a third coroled layer 22, for example red.
  • micromagnet 16 When used in a display device micromagnet 16 will present its blue colored surface when the south pole of a magnet is passed over the display device and its. white colored surface when a north pole of a magnet is passed in front of the display device.
  • a magnet having closely adjacent north and south poles, passed over the surface, will orient the micromagnets between its poles to an edgewise position to display a mark of a third color, red.
  • the colors may be selected to produce other colors in combination. For example, a yellow layer and a blue layer produces green when oriented to blend, and shades and blends may be also produced by orienting the micromagnets to intermediate degrees, the activating magnetic force in this case being of a strength and duration insufficient to cause a full 90 or 180 orientation.
  • micromagnets of this invention may be carried in a liquid suspension medium or used in dry powder form and the external activating magnetic force may be that from a permanent magnet or from an electrical field.
  • the micromagnets may be spread dry on a sheet of paper, for example, and an external activating magnetic force passed under the carrier to produce a visual display.
  • Such axes may be of equal or, more preferably, of differing strengths, thus making it possible to control the orientation of the particles in more than one direction.
  • the same effect can be produced by forming two or more sheets of contrasting color, magnetizing the sheets in different directions, then laminating the sheets and fracturing the sheets to produce particles having multiple magnetic axes.
  • particles having three color zones could be formed in which the two outer zones are white and the middle Zone is black having magnetic axes parallel to the layers.
  • Such particles when lying at random would present a predominantly white viewing surface on which a black line could be produced by applying to the surface thereof either a north or south pole magnet.
  • the magnetic strength of the particles can be varied by changing the proportion or the type of magnetizable material added, or by varying the strength of the magnetizing field.
  • the tendency to cluster can be reduced by using a more viscous liquid.
  • Example I Color coded micromagnets were prepared with a binder of lacquer containing appropriate color pigments.
  • the lacquer was a widely marketed type containing cellulose nitrate, ester gum, plasticizer, glycol esters, alcohols, aromatic and aliphatic hydrocarbons and was slightly thinned with lacquer thinner.
  • a white portion contained 60 parts of lacquer, and 50 parts of titanium dioxide pigment.
  • a red portion contained 75 parts of the lacquer and 25 parts of red pigment.
  • a black portion contained 60 parts of lacquer, 20 parts of carbon black, and parts of powered barium ferrite. Corn starch, added to the blends, will provide additional thickening, if desired.
  • compositions 4 of lighter viscosity can be sprayed or otherwise coated.
  • the dried sheet was made up of a first layer /z-mil thick of White, a central layer of %-mil of red, and a third layer of Mt-Illll of the black, the layers being parallel to each other.
  • Micromagnets with more than three color zones can be obtained from a sheet having additional other colored layers and two color micromagnets can be made in this manner from a sheet having laminations with only two contrasting colors.
  • Example II A curable epoxy resin composition is used as a binder, the composition consisting of parts of liquid epoxy resin to which is added 35 parts of liquid curing agent just prior to coating and thoroughly mixed with this is 100 parts of titanium dioxide.
  • the epoxy resin has a viscosity of -210 cps. at 77 F. and the curing agent has a viscosity of 150400 cps. at 77 F.
  • the mixture is then spread in an even layer to a thickness of about 1 mil on a temporary carrier, such as a sheet of glass, the surface of which has been previously prepared with a film of mold release agent, and is permitted to cure either by heat or the passage of time to a hardened state.
  • the cure material is directionally magnetized by placing the sheet between the pole pieces of an electromagnet where it is subjected to a magnetic field which magnetizes the barium ferrite component. The sheet is removed from the temporary carrier by peeling and is then fragmented to a virtual powder under vigorous agitation. Any oversized micromagnets are screened out.
  • Example III A hardenable white composition was prepared by mixing the following ingredients:
  • the resin mixture had a calculated density of approximately 0.91 and a Brookfield viscosity of 140 centipoise.
  • An oil resin emulsion was formed by mixing 1 part by volume of the magnet contained oil mixture with 3.5 parts by volume of the resin. After mixing, an emulsion was formed in which the resin was a continuous phase having dispersed therein oil droplets averaging about mils in diameter as a discontinuous phase. One or more colored micromagnets were contained within the preponderant number of oil droplets.
  • the emulsion was knife coated using a 0.025 setting on 2 mil hard aluminum foil precoated with a 2 mil thick black-pigmented vinyl acetate based coating. The coating was dried by passing high velocity room temperature air thereover until a surface skin was formed followed by air drying overnight.
  • a method for producing multi-colored micromagnets comprising:
  • compositions into thin superposed layers to form a composite sheet
  • compositions comprise a volatile organic solvent, and said hardening is elfected by drying said solvent.

