US3431379A - Method for induction heating - Google Patents

Method for induction heating Download PDF

Info

Publication number
US3431379A
US3431379A US617020A US3431379DA US3431379A US 3431379 A US3431379 A US 3431379A US 617020 A US617020 A US 617020A US 3431379D A US3431379D A US 3431379DA US 3431379 A US3431379 A US 3431379A
Authority
US
United States
Prior art keywords
coil
article
layer
sleeve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US617020A
Inventor
Carl S Yrene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Atomic Energy Commission (AEC)
Original Assignee
US Atomic Energy Commission (AEC)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Atomic Energy Commission (AEC) filed Critical US Atomic Energy Commission (AEC)
Application granted granted Critical
Publication of US3431379A publication Critical patent/US3431379A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • induction heating the induction coil acts as a transformer primary Winding while the article to be heated forms the secondary circuit.
  • the alternating current passes through the induction-coil induces currents by transformer action in the secondary circuit, including eddy currents. Heating results primarily from the PR losses in the secondary circuit, or article, particularly from the eddy current losses.
  • the eddy current losses are generally concentrated near the surface of the secondary circuit and are commonly referred to as the skin efiect.
  • An induction heating system generally includes a high frequency AC generator connected to an induction coil.
  • the induction coil may be a circular or an open or U- shaped configuration. In either case, the coil comprises a number of turns of wire or water-cooled tubing. It is apparent that an open or U-shaped coil will provide less inductive coupling to the secondary circuit than the circular coil.
  • induction heating has been limited to those situations where the article to be heated was made of a metal, either a magnetic material or an electrically conductive material. In the latter case, the good electrical characteristics of the material decreased the efficiency of induction heating and required greater power input and the more efficient inductive coupling provided by a circular coil. Since there are many operations where it is undesirable or physically impossible to place a circular coil around the apparatus to be heated or a coil had to be specially designed for a particular heating operation and in many cases left in place after heating was completed, some other less desirable method of heating has been used.
  • This invention comprises a method of heating nonmagnetic material by the steps of first plating the material with a layer of magnetic material, thereafter positioning an induction coil in inductive relationship with the material and energizing the coil.
  • FIG. 1 is a perspective view of a pass-thru sleeve in inductive relationship with a U-shaped induction coil
  • FIG. 2 is a cross sectional view of the pass-thru sleeve of FIG. 1 along line 22.
  • a nonmagnetic article or workpiece can be efiiciently heated with an inductive coil heating system if there is first applied a thin layer of magnetic material on the surface of the workpiece. It has been found that the layer of magnetic material provides good inductive coupling and sustains high 1 R losses. Further, the magnetic material has good heat conducting properties and readily conducts the heat generated therein to the workpiece. It is preferred that the magnetic layer be applied or plated on the article, e.g., by electroplating or some other form of plating which will provide good heat conduction between the magnetic layer and the article.
  • This invention can be utilized to heat efiiciently any nonmagnetic article or workpiece.
  • the article is first coated on the outer surface thereof with a layer of magnetic material.
  • the article can be coated on all surfaces but for the purposes of this invention description, the working or heating surface is the outer surface for all practical purposes due to the skin effect.
