US3422394A - Electrical connector - Google Patents

Electrical connector Download PDF

Info

Publication number
US3422394A
US3422394A US482168A US3422394DA US3422394A US 3422394 A US3422394 A US 3422394A US 482168 A US482168 A US 482168A US 3422394D A US3422394D A US 3422394DA US 3422394 A US3422394 A US 3422394A
Authority
US
United States
Prior art keywords
contact
connector
electrical
circuit board
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US482168A
Inventor
Jack E Antes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Application granted granted Critical
Publication of US3422394A publication Critical patent/US3422394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/721Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures cooperating directly with the edge of the rigid printed circuits

Definitions

  • This invention relates to an electrical connector and more particularly to a class of electricalconnectors called microminiature connectors for connecting external electric circuits to integrated circuits and discreet microcomponents associated with printed circuit boards.
  • Another object of the present invention is to provide an improved electrical connector having a spring loaded contact element constructed to effectively engage a mating element without fatigue or distortion of the element.
  • a further object of the present invention is to provide an improved electrical connector for printed circuit boards having mutually engaging portions which remain in sliding contact during deflection of a contact element as a circuit board is brought into engagement with the contact element.
  • the improved electrical connector of the present invention comprises a connector block or insulating memher having one or more transverse chambers or cavities and a longitudinal recess for receiving a mating connector element such as a printed circuit board.
  • a resilient contact member including a loop contact portion having leg portions with mutually engaging intermediate parts is spring loaded into each of said chambers.
  • FIGURE 1 is a perspective view of a portion of a connector block shown in section to show the positioning of the contact member
  • FIG. 2 is an enlarged sectional view of a portion of the connector block and a printed circuit board showing a contact member in contact with a printed circuit board and illustrating in dashed lines the position of the contact loop prior to the insertion of the printed circuit board;
  • FIG. 3 is a perspective view of a typical printed circuit board engagingthe connector body of the present invention showing the electrical conductor terminations and having a portion cut away to show a typical electrical element mounted on the circuit board.
  • a connector block or insulating member 10 of a plastic material such as diallyl phthalate has been formed such as by molding to include a plurality of transverse chambers or cavities 12 and a longitudinal recess 14.
  • the body includes a flange 16 at each end having a bore or aperture 18 for mounting the body 10 to a support structure by bolts or screws (not shown).
  • a contact member or element 20 typically formed from a metal fiat strip or wire such as high conductivity copper alloy, nickel alloy or beryllium copper alloy and having a unique shape is looked into contact position in each of the chambers 12.
  • FIG. 1 While in FIG. 1 there is shown and hereinafter described a connector block with opposing chambers and contact elements, it should be understood that without varying from the scope of the present invention one of the rows of connector elements may be eliminated if it is desired to make contact with only one side of a printed circuit board.
  • Each of the contact members 20 has been folded or upset from a continuous flat strip or wire having a generally uniform cross section into a configuration including a convex or open contact loop portion 22 having first and second leg portions 24 and 26.
  • the first leg 24 includes a first knee 28, a protrusion or convexity 30 which as described later assists in locking the contact member 20 in the chamber 12, and a terminal portion 31.
  • the second leg includes a second knee 32 of greater curvature than the first knee 28 and a looped end portion 34.
  • Each of the chambers 12 extends through the connector block 10 from top to bottom as shown in the figures and with the exception of a locking or shoulder portion 36 is of substantially uniform width.