Description

Aug. 12, 1969 c. R. TATE 3,460,248
METHOD FOR MAKING MICROMAGNETS Original Filed May 26, 1966 INVENTOR.
YQARENCER 7272- B MG VMML United States Patent M Int. Cl. H01f 7/06 US. Cl. 29-607 7 Claims ABSTRACT OF THE DISCLOSURE Method for producing magnetically actuatable particles comprising providing at least two moldable compositions of contrasting colors, forming the compositions into a composite sheet, hardening the sheet, inducing a constant magnetization vector in the material and fracturing the sheet into tiny magnetized multi-colored particles.
This application is a division of application Serial No. 553,087, filed May 26, 1966, now Patent No. 3,406,363.
This invention relates to a method for forming improved micromagnets for magnetically actuatable visual display devices.
In US. Patent 3,036,388, since reissued as Reissue 25,363 and Re-Reissue 25,822, I have described magnetic writing materials employing magnetically orientable color coded particles. The particles in a liquid suspending medi um beneath a transparent face plate, for example, may be oriented with their first-color poles toward the viewing surface by passing over the surface a flat erasing magnet. The particles are made to possess a low volumetric magnetization so that their magnetic strength is not sufficient to cause a magnetic interaction when in close association with each other, which would prevent selective orientation by an activating external magnetic force, and a magnetic field of opposite polarity applied to a portion of the surface reorients the affected particles with their secondcolor poles exposed to view thereby forming a visibly distinct pattern.
The present invention provides an improved method for the manufacture of magnetically orientable particles having two or more color zones. The method of this invention permits high production rates using relatively simple equipment.
Briefly summarized, the method of this invention involves the steps of providing at least two moldable compositions of contrasting colors, at least one of which contains finely divided magnetic material of high retentivity, then forming the compositions into thin superposed layers to form a composite sheet, hardening the sheet, subjecting the magnetic material in the sheet to a magnetic field of suflicient intensity and duration to produce a constant magnetization vector in the material, and then fracturing the sheet into irregularly shaped particles equal in thickness to the thickness of the original sheet and having a broad dimension at least as great as the thickness of the sheet. The fractured particles may be screened to select an optimum size range.
Further objects and advantages will be apparent from the accompanying detailed description and drawings wherein:
FIGURE 1 is a magnified perspective view of a typical two-colored magnetically orientable particle produced by the method of this invention; and
FIGURE 2 is a magnified view in elevation of a magnetically orientable shaped particle having three different color zones.
3,460,248 Patented Aug. 12, 1969 The magnetic orientation of the particles is illustrated by the arrow, the arrowhead, for convenience, indicating the north pole. Although other magnetic materials are also useful, I prefer to use small proportions of magnetic materials of high retentivity such as barium ferrite, together with a diluent or extender which usually serves as a binder for the powdered magnetic material.
The tiny particles are conveniently described as having a constant magnetization vector, the term including both direction and magnitude. The direction of magnetization, i.e., the permanent magnetic axis, may have any desired relationship to the surface color zones, as will be further described. The magnetic particles shall be referred to hereinafter as micromagnets.
Micromagnets small enough to pass through a 325-mesh Tyler standard screen, i.e. about 45 microns, provide a smooth uniform appearance at the viewing surface since the individual micromagnets cannot be resolved by the eye. Micromagnets not larger than about microns are preferred but micromagnets up to about 2000 microns are generally useful.