  • An induction coil either circular or U-shaped, is thereafter positioned in inductive relationship with the workpiece and connected to a source of alternating current, such as a high frequency generator. When energized by the alternating current source, the induction coil induces electric currents in the article (if it is electrically conductive) and the layer of magnetic material.
  • the eddy currents losses are concentrated in the magnetic material layer imparting heat to the magnetic material which in turn imparts heat by conduction to the article. If the article to be heated is a nonconductor, all currents will be induced in the magnetic material layer.
  • the invention can be practiced on any nonmagnetic or nonconductive material such as copper, aluminum or stainless steel or even to cure or heat a plastic article using a layer of any magnetic material disposed thereon such as iron or steel, though iron is preferred since it has greater heat producing magnetic and electric losses.
  • the induction coil can be either circular or U-shaped depending on the configuration and accessibility of the workpiece. A circular coil is generally more eiiicient and preferred, however, the improved inductive coupling provided by the magnetic material layer enables the eflicient use of a U-shaped coil in many applications.
  • a conventional pass-thru sleeve acts as a single turn secondary winding to U-shaped induction coil 12.
  • Coil 12 is connected to a high frequency power supply 13.
  • Sleeve 10 comprises a generally cylindrical member 14 which has been plated in any conventional or suitable manner with a thin magnetic layer 16.
  • Magnetic layer 16, in FIG. 2 has been shown for purposes of illustration as having an exaggerated thickness. For purposes of this invention, the magnetic layer desirably need not be thicker than about 0.03 inch.
  • a plurality of electrical leads 18 pass through sleeve 10 into a pressure vessel (not shown).
  • Brazing alloy can be positioned in a manner well known in the art within sleeve 10 so that the brazing alloy will melt when heated to the brazing temperature and fill the interstices 20 between leads 18 and the interior of sleeve 10 to form a pressure seal therein upon cooling.
  • Layer 16 is a magnetic material such as a form of iron. If it is desired, magnetic layer 16 may be removed after brazing in any suitable manner such as by etching, abrasion, etc.
  • the brazing alloy can be a lcadtin solder or any commonly available brazing alloy such as a silver brazing alloy (45% silver, 15% copper, 16% zinc, 24% cadmium) which has a brazing temperature of about 1200 F.
  • coil 12 is energized by power supply 13 thus inducing secondary and eddy currents in member 14 and layer 16. Due to the skin effect most of the eddy currents and consequently the PR losses are in layer 16. The resulting heat generated in layer 16 is conducted through member 14 to the brazing alloy and leads 18.
  • a copper pass-thru sleeve without a magnetic material layer was heated to the brazing alloy temperature of about 1200 F. with conventional circular and U-shaped induction coils using about the same power input for each test and the results compared with the method of this invention.
  • a circular induction coil took a total of 2 minutes and 10 seconds to melt solder and braze the leads to the copper sleeve while the U-shaped induction coil was unable to heat the sleeve and solder to a brazing temperature after more than 3 minutes in a similar copper sleeve.
  • a circular induction coil took a total of only about 8 seconds to melt solder and braze the leads to a copper sleeve having a magnetic material layer
  • a U-shaped induction coil took a total of about only 15 seconds to melt the solder and to braze the leads to a similar copper sleeve having a magnetic material layer.
  • the surface of the article in juxtaposition with the portion or part to be heated can be plated in any conventional or suitable manner with a thin magnetic layer.
  • an energized induction coil is placed adjacent the magnetic layer the selected portion or part of the article will be heated, generally to the exclusion of adjacent portions or parts.
  • a method for inductively heating and sealing a copper sleeve having a plurality of electrical leads therethrough comprising the steps of:

Description

March 4, 1969 METHOD FOR INDUCTION HEATING Filed Feb. 15, 1967 Iii- JNVENTOR. 6m! 8. Yrene BY c. s. YRENE 3,431,379 J United States Patent 2 Claims ABSTRACT OF THE DISCLOSURE A method of heating articles made of nonmagnetic material first providing a thin layer of magnetic material on the workpiece and thereafter employing electric induction to heat the article.
Background of invention There are many heating operations in which it is desirable to use induction heating rather than some other form of heating. In induction heating, the induction coil acts as a transformer primary Winding while the article to be heated forms the secondary circuit. The alternating current passes through the induction-coil induces currents by transformer action in the secondary circuit, including eddy currents. Heating results primarily from the PR losses in the secondary circuit, or article, particularly from the eddy current losses. The eddy current losses are generally concentrated near the surface of the secondary circuit and are commonly referred to as the skin efiect.
An induction heating system generally includes a high frequency AC generator connected to an induction coil. The induction coil may be a circular or an open or U- shaped configuration. In either case, the coil comprises a number of turns of wire or water-cooled tubing. It is apparent that an open or U-shaped coil will provide less inductive coupling to the secondary circuit than the circular coil.
In the past, induction heating has been limited to those situations where the article to be heated was made of a metal, either a magnetic material or an electrically conductive material. In the latter case, the good electrical characteristics of the material decreased the efficiency of induction heating and required greater power input and the more efficient inductive coupling provided by a circular coil. Since there are many operations where it is undesirable or physically impossible to place a circular coil around the apparatus to be heated or a coil had to be specially designed for a particular heating operation and in many cases left in place after heating was completed, some other less desirable method of heating has been used.
It has been a particular problem in the past to solder electrical connections or braze a pressure seal around electrical leads in a pass-thru sleeve (usually of copper) through a pressure vessel, particularly where work is performed out in the field, since the length of the electrical leads prevent the use of a circular coil and the conductive material secondary circuit for the induction heater prevents or renders undesirable the use of a U-shaped coil. Where induction heating has been used, it has required relatively long heating times to reach brazing temperatures and large power inputs.
Summary of invention In order to overcome the limitations in the prior art noted above, it is an object of this invention to provide a method of induction heating which will efiiciently heat nonmagnetic material.
It is a further object of this invention to provide a method of inductive heating which will efliciently heat electrically conductive material.
Various other objects and advantages will appear from the following description of one embodiment of the invention, and the most novel features will be particularly pointed out hereinafter in connection with the appended claims.
This invention comprises a method of heating nonmagnetic material by the steps of first plating the material with a layer of magnetic material, thereafter positioning an induction coil in inductive relationship with the material and energizing the coil.
Description of the drawings The accompanying drawings illustrate the application of the present invention, as it may be employed with reference to a hollow member, wherein:
FIG. 1 is a perspective view of a pass-thru sleeve in inductive relationship with a U-shaped induction coil; and
FIG. 2 is a cross sectional view of the pass-thru sleeve of FIG. 1 along line 22.
Detailed description The applicant has discovered that a nonmagnetic article or workpiece can be efiiciently heated with an inductive coil heating system if there is first applied a thin layer of magnetic material on the surface of the workpiece. It has been found that the layer of magnetic material provides good inductive coupling and sustains high 1 R losses. Further, the magnetic material has good heat conducting properties and readily conducts the heat generated therein to the workpiece. It is preferred that the magnetic layer be applied or plated on the article, e.g., by electroplating or some other form of plating which will provide good heat conduction between the magnetic layer and the article.
This invention can be utilized to heat efiiciently any nonmagnetic article or workpiece. The article is first coated on the outer surface thereof with a layer of magnetic material. The article can be coated on all surfaces but for the purposes of this invention description, the working or heating surface is the outer surface for all practical purposes due to the skin effect. An induction coil, either circular or U-shaped, is thereafter positioned in inductive relationship with the workpiece and connected to a source of alternating current, such as a high frequency generator. When energized by the alternating current source, the induction coil induces electric currents in the article (if it is electrically conductive) and the layer of magnetic material. Due to the skin effect, the eddy currents losses are concentrated in the magnetic material layer imparting heat to the magnetic material which in turn imparts heat by conduction to the article. If the article to be heated is a nonconductor, all currents will be induced in the magnetic material layer.