  • a divider or barrier 38 extends into the chamber 12 at the bottom as oriented in the figures and divides a portion thereof into two chambers having a restricted portion 39.
  • the divider 38 has a first and a second inclined surface 40, 42 which function to support the second knee 32 and for locking the end loop portion 34 of the second leg 26 respectively.
  • each of the contact members in a chamber is accomplished by inserting the contact loop portion 22 into the top of the chamber and into the restricted portion 39 with the end loop portion .34 engaging the first leg 24 and the first knee 28 in contact with a portion 29 of the second leg 26.
  • the portion 29 slides across the first knee 28 and places the member in torsion and permits the first leg 24 to deflect toward the wall of chamber 12.
  • Further inserting causes the first k-nee 24 to seat on the shoulder 36 by the locking of protrusion 30 against the shoulder 36 and the end of the loop portion 34 looking against the second inclined surface 42 with a part of the second knee 32 retained between the first knee 28 and the first inclined surface 40.
  • the contact of the second knee 32 with the inclined surface 40 supports the contact element from undesired tipping or clockwise deflection.
  • the contact loop 22 of each member is in a first position, which changes to a second position (solid lines) when a mating element or printed circuit board 44 is inserted into the block 14 and into contact with the loop portion 22.
  • the second leg 26 cants toward the left side of chamber 12, as viewed in FIGS. 1 and 2, and a torsional twist is introduced into the contact member 20 by the leg portion 29 sliding along the first knee 28 but no movement is transmitted to the contact element at the locking points provided by the protrusion 30 and the end of the loop portion 34.
  • each of the elements is separated by a wall or barrier 50, which is preferably formed as an integral part of the insulating material of the block 10.
  • FIG. 3 is shown a typical application of an embodiment of the improved electrical connector of the present invention wherein a printed circuit board 44 having a plurality of terminal conductors 52 coupled to various electrical components, such as shown at 56, is inserted into the body with each of the terminal conductors 52 in electrical contact with a contact loop (not shown) associated with the terminals 31 projecting from the bottom of the block.
  • a printed circuit board 44 having a plurality of terminal conductors 52 coupled to various electrical components, such as shown at 56, is inserted into the body with each of the terminal conductors 52 in electrical contact with a contact loop (not shown) associated with the terminals 31 projecting from the bottom of the block.
  • An electrical connector comprising:
  • an electrical insulating member having one or more cavities each including a shoulder and a divider and adapted to receive a mating electrical contact element
  • At least one resilient contact member positioned in each of said cavities, said contact member having a contact portion at one end including an open loop having leg portions with a pair of mutually engaging parts forming a collapsible parallogram upon entry into said one cavity and defining parallel electrical paths, said parts being free to move as the contact portion is displaced into spring loaded contact as the mating contact element engages said insulating member and at the other end a locking means for locking said member in contact with said shoulder and divider.
  • An electrical connector comprising:
  • an electrical insulating member having one or more cavities each including a shoulder and a divider and adapted to receive a mating electrical contact element
  • said contact member having a contact portion at one end including an open loop having leg portions with mutually engaging parts, said parts being 'free to move as the contact portion is displaced into spring loaded contact as the mating contact element engages said insulating member and at the other end a locking means for locking said member in contact with said shoulder and divider and wherein said means for locking the resilient contact member in contact with the shoulder and the divider comprises a knee and a protrusion formed in one leg portion located to engage said shoulder on opposite sides thereof and an end loop in the other leg portion shaped to engage said divider.