It is preferred to suspend the micromagnets in a suspending fluid in which the micromagnets will rotate therein upon the application of a magnetic field. It is desirable to provide this fluid with a viscosity and thixotropy such that a certain minimum force must be applied in order to rotate the micromagnets. Such viscosity and thixotropy provide a degree of stability to the display device, minimizing unwanted disorientation of the micromagnets. Finely divided magnesium aluminum silicate (Bentone) may be dispersed in a light oil, for example, to provide the desired viscosity and thixotropy.
Micromagnets can be manufactured rapidly and economically by forming appropriately colored compositions containing magnetizable material into thin flat sheets made up of two or more distinctly colored layers. For example, different colored hardenable solutions or suspensions can be cast successively onto a smooth carrier web or other suitable casting surface to form a layered sheet. The sheet is subjected to a strong magnetic field to magnetize the magnetizable material, hardened, and broken up into a finely divided state by impacting in an agitator or in other suitable fragmentizer such as a mechanical blender. The order of these steps may be interchanged if desired. Hardening can be accomplished by curing and/or drying the compositions until relatively brittle. Although it might be expected that violently reducing the sheet to a virtual powder would result in particles either singly colored or unusable because of randomly different characteristics, it has been found that progressive fragmentation tends to break the sheet across the broad dimensions, which provide the lines of least resistance to fracture. Each micromagnet therefore tends to retain its individual magnetic and color zone integrity so long as fragmentation is stopped before the micromagnets are reduced in size and dimension to less than the thickness of the sheet. The micromagnet shown in FIGURE 1 is typical of those produced by this method. As shown, the individual micromagnets have flat, generally parallel top and bottom surfaces and irregularly shaped edges. The particles illustrated are magnetized so that the magnetic axis of each micromagnet is substantialy normal to the flat parallel surfaces. Micromagnet 10 shown in FIGURE 1 has a first color 12 adjacent the north pole and a different color 14 adjacent the south pole.
In FIGURE 2 is shown an edge view of a three-colored micromagnet I16 which may be made by a similar procedure to that just described. Micromagnet 16 is provided with a first color 18, for example blue, on the surface ad jacent to the north pole and second color 20, for example White, on the surface adjacent the south pole. Sandwiched between layers 18 and 20 is a third coroled layer 22, for example red. When used in a display device micromagnet 16 will present its blue colored surface when the south pole of a magnet is passed over the display device and its. white colored surface when a north pole of a magnet is passed in front of the display device. A magnet having closely adjacent north and south poles, passed over the surface, will orient the micromagnets between its poles to an edgewise position to display a mark of a third color, red. The colors may be selected to produce other colors in combination. For example, a yellow layer and a blue layer produces green when oriented to blend, and shades and blends may be also produced by orienting the micromagnets to intermediate degrees, the activating magnetic force in this case being of a strength and duration insufficient to cause a full 90 or 180 orientation.
The micromagnets of this invention may be carried in a liquid suspension medium or used in dry powder form and the external activating magnetic force may be that from a permanent magnet or from an electrical field. The micromagnets may be spread dry on a sheet of paper, for example, and an external activating magnetic force passed under the carrier to produce a visual display.
By subjecting a sheet containing magnetizable material to a magnetic field first in one direction and then in another, it is possible to produce particles having more than one magnetic axis. Such axes may be of equal or, more preferably, of differing strengths, thus making it possible to control the orientation of the particles in more than one direction. The same effect can be produced by forming two or more sheets of contrasting color, magnetizing the sheets in different directions, then laminating the sheets and fracturing the sheets to produce particles having multiple magnetic axes.