The invention can be practiced on any nonmagnetic or nonconductive material such as copper, aluminum or stainless steel or even to cure or heat a plastic article using a layer of any magnetic material disposed thereon such as iron or steel, though iron is preferred since it has greater heat producing magnetic and electric losses. As noted above, the induction coil can be either circular or U-shaped depending on the configuration and accessibility of the workpiece. A circular coil is generally more eiiicient and preferred, however, the improved inductive coupling provided by the magnetic material layer enables the eflicient use of a U-shaped coil in many applications.
The drawings illustrate one application of this invention where a circular coil could not conveniently be used because of the con-figuration of the article or workpiece and associated apparatus. It is apparent that any article, either solid or hollow, can be heated by this invention and the description below is not intended to limit the invention to the disclosed article or article configuration.
In FIGS. 1 and 2, a conventional pass-thru sleeve acts as a single turn secondary winding to U-shaped induction coil 12. Coil 12 is connected to a high frequency power supply 13. Sleeve 10 comprises a generally cylindrical member 14 which has been plated in any conventional or suitable manner with a thin magnetic layer 16. Magnetic layer 16, in FIG. 2, has been shown for purposes of illustration as having an exaggerated thickness. For purposes of this invention, the magnetic layer desirably need not be thicker than about 0.03 inch. A plurality of electrical leads 18 pass through sleeve 10 into a pressure vessel (not shown). Brazing alloy can be positioned in a manner well known in the art within sleeve 10 so that the brazing alloy will melt when heated to the brazing temperature and fill the interstices 20 between leads 18 and the interior of sleeve 10 to form a pressure seal therein upon cooling.
Member 14 is usually a nonmagnetic material such as copper or stainless steel Layer 16 is a magnetic material such as a form of iron. If it is desired, magnetic layer 16 may be removed after brazing in any suitable manner such as by etching, abrasion, etc. The brazing alloy can be a lcadtin solder or any commonly available brazing alloy such as a silver brazing alloy (45% silver, 15% copper, 16% zinc, 24% cadmium) which has a brazing temperature of about 1200 F.
In order to braze leads 18 to the interior of sleeve 10 to provide a pressure seal, coil 12 is energized by power supply 13 thus inducing secondary and eddy currents in member 14 and layer 16. Due to the skin effect most of the eddy currents and consequently the PR losses are in layer 16. The resulting heat generated in layer 16 is conducted through member 14 to the brazing alloy and leads 18.
By way of example, a copper pass-thru sleeve without a magnetic material layer was heated to the brazing alloy temperature of about 1200 F. with conventional circular and U-shaped induction coils using about the same power input for each test and the results compared with the method of this invention. A circular induction coil took a total of 2 minutes and 10 seconds to melt solder and braze the leads to the copper sleeve while the U-shaped induction coil was unable to heat the sleeve and solder to a brazing temperature after more than 3 minutes in a similar copper sleeve. With the present invention, a circular induction coil took a total of only about 8 seconds to melt solder and braze the leads to a copper sleeve having a magnetic material layer, while a U-shaped induction coil took a total of about only 15 seconds to melt the solder and to braze the leads to a similar copper sleeve having a magnetic material layer.
If it is desired to heat only a selective portion or part of an article or workpiece, the surface of the article in juxtaposition with the portion or part to be heated can be plated in any conventional or suitable manner with a thin magnetic layer. When an energized induction coil is placed adjacent the magnetic layer the selected portion or part of the article will be heated, generally to the exclusion of adjacent portions or parts.
It will be understood that various changes in the details, materials and arrangements of the parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
What is claimed is:
1. A method for inductively heating and sealing a copper sleeve having a plurality of electrical leads therethrough comprising the steps of:
(a) applying a layer of magnetic material on the surface of said sleeve,
(b) applying fusible metal to the interior of said sleeve,
(c) positioning inductor coil heating means adjacent said sleeve, and
(d) energizing said inductor coil.
2. The method of claim 1 in which said sleeve is annular and said inductor coil is U-shaped.
References Cited UNITED STATES PATENTS 2,267,001 12/1941 Toulmin 2l910.41 2,653,210 9/1953 Becker et a1 2l99.5 2,743,345 4/1956 Seulen et a1 219l0.79 X 2,899,525 8/1959 Lederman et al. 2l9l0.41 3,118,365 l/l964 Rollo et a1 2l910.53 X 3,204,074 8/1965 Hunting 2l9l0.79 3,359,398 12/1967 Reinke et al 2l9l0.79 X
RICHARD M. WOOD, Primary Examiner.
L. H. BENDER, Assistant Examiner.
US. Cl. X.R.
US617020A 1967-02-15 1967-02-15 Method for induction heating Expired - Lifetime US3431379A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61702067A 1967-02-15 1967-02-15