Description

Jan- 14, 1969 v .1. E. ANTES 3,422,394
ELECTRICAL CONNECTOR Filed Aug '24, 1965 Fig. 2..
Jack 'E. Antes,
lN VENTOR.
ATTORNEY.
United States Patent Claims ABSTRACT OF THE DISCLOSURE This is an electrical connector for circuit boards which comprises a plurality of contact members each retained in a; cavity in a connector plug. The contact members and cavities are of such a shape to enable the contact member to be locked in the cavity against axial movement but with a looped contact portion free to move in a sliding contact with the circuit board.
This invention relates to an electrical connector and more particularly to a class of electricalconnectors called microminiature connectors for connecting external electric circuits to integrated circuits and discreet microcomponents associated with printed circuit boards.
With the development of integrated circuits and microminiature electrical components and the arranging of such components on circuit boards, a need has arisen for efiicient and reliable methods for the connection of such components and boards to external electrical circuits. Because of the small size of these components and circuit boards and their frequent use in high reliability devices and systems, the connector developed for this purpose must also be small, durable, and provide high conductivity even after extended periods of use and repeated engagement and separation.
In the design of an effective circuit board connector to achieve maximum utilization of a minimum area, it has been found desirable to retain a plurality of such contact elements in a single receptacle block and to springload each contact element. By spring-loading each contact element, a more effective electrical conductivity and structural rigidity of the elements is achieved. Heretofore, the common practice has been to provide this loading by external or auxiliary springs. However, these have been found to be too complex and costly for high production use and introduce size limitations.
Therefore, it is an object of the present invention to provide an improved and more efiicient electrical connector for a mating connector or printed circuit board.
Another object of the present invention is to provide an improved electrical connector having a spring loaded contact element constructed to effectively engage a mating element without fatigue or distortion of the element.
A further object of the present invention is to provide an improved electrical connector for printed circuit boards having mutually engaging portions which remain in sliding contact during deflection of a contact element as a circuit board is brought into engagement with the contact element.
Briefly, the improved electrical connector of the present invention comprises a connector block or insulating memher having one or more transverse chambers or cavities and a longitudinal recess for receiving a mating connector element such as a printed circuit board. A resilient contact member including a loop contact portion having leg portions with mutually engaging intermediate parts is spring loaded into each of said chambers. Although the contact members are looked in position against axial movement, the engaging parts are free to move in sliding contact as Patented Jan. 14, 1969 "ice the engagement of the contact member with the mating connector element displaces the loop portion.
Other advantages of the invention will hereinafter become more fully apparent from the following description of the drawings which illustrate a preferred embodiment thereof and in which:
FIGURE 1 is a perspective view of a portion of a connector block shown in section to show the positioning of the contact member;
FIG. 2 is an enlarged sectional view of a portion of the connector block and a printed circuit board showing a contact member in contact with a printed circuit board and illustrating in dashed lines the position of the contact loop prior to the insertion of the printed circuit board; and
FIG. 3 is a perspective view of a typical printed circuit board engagingthe connector body of the present invention showing the electrical conductor terminations and having a portion cut away to show a typical electrical element mounted on the circuit board.
Referring now to FIGS. 1 and 2, a connector block or insulating member 10 of a plastic material such as diallyl phthalate has been formed such as by molding to include a plurality of transverse chambers or cavities 12 and a longitudinal recess 14. Typically, the body includes a flange 16 at each end having a bore or aperture 18 for mounting the body 10 to a support structure by bolts or screws (not shown). A contact member or element 20 typically formed from a metal fiat strip or wire such as high conductivity copper alloy, nickel alloy or beryllium copper alloy and having a unique shape is looked into contact position in each of the chambers 12.
While in FIG. 1 there is shown and hereinafter described a connector block with opposing chambers and contact elements, it should be understood that without varying from the scope of the present invention one of the rows of connector elements may be eliminated if it is desired to make contact with only one side of a printed circuit board.
Each of the contact members 20 has been folded or upset from a continuous flat strip or wire having a generally uniform cross section into a configuration including a convex or open contact loop portion 22 having first and second leg portions 24 and 26. The first leg 24 includes a first knee 28, a protrusion or convexity 30 which as described later assists in locking the contact member 20 in the chamber 12, and a terminal portion 31. The second leg includes a second knee 32 of greater curvature than the first knee 28 and a looped end portion 34.
Each of the chambers 12 extends through the connector block 10 from top to bottom as shown in the figures and with the exception of a locking or shoulder portion 36 is of substantially uniform width. A divider or barrier 38 extends into the chamber 12 at the bottom as oriented in the figures and divides a portion thereof into two chambers having a restricted portion 39. The divider 38 has a first and a second inclined surface 40, 42 which function to support the second knee 32 and for locking the end loop portion 34 of the second leg 26 respectively.