In some cases it is desirable to magnetize the particles in a direction other than parallel to the color axes, for example, in a direction normal thereto. For example, particles having three color zones could be formed in which the two outer zones are white and the middle Zone is black having magnetic axes parallel to the layers. Such particles when lying at random would present a predominantly white viewing surface on which a black line could be produced by applying to the surface thereof either a north or south pole magnet.
The magnetic strength of the particles can be varied by changing the proportion or the type of magnetizable material added, or by varying the strength of the magnetizing field. In the case of particles suspended within a liquid medium, the tendency to cluster can be reduced by using a more viscous liquid.
The following examples, in which proportions are given by weight unless otherwise indicated, will serve to illustrate but not limit the invention. Also the colors mentioned and the layer thickness given are illustrative and may be varied to produce displays having any desired combinations of colors and sharpness of images.
Example I Color coded micromagnets were prepared with a binder of lacquer containing appropriate color pigments. The lacquer was a widely marketed type containing cellulose nitrate, ester gum, plasticizer, glycol esters, alcohols, aromatic and aliphatic hydrocarbons and was slightly thinned with lacquer thinner. A white portion contained 60 parts of lacquer, and 50 parts of titanium dioxide pigment. A red portion contained 75 parts of the lacquer and 25 parts of red pigment. A black portion, contained 60 parts of lacquer, 20 parts of carbon black, and parts of powered barium ferrite. Corn starch, added to the blends, will provide additional thickening, if desired.
The several blends were then coated in successive layers on a polyethylene carrier with intermediate drying. In spreading, the depth of each layer was controlled by drawing the sheet between spaced bars although other means such as the use of rollers are also suitable. Compositions 4 of lighter viscosity can be sprayed or otherwise coated. The dried sheet was made up of a first layer /z-mil thick of White, a central layer of %-mil of red, and a third layer of Mt-Illll of the black, the layers being parallel to each other.
Several sheets of the coated carrier were stacked, each with the same color up, between the poles of a large electromagnet where they were subjected to a strong field to saturate the magnetizable barium ferrite component. The sheets were then peeled from the carrier and broken up by vigorous agitation by impacting in an agitator or in a mechanical blender into micromagnets capable of passing through a 325 mesh Tyler screen.
Micromagnets with more than three color zones can be obtained from a sheet having additional other colored layers and two color micromagnets can be made in this manner from a sheet having laminations with only two contrasting colors.
Example II A curable epoxy resin composition is used as a binder, the composition consisting of parts of liquid epoxy resin to which is added 35 parts of liquid curing agent just prior to coating and thoroughly mixed with this is 100 parts of titanium dioxide. The epoxy resin has a viscosity of -210 cps. at 77 F. and the curing agent has a viscosity of 150400 cps. at 77 F. The mixture is then spread in an even layer to a thickness of about 1 mil on a temporary carrier, such as a sheet of glass, the surface of which has been previously prepared with a film of mold release agent, and is permitted to cure either by heat or the passage of time to a hardened state. A second layer, preferably thicker, from a composition of 100 parts of epoxy resin, 35 parts of curing agent, 15 parts of carbon black, and 15 parts of powdered barium ferrite, is then applied and similarly cured. Then another thin layer from a composition like that of the initial layer, except containing 40 parts of a red coloring pigment instead of white, is applied and permitted to cure. The cure material is directionally magnetized by placing the sheet between the pole pieces of an electromagnet where it is subjected to a magnetic field which magnetizes the barium ferrite component. The sheet is removed from the temporary carrier by peeling and is then fragmented to a virtual powder under vigorous agitation. Any oversized micromagnets are screened out.