Publications (1)

Publication Number Publication Date
US3431379A true US3431379A (en) 1969-03-04

Family

ID=24471955

Family Applications (1)

Application Number Title Priority Date Filing Date
US617020A Expired - Lifetime US3431379A (en) 1967-02-15 1967-02-15 Method for induction heating

Country Status (1)

Country Link
US (1) US3431379A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612803A (en) * 1968-02-29 1971-10-12 Ruth Elizabeth Barry Klaas Fastening device
FR2404371A1 (en) * 1977-09-21 1979-04-20 Onera (Off Nat Aerospatiale) Electrical induction heating coils - have rigid U=shape with two rectangular coils in series
US5444220A (en) * 1991-10-18 1995-08-22 The Boeing Company Asymmetric induction work coil for thermoplastic welding
US5486684A (en) * 1995-01-03 1996-01-23 The Boeing Company Multipass induction heating for thermoplastic welding
US5500511A (en) * 1991-10-18 1996-03-19 The Boeing Company Tailored susceptors for induction welding of thermoplastic
US5508496A (en) * 1991-10-18 1996-04-16 The Boeing Company Selvaged susceptor for thermoplastic welding by induction heating
US5556565A (en) * 1995-06-07 1996-09-17 The Boeing Company Method for composite welding using a hybrid metal webbed composite beam
US5571436A (en) * 1991-10-15 1996-11-05 The Boeing Company Induction heating of composite materials
US5573613A (en) * 1995-01-03 1996-11-12 Lunden; C. David Induction thermometry
US5624594A (en) * 1991-04-05 1997-04-29 The Boeing Company Fixed coil induction heater for thermoplastic welding
US5641422A (en) * 1991-04-05 1997-06-24 The Boeing Company Thermoplastic welding of organic resin composites using a fixed coil induction heater
US5645744A (en) * 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5660669A (en) * 1994-12-09 1997-08-26 The Boeing Company Thermoplastic welding
US5705795A (en) * 1995-06-06 1998-01-06 The Boeing Company Gap filling for thermoplastic welds
US5717191A (en) * 1995-06-06 1998-02-10 The Boeing Company Structural susceptor for thermoplastic welding
US5723849A (en) * 1991-04-05 1998-03-03 The Boeing Company Reinforced susceptor for induction or resistance welding of thermoplastic composites
US5728309A (en) * 1991-04-05 1998-03-17 The Boeing Company Method for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5756973A (en) * 1995-06-07 1998-05-26 The Boeing Company Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures
US5760379A (en) * 1995-10-26 1998-06-02 The Boeing Company Monitoring the bond line temperature in thermoplastic welds
US5793024A (en) * 1991-04-05 1998-08-11 The Boeing Company Bonding using induction heating
US5808281A (en) * 1991-04-05 1998-09-15 The Boeing Company Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5829716A (en) * 1995-06-07 1998-11-03 The Boeing Company Welded aerospace structure using a hybrid metal webbed composite beam
US5847375A (en) * 1991-04-05 1998-12-08 The Boeing Company Fastenerless bonder wingbox
US5869814A (en) * 1996-07-29 1999-02-09 The Boeing Company Post-weld annealing of thermoplastic welds
US5902935A (en) * 1996-09-03 1999-05-11 Georgeson; Gary E. Nondestructive evaluation of composite bonds, especially thermoplastic induction welds
US5916469A (en) * 1996-06-06 1999-06-29 The Boeing Company Susceptor integration into reinforced thermoplastic composites
US6284089B1 (en) 1997-12-23 2001-09-04 The Boeing Company Thermoplastic seam welds
US6333494B1 (en) * 2000-12-04 2001-12-25 General Electric Company Method of induction brazing transformer strands to base plate
US6602810B1 (en) 1995-06-06 2003-08-05 The Boeing Company Method for alleviating residual tensile strain in thermoplastic welds
US20050150934A1 (en) * 2002-02-28 2005-07-14 Thermagen Method of producing metallic packaging
US6940056B2 (en) 2003-10-09 2005-09-06 Visteon Global Technologies, Inc. Induction heat treatment method and coil and article treated thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267001A (en) * 1940-12-16 1941-12-23 Ohio Commw Eng Co Method and apparatus for drying paint
US2653210A (en) * 1951-02-06 1953-09-22 Deutsche Edelstahlwerke Ag Method for providing metallic articles with a protective work surface layer
US2743345A (en) * 1953-07-17 1956-04-24 Deutsche Edelstahlwerke Ag Induction heating apparatus
US2899525A (en) * 1959-08-11 Lederman et
US3118365A (en) * 1964-01-21 Cable lacing apparatus and method
US3204074A (en) * 1963-04-25 1965-08-31 Lockheed Aircraft Corp Induction heating detachable work coil
US3359398A (en) * 1963-08-05 1967-12-19 Deutsche Edelstahlwerke Ag Inductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899525A (en) * 1959-08-11 Lederman et
US3118365A (en) * 1964-01-21 Cable lacing apparatus and method
US2267001A (en) * 1940-12-16 1941-12-23 Ohio Commw Eng Co Method and apparatus for drying paint
US2653210A (en) * 1951-02-06 1953-09-22 Deutsche Edelstahlwerke Ag Method for providing metallic articles with a protective work surface layer
US2743345A (en) * 1953-07-17 1956-04-24 Deutsche Edelstahlwerke Ag Induction heating apparatus
US3204074A (en) * 1963-04-25 1965-08-31 Lockheed Aircraft Corp Induction heating detachable work coil
US3359398A (en) * 1963-08-05 1967-12-19 Deutsche Edelstahlwerke Ag Inductor