The positioning and locking of each of the contact members in a chamber is accomplished by inserting the contact loop portion 22 into the top of the chamber and into the restricted portion 39 with the end loop portion .34 engaging the first leg 24 and the first knee 28 in contact with a portion 29 of the second leg 26. As the contact member 20 is inserted further toward the bottom of the block 10, the portion 29 slides across the first knee 28 and places the member in torsion and permits the first leg 24 to deflect toward the wall of chamber 12. Further inserting causes the first k-nee 24 to seat on the shoulder 36 by the locking of protrusion 30 against the shoulder 36 and the end of the loop portion 34 looking against the second inclined surface 42 with a part of the second knee 32 retained between the first knee 28 and the first inclined surface 40. The contact of the second knee 32 with the inclined surface 40 supports the contact element from undesired tipping or clockwise deflection.
As shown by the dashed lines in FIG. 2, after the completed assembly of the contact members in the connector block, the contact loop 22 of each member is in a first position, which changes to a second position (solid lines) when a mating element or printed circuit board 44 is inserted into the block 14 and into contact with the loop portion 22. As the loop portion 22 deflects, the second leg 26 cants toward the left side of chamber 12, as viewed in FIGS. 1 and 2, and a torsional twist is introduced into the contact member 20 by the leg portion 29 sliding along the first knee 28 but no movement is transmitted to the contact element at the locking points provided by the protrusion 30 and the end of the loop portion 34.
When a source of electrical power is coupled to the terminal lead 31, the path of electrical current to the circuit board conductor is from the lead 31 to the point of contact between the first and second legs 24, 26 where it splits into dual paths following both legs to the point of contact of the contact loop portion 22 with the circuit board conductor. To prevent shorting or arcing between adjacent contact elements, each of the elements is separated by a wall or barrier 50, which is preferably formed as an integral part of the insulating material of the block 10.
In FIG. 3 is shown a typical application of an embodiment of the improved electrical connector of the present invention wherein a printed circuit board 44 having a plurality of terminal conductors 52 coupled to various electrical components, such as shown at 56, is inserted into the body with each of the terminal conductors 52 in electrical contact with a contact loop (not shown) associated with the terminals 31 projecting from the bottom of the block.
While one embodiment of this invention has been herein illustrated and a slight modification of this embodiment has been described, it should be appreciated by those skilled in the art that variations of the disclosed arrangement both as to its details and the operation of such details may be made without departing from the skill and scope thereof. Accordingly, it is intended that the foregoing disclosure and the showings made in the drawings may be considered as illustrative of this invention and not construed in a limited sense.
What is claimed is:
1. An electrical connector comprising:
an electrical insulating member having one or more cavities each including a shoulder and a divider and adapted to receive a mating electrical contact element; and
at least one resilient contact member positioned in each of said cavities, said contact member having a contact portion at one end including an open loop having leg portions with a pair of mutually engaging parts forming a collapsible parallogram upon entry into said one cavity and defining parallel electrical paths, said parts being free to move as the contact portion is displaced into spring loaded contact as the mating contact element engages said insulating member and at the other end a locking means for locking said member in contact with said shoulder and divider.
2. An electrical connector comprising:
an electrical insulating member having one or more cavities each including a shoulder and a divider and adapted to receive a mating electrical contact element;
at least one resilient contact member positioned in each of said cavities, said contact member having a contact portion at one end including an open loop having leg portions with mutually engaging parts, said parts being 'free to move as the contact portion is displaced into spring loaded contact as the mating contact element engages said insulating member and at the other end a locking means for locking said member in contact with said shoulder and divider and wherein said means for locking the resilient contact member in contact with the shoulder and the divider comprises a knee and a protrusion formed in one leg portion located to engage said shoulder on opposite sides thereof and an end loop in the other leg portion shaped to engage said divider.
3. The electrical connector of claim 2 wherein the resilient contact member is a fiat metallic strip and the mating connector is a printed circuit board.
4. The electrical connector of claim 3 wherein engagement of said printed circuit board with said loop element causes one of said mutually engaging parts of said contact member to slide over the other part with substantially no movement of said contact member at said knee and at the point of engagement of said end loop with said divider.
References Cited UNITED STATES PATENTS 3,015,083 12/1961 Juris 3392l7 X 2,882,511 4/1959 Mason 339176 3,172,717 3/1965 Clewes 339-176 3,209,310 9/1965' Schwartz et al 3392l7 MARVIN A. CHAMPION, Primary Examiner.
J. R. MOSS, Assistant Examiner.
US. Cl. X.R.
US482168A 1965-08-24 1965-08-24 Electrical connector Expired - Lifetime US3422394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US48216865A 1965-08-24 1965-08-24