Example III A hardenable white composition was prepared by mixing the following ingredients:
Parts Styrene butadiene copolymer containing 65% by weight Ti0 pigment (Goodyear Pliolite lA-SS) 16.6 Toluol solvent 25 This composition was coated using the 80 tri-helicoid rotogravure roll over the white layer and oven dried at 250 F. The black layer had a dry weight of 0.00065 gram/cm The combined layers had a weight of 0.00138 gram/cm. and a calculated density of 1.77 grams per cc. The combined layers had a barium ferrite content of 2.2%. The hardened material was passed on the carrier web between the poles of an electromagnet, magnetized at 9000 gauss at a speed of 1 foot per second. Material was removed from the carrier web by flexing and air blasted and conveyed at high velocity through a tortuous path and impinged against itself and other obstructions until the average particle diameter was about 1 /2 times its thickness. Oversized particles were removed by screening. A suspension in oil of the black and white micromagnets thus obtained was formed by mixing the particles into the following oily mixture:
Parts Low molecular weight chlorotrifiuoroethylene polymer having a density of 1.9 and a Brookfield viscosity at 72 F., #1 spindle, 30 r.p.m., of 124 centipoise (Kel F Oil #3, 3M Co.) 300.00 Oil having a density of 0.85 and a Brookfield viscosity at 72 F. of 24 centipoise #1 spindle, 60
r.p.rn., (Retrax, Std. Oil Co.) 269.00 Purified bentonite with an organic base, gelling agent (Bentone 38, Nat. Lead Co.) 1 00 Stearic acid 4:75
The resin mixture had a calculated density of approximately 0.91 and a Brookfield viscosity of 140 centipoise. An oil resin emulsion was formed by mixing 1 part by volume of the magnet contained oil mixture with 3.5 parts by volume of the resin. After mixing, an emulsion was formed in which the resin was a continuous phase having dispersed therein oil droplets averaging about mils in diameter as a discontinuous phase. One or more colored micromagnets were contained within the preponderant number of oil droplets. The emulsion was knife coated using a 0.025 setting on 2 mil hard aluminum foil precoated with a 2 mil thick black-pigmented vinyl acetate based coating. The coating was dried by passing high velocity room temperature air thereover until a surface skin was formed followed by air drying overnight.
What is claimed is:
1. A method for producing multi-colored micromagnets comprising:
(a) providing at least two moldable compositions of contrasting colors, at least one of said compositions comprising finely divided magnetic material of high retentivity;
(b) forming said compositions into thin superposed layers to form a composite sheet;
(c) hardening said sheet;
((1) subjecting said magnetic material to a magnetic field of sufiicient intensity and duration sufficient to produce a constant magnetization vector in said material;
(e) fracturing said sheet into a plurality of tiny particles, equal in thickness to said sheet and having a broad dimension at least as great as the thickness of said sheet.
2. Method according to claim 1 wherein said hardenable compositions comprise liquid synthetic organic polymers.
3. A method according to claim 1 wherein said magnetic material is barium ferrite.
4. A method according to claim 2 wherein said compositions comprise a volatile organic solvent, and said hardening is elfected by drying said solvent.
5. A method according to claim 1 wherein said layers are formed by casting said compositions onto a releaseable carrier sheet which is stripped from said composite sheet after said sheet is hardened.
6. A method according to claim 1 wherein said magnetization vector is in a direction normal to the surface of said sheet.
7. A method according to claim 1 wherein said sheet is fractured into irregularly shaped particles.
References Cited UNITED STATES PATENTS 3,036,388 5/1962 Tate 3566 3,124,725 3/1964 Le Guillon 335303 3,257,586 6/ 1966 Steingroever 335303 3,406,363 10/1968 Tate 335-302 CHARLIE T. MOON, Primary Examiner C. E. HALL, Assistant Examiner US. Cl. X.R. 29-609
US708270A 1966-05-26 1968-02-26 Method for making micromagnets Expired - Lifetime US3460248A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US553087A US3406363A (en) 1966-05-26 1966-05-26 Multicolored micromagnets
US70827068A 1968-02-26 1968-02-26