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612803A (en) * 1968-02-29 1971-10-12 Ruth Elizabeth Barry Klaas Fastening device
FR2404371A1 (en) * 1977-09-21 1979-04-20 Onera (Off Nat Aerospatiale) Electrical induction heating coils - have rigid U=shape with two rectangular coils in series
US5723849A (en) * 1991-04-05 1998-03-03 The Boeing Company Reinforced susceptor for induction or resistance welding of thermoplastic composites
US7126096B1 (en) 1991-04-05 2006-10-24 Th Boeing Company Resistance welding of thermoplastics in aerospace structure
US5847375A (en) * 1991-04-05 1998-12-08 The Boeing Company Fastenerless bonder wingbox
US5808281A (en) * 1991-04-05 1998-09-15 The Boeing Company Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5793024A (en) * 1991-04-05 1998-08-11 The Boeing Company Bonding using induction heating
US6040563A (en) * 1991-04-05 2000-03-21 The Boeing Company Bonded assemblies
US5728309A (en) * 1991-04-05 1998-03-17 The Boeing Company Method for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5624594A (en) * 1991-04-05 1997-04-29 The Boeing Company Fixed coil induction heater for thermoplastic welding
US5641422A (en) * 1991-04-05 1997-06-24 The Boeing Company Thermoplastic welding of organic resin composites using a fixed coil induction heater
US5645744A (en) * 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5571436A (en) * 1991-10-15 1996-11-05 The Boeing Company Induction heating of composite materials
US5508496A (en) * 1991-10-18 1996-04-16 The Boeing Company Selvaged susceptor for thermoplastic welding by induction heating
US5444220A (en) * 1991-10-18 1995-08-22 The Boeing Company Asymmetric induction work coil for thermoplastic welding
US5500511A (en) * 1991-10-18 1996-03-19 The Boeing Company Tailored susceptors for induction welding of thermoplastic
US5705796A (en) * 1991-10-18 1998-01-06 The Boeing Company Reinforced composites formed using induction thermoplastic welding
US5660669A (en) * 1994-12-09 1997-08-26 The Boeing Company Thermoplastic welding
US5753068A (en) * 1994-12-09 1998-05-19 Mittleider; John A. Thermoplastic welding articulated skate
US5833799A (en) * 1994-12-09 1998-11-10 The Boeing Company Articulated welding skate
US5573613A (en) * 1995-01-03 1996-11-12 Lunden; C. David Induction thermometry
US5486684A (en) * 1995-01-03 1996-01-23 The Boeing Company Multipass induction heating for thermoplastic welding
US5717191A (en) * 1995-06-06 1998-02-10 The Boeing Company Structural susceptor for thermoplastic welding
US5705795A (en) * 1995-06-06 1998-01-06 The Boeing Company Gap filling for thermoplastic welds
US6602810B1 (en) 1995-06-06 2003-08-05 The Boeing Company Method for alleviating residual tensile strain in thermoplastic welds
US5756973A (en) * 1995-06-07 1998-05-26 The Boeing Company Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures
US5556565A (en) * 1995-06-07 1996-09-17 The Boeing Company Method for composite welding using a hybrid metal webbed composite beam
US5829716A (en) * 1995-06-07 1998-11-03 The Boeing Company Welded aerospace structure using a hybrid metal webbed composite beam
US5760379A (en) * 1995-10-26 1998-06-02 The Boeing Company Monitoring the bond line temperature in thermoplastic welds
US5935475A (en) * 1996-06-06 1999-08-10 The Boeing Company Susceptor integration into reinforced thermoplastic composites
US5916469A (en) * 1996-06-06 1999-06-29 The Boeing Company Susceptor integration into reinforced thermoplastic composites
US5925277A (en) * 1996-07-29 1999-07-20 The Boeing Company Annealed thermoplastic weld
US5869814A (en) * 1996-07-29 1999-02-09 The Boeing Company Post-weld annealing of thermoplastic welds
US5902935A (en) * 1996-09-03 1999-05-11 Georgeson; Gary E. Nondestructive evaluation of composite bonds, especially thermoplastic induction welds
US6613169B2 (en) 1996-09-03 2003-09-02 The Boeing Company Thermoplastic rewelding process
US6284089B1 (en) 1997-12-23 2001-09-04 The Boeing Company Thermoplastic seam welds
US20020038687A1 (en) * 1997-12-23 2002-04-04 The Boeing Company Thermoplastic seam welds
US6333494B1 (en) * 2000-12-04 2001-12-25 General Electric Company Method of induction brazing transformer strands to base plate
US20050150934A1 (en) * 2002-02-28 2005-07-14 Thermagen Method of producing metallic packaging
US6940056B2 (en) 2003-10-09 2005-09-06 Visteon Global Technologies, Inc. Induction heat treatment method and coil and article treated thereby