Publications (1)

Publication Number Publication Date
US3422394A true US3422394A (en) 1969-01-14

Family

ID=23914989

Family Applications (1)

Application Number Title Priority Date Filing Date
US482168A Expired - Lifetime US3422394A (en) 1965-08-24 1965-08-24 Electrical connector

Country Status (3)

Country Link
US (1) US3422394A (en)
DE (1) DE1640330B2 (en)
GB (1) GB1126440A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573718A (en) * 1968-09-16 1971-04-06 Amp Inc Miniature electrical connector
US4094573A (en) * 1973-08-01 1978-06-13 Elfab Corporation Circuit board edge connector
FR2512284A1 (en) * 1981-08-25 1983-03-04 Labinal Electrical connector for cable and PCB - has U=shaped cross-section conductive body to which conductor is crimped and hairpin folds at base of arms to resiliently clamp PCB
US4632478A (en) * 1984-03-02 1986-12-30 Hitachi, Ltd. Contact of connector
US4891023A (en) * 1988-08-22 1990-01-02 Molex Incorporated Circuit card edge connector and terminal therefor
US5082459A (en) * 1990-08-23 1992-01-21 Amp Incorporated Dual readout simm socket
US5401185A (en) * 1993-11-22 1995-03-28 Wang; Kuo-Long Edge connector
US5489223A (en) * 1994-10-17 1996-02-06 Molex Incorporated Electrical connector with terminal locking means
US5865649A (en) * 1995-08-24 1999-02-02 Berg Technology, Inc. Card edge connector having means for preventing overstress of contact elements
US5971805A (en) * 1997-05-27 1999-10-26 Berg Technology, Inc. Modular jack with filter insert
US6062908A (en) * 1997-01-27 2000-05-16 Pulse Engineering, Inc. High density connector modules having integral filtering components within repairable, replaceable submodules
US6113422A (en) * 1994-11-30 2000-09-05 Berg Technology, Inc. Connector with circuit devices and indicators
US6325664B1 (en) 1999-03-11 2001-12-04 Pulse Engineering, Inc. Shielded microelectronic connector with indicators and method of manufacturing
US6358061B1 (en) 1999-11-09 2002-03-19 Molex Incorporated High-speed connector with shorting capability
US6585540B2 (en) 2000-12-06 2003-07-01 Pulse Engineering Shielded microelectronic connector assembly and method of manufacturing
US20060063405A1 (en) * 2002-12-20 2006-03-23 Poh Edmund W Connector with heat dissipating features
US20070010125A1 (en) * 2005-07-07 2007-01-11 Regnier Kent E Edge card connector assembly with high-speed terminals
US20110059647A1 (en) * 2004-06-29 2011-03-10 Russell Lee Machado Universal Connector Assembly and Method of Manufacturing
WO2011032881A1 (en) * 2009-09-21 2011-03-24 International Business Machines Corporation Delayed contact action connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921228A1 (en) * 1989-06-28 1991-01-10 Siemens Ag Distributor strip for telephone exchange - has pressed metal contact inserts shaped to provide high contact force against pin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882511A (en) * 1955-07-13 1959-04-14 Nicholas Anton Printed circuit connector
US3015083A (en) * 1960-01-25 1961-12-26 Amphenol Borg Electronics Corp Electrical connectors
US3172717A (en) * 1963-02-26 1965-03-09 Clewes Antony Brasher Electrical contact and edge connector for such contact
US3209310A (en) * 1962-07-20 1965-09-28 Sperry Rand Corp Electrical contact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882511A (en) * 1955-07-13 1959-04-14 Nicholas Anton Printed circuit connector
US3015083A (en) * 1960-01-25 1961-12-26 Amphenol Borg Electronics Corp Electrical connectors
US3209310A (en) * 1962-07-20 1965-09-28 Sperry Rand Corp Electrical contact
US3172717A (en) * 1963-02-26 1965-03-09 Clewes Antony Brasher Electrical contact and edge connector for such contact