Publications (1)

Publication Number Publication Date
US3460248A true US3460248A (en) 1969-08-12

Family

ID=27070235

Family Applications (1)

Application Number Title Priority Date Filing Date
US708270A Expired - Lifetime US3460248A (en) 1966-05-26 1968-02-26 Method for making micromagnets

Country Status (1)

Country Link
US (1) US3460248A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142699U (en) * 1977-04-14 1977-10-28
FR2404516A1 (en) * 1977-09-30 1979-04-27 Philips Nv PROCESS FOR THE MANUFACTURE OF MAGNETIC MOLDED PRODUCTS CONTAINING A SYNTHETIC BINDER
US4457723A (en) * 1981-06-11 1984-07-03 Thalatta, Inc. Color changeable fabric
US4659619A (en) * 1981-06-11 1987-04-21 Thalatta, Inc. Color changeable fabric
US5930026A (en) * 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) * 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6090478A (en) * 1996-03-15 2000-07-18 Nitto Boseki Co., Ltd. Sound absorbing/shielding and electric wave absorbing plastic sheet containing encapsulated magnetic fluid, and sound absorbing/shielding and electric wave absorbing plastic panel
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6120839A (en) * 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US6249271B1 (en) 1995-07-20 2001-06-19 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6377387B1 (en) 1999-04-06 2002-04-23 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6376828B1 (en) 1998-10-07 2002-04-23 E Ink Corporation Illumination system for nonemissive electronic displays
US6445489B1 (en) 1998-03-18 2002-09-03 E Ink Corporation Electrophoretic displays and systems for addressing such displays
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6480182B2 (en) 1997-03-18 2002-11-12 Massachusetts Institute Of Technology Printable electronic display
US20020171910A1 (en) * 2001-05-15 2002-11-21 Pullen Anthony Edward Electrophoretic displays containing magnetic particles
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US20030011868A1 (en) * 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6518949B2 (en) 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US20040190114A1 (en) * 1998-07-08 2004-09-30 E Ink Methods for achieving improved color in microencapsulated electrophoretic devices
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6865010B2 (en) 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US6864875B2 (en) 1998-04-10 2005-03-08 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US20080150888A1 (en) * 1995-07-20 2008-06-26 E Ink Corporation Electrostatically addressable electrophoretic display
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US20100283806A1 (en) * 1997-08-28 2010-11-11 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US11195480B2 (en) 2013-07-31 2021-12-07 E Ink Corporation Partial update driving methods for bistable electro-optic displays and display controllers using the same
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036388A (en) * 1961-10-27 1962-05-29 Clarence R Tate Magnetic writing materials set
US3124725A (en) * 1964-03-10 Flexible plastic permanent magnets
US3257586A (en) * 1960-03-03 1966-06-21 Magnetfabrik Bonn Gewerkschaft Flexible permanent magnet and composition
US3406363A (en) * 1966-05-26 1968-10-15 Clarence R. Tate Multicolored micromagnets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124725A (en) * 1964-03-10 Flexible plastic permanent magnets
US3257586A (en) * 1960-03-03 1966-06-21 Magnetfabrik Bonn Gewerkschaft Flexible permanent magnet and composition
US3036388A (en) * 1961-10-27 1962-05-29 Clarence R Tate Magnetic writing materials set
US3406363A (en) * 1966-05-26 1968-10-15 Clarence R. Tate Multicolored micromagnets