Similar Documents

Publication Publication Date Title
US3431379A (en) Method for induction heating
US3126937A (en) Forming method and apparatus therefor
US2444259A (en) Method of high-frequency induction heating
AU2005239590B2 (en) Multi-frequency heat treatment of a workpiece by induction heating
US3037105A (en) Methods and apparatus for the induction welding of tubing
US20170297130A1 (en) Method for shortening the process time during the soldering of electric or electronic components by means of electromagnetic induction heating
US6555801B1 (en) Induction heating coil, device and method of use
US2459971A (en) Inductor for high-frequency induction heating apparatus
US3612806A (en) Inductor for internal heating
US3251974A (en) Metal forming apparatus
US2281334A (en) Heat treatment
US2632079A (en) Means and method for electric seam welding
US2537289A (en) Device for heating pieces of work by means of high-frequency alternating currents
US2401899A (en) Apparatus for treating metal
US2481962A (en) Manufacture of laminated articles
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
US2256873A (en) Inside induction heater
US2476935A (en) Induction heating apparatus
US2437776A (en) Electric induction furnace for continuously heating metal strip
US2763756A (en) Induction welding
US2408190A (en) Magnetic induction heating of thinwalled nonmagnetic metallic tubes
US2176488A (en) Furnace for heating pieces by means of high frequency currents
US2427485A (en) Electric induction furnace for continuously heating metal strip
US2678371A (en) Heating inductor
US2528810A (en) Induction heating and welding