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142699U (en) * 1977-04-14 1977-10-28
FR2404516A1 (en) * 1977-09-30 1979-04-27 Philips Nv PROCESS FOR THE MANUFACTURE OF MAGNETIC MOLDED PRODUCTS CONTAINING A SYNTHETIC BINDER
US4457723A (en) * 1981-06-11 1984-07-03 Thalatta, Inc. Color changeable fabric
US4659619A (en) * 1981-06-11 1987-04-21 Thalatta, Inc. Color changeable fabric
US6249271B1 (en) 1995-07-20 2001-06-19 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US6120839A (en) * 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US20090040594A1 (en) * 1995-07-20 2009-02-12 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7391555B2 (en) 1995-07-20 2008-06-24 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US8593718B2 (en) 1995-07-20 2013-11-26 E Ink Corporation Electro-osmotic displays and materials for making the same
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US20080211765A1 (en) * 1995-07-20 2008-09-04 E Ink Corporation Stylus-based addressing structures for displays
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7746544B2 (en) 1995-07-20 2010-06-29 E Ink Corporation Electro-osmotic displays and materials for making the same
US20080150888A1 (en) * 1995-07-20 2008-06-26 E Ink Corporation Electrostatically addressable electrophoretic display
US7791789B2 (en) 1995-07-20 2010-09-07 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US8384658B2 (en) 1995-07-20 2013-02-26 E Ink Corporation Electrostatically addressable electrophoretic display
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US6680725B1 (en) 1995-07-20 2004-01-20 E Ink Corporation Methods of manufacturing electronically addressable displays
US8089453B2 (en) 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US6090478A (en) * 1996-03-15 2000-07-18 Nitto Boseki Co., Ltd. Sound absorbing/shielding and electric wave absorbing plastic sheet containing encapsulated magnetic fluid, and sound absorbing/shielding and electric wave absorbing plastic panel
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070057908A1 (en) * 1996-07-19 2007-03-15 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7148128B2 (en) 1996-07-19 2006-12-12 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6652075B2 (en) 1996-07-19 2003-11-25 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20040054031A1 (en) * 1996-07-19 2004-03-18 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US8035886B2 (en) 1996-07-19 2011-10-11 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6422687B1 (en) 1996-07-19 2002-07-23 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US5930026A (en) * 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6130773A (en) * 1996-10-25 2000-10-10 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US5961804A (en) * 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6480182B2 (en) 1997-03-18 2002-11-12 Massachusetts Institute Of Technology Printable electronic display
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US8213076B2 (en) 1997-08-28 2012-07-03 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8593721B2 (en) 1997-08-28 2013-11-26 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6392785B1 (en) 1997-08-28 2002-05-21 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US8441714B2 (en) 1997-08-28 2013-05-14 E Ink Corporation Multi-color electrophoretic displays
US20100283806A1 (en) * 1997-08-28 2010-11-11 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US20030011868A1 (en) * 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6445489B1 (en) 1998-03-18 2002-09-03 E Ink Corporation Electrophoretic displays and systems for addressing such displays
US6864875B2 (en) 1998-04-10 2005-03-08 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US8466852B2 (en) 1998-04-10 2013-06-18 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6518949B2 (en) 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6738050B2 (en) 1998-05-12 2004-05-18 E Ink Corporation Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US20040190114A1 (en) * 1998-07-08 2004-09-30 E Ink Methods for achieving improved color in microencapsulated electrophoretic devices
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US7667684B2 (en) 1998-07-08 2010-02-23 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6376828B1 (en) 1998-10-07 2002-04-23 E Ink Corporation Illumination system for nonemissive electronic displays
US6377387B1 (en) 1999-04-06 2002-04-23 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US7532388B2 (en) 2001-05-15 2009-05-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US20020171910A1 (en) * 2001-05-15 2002-11-21 Pullen Anthony Edward Electrophoretic displays containing magnetic particles
US6870661B2 (en) 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
US7375875B2 (en) 2001-05-15 2008-05-20 E Ink Corporation Electrophoretic media and processes for the production thereof
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US6865010B2 (en) 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display
US11195480B2 (en) 2013-07-31 2021-12-07 E Ink Corporation Partial update driving methods for bistable electro-optic displays and display controllers using the same

Similar Documents

Publication Publication Date Title
US3460248A (en) Method for making micromagnets
US3406363A (en) Multicolored micromagnets
US4368952A (en) Magnetic display panel using reversal magnetism
US3982334A (en) Compartmentalized micromagnet display device
US3938263A (en) Compartmentalized micromagnet display device
US4055377A (en) Magnetically orientable retroreflectorization particles
EP0246924B1 (en) Method of manufacturing plastic particles for a particle display
CA2707728C (en) Optically variable security element
US2570856A (en) Process for obtaining pigmented films
JP5155467B2 (en) Method and means for providing a magnetically induced pattern in a coating containing magnetic particles
KR101348599B1 (en) A two-step method of coating an article for security printing
EP2491456B1 (en) Piezochromic device
JP2015523918A (en) Visual effect layer
JPH03172360A (en) Substance coated with plate- like pigment
US6943772B2 (en) Magnetic display device
WO1999013955A1 (en) Infant toy for drawing colored picture
CN102245720B (en) Magnetic load supporting inks
US20020160231A1 (en) Magnetic layer with high-permeability backing
DE3732116A1 (en) Magnetisable screen printing ink and process for preparing a sheet magnet
JP4004718B2 (en) Thin microcapsule magnetophoretic display sheet
KR100909172B1 (en) Emboss sheet and method for manufacturing the same using magnetism
JPH047518B2 (en)
EP0352804A2 (en) Coloring high-molecular particulate material and coating composition including the same
US11772410B1 (en) Erasable writable materials
JPS60115497A (en) Composite body of magnetic material or dielectric material and light-transmitting material

Legal Events

Date Code Title Description
AS Assignment

Owner name: FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY,

Free format text: SECURITY INTEREST;ASSIGNOR:ZYEXX, INC.,;REEL/FRAME:004932/0618

Effective date: 19860224

AS Assignment

Owner name: FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ZZEXX, INC., FORMERLY THALATTA, INC.;REEL/FRAME:005030/0762

Effective date: 19881201