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573718A (en) * 1968-09-16 1971-04-06 Amp Inc Miniature electrical connector
US4094573A (en) * 1973-08-01 1978-06-13 Elfab Corporation Circuit board edge connector
FR2512284A1 (en) * 1981-08-25 1983-03-04 Labinal Electrical connector for cable and PCB - has U=shaped cross-section conductive body to which conductor is crimped and hairpin folds at base of arms to resiliently clamp PCB
US4632478A (en) * 1984-03-02 1986-12-30 Hitachi, Ltd. Contact of connector
US4891023A (en) * 1988-08-22 1990-01-02 Molex Incorporated Circuit card edge connector and terminal therefor
US5082459A (en) * 1990-08-23 1992-01-21 Amp Incorporated Dual readout simm socket
US5401185A (en) * 1993-11-22 1995-03-28 Wang; Kuo-Long Edge connector
US5489223A (en) * 1994-10-17 1996-02-06 Molex Incorporated Electrical connector with terminal locking means
US6113422A (en) * 1994-11-30 2000-09-05 Berg Technology, Inc. Connector with circuit devices and indicators
US5865649A (en) * 1995-08-24 1999-02-02 Berg Technology, Inc. Card edge connector having means for preventing overstress of contact elements
US6106337A (en) * 1995-08-24 2000-08-22 Berg Technology, Inc. Card edge connector having means for preventing overstress of contact elements
US6062908A (en) * 1997-01-27 2000-05-16 Pulse Engineering, Inc. High density connector modules having integral filtering components within repairable, replaceable submodules
US5971805A (en) * 1997-05-27 1999-10-26 Berg Technology, Inc. Modular jack with filter insert
US6325664B1 (en) 1999-03-11 2001-12-04 Pulse Engineering, Inc. Shielded microelectronic connector with indicators and method of manufacturing
US6358061B1 (en) 1999-11-09 2002-03-19 Molex Incorporated High-speed connector with shorting capability
US20030186586A1 (en) * 2000-12-06 2003-10-02 Gutierrez Aurelio J. Shielded microelectronic connector assembly and method of manufacturing
US6878012B2 (en) 2000-12-06 2005-04-12 Pulse Engineering, Inc. Shielded microelectronic connector assembly and method of manufacturing
US6585540B2 (en) 2000-12-06 2003-07-01 Pulse Engineering Shielded microelectronic connector assembly and method of manufacturing
US7452242B2 (en) 2002-12-20 2008-11-18 Molex Incorporated Connector with heat dissipating features
US20060063405A1 (en) * 2002-12-20 2006-03-23 Poh Edmund W Connector with heat dissipating features
US7275966B2 (en) * 2002-12-20 2007-10-02 Molex Incorporated Connector with heat dissipating features
US20070249231A1 (en) * 2002-12-20 2007-10-25 Molex Incorporated Connector with heat dissipating features
US20110059647A1 (en) * 2004-06-29 2011-03-10 Russell Lee Machado Universal Connector Assembly and Method of Manufacturing
US7959473B2 (en) 2004-06-29 2011-06-14 Pulse Engineering, Inc. Universal connector assembly and method of manufacturing
US8206183B2 (en) 2004-06-29 2012-06-26 Pulse Electronics, Inc. Universal connector assembly and method of manufacturing
US8480440B2 (en) 2004-06-29 2013-07-09 Pulse Electronics, Inc. Universal connector assembly and method of manufacturing
US8882546B2 (en) 2004-06-29 2014-11-11 Pulse Electronics, Inc. Universal connector assembly and method of manufacturing
US7442089B2 (en) * 2005-07-07 2008-10-28 Molex Incorporated Edge card connector assembly with high-speed terminals
US20070010125A1 (en) * 2005-07-07 2007-01-11 Regnier Kent E Edge card connector assembly with high-speed terminals
WO2011032881A1 (en) * 2009-09-21 2011-03-24 International Business Machines Corporation Delayed contact action connector
US20110070775A1 (en) * 2009-09-21 2011-03-24 International Business Machines Corporation Delayed contact action connector
US8282420B2 (en) 2009-09-21 2012-10-09 International Business Machines Corporation Delayed contact action connector
US8662931B2 (en) 2009-09-21 2014-03-04 International Business Machines Corporation Delayed contact action connector

Also Published As

Publication number Publication date
GB1126440A (en) 1968-09-05
DE1640330B2 (en) 1972-05-04
DE1640330A1 (en) 1970-10-01

Similar Documents

Publication Publication Date Title
US3422394A (en) Electrical connector
US3903385A (en) Shorting bar switch in electrical connector biasing assembly
US2750572A (en) Multi-contact connector
US3514737A (en) Printed circuit board socket connector
US3054078A (en) Intermediate panel connector
US3864000A (en) Mating contact connector housing assembly
US3391383A (en) Electrical connector for integrated circuit elements
US3737833A (en) Ribbon cable connector system having feed thru connector
US2994056A (en) Printed circuit board connector
US3636503A (en) Printed circuit board connector
US4895531A (en) Electrical contact member
GB1389170A (en) Electrical contact elements and connectors
EP0598053A1 (en) Board to board interconnect
US3496521A (en) Safety contact terminal for electric wires
US3384864A (en) Electrical connector assembly
US3489986A (en) Electrical connector
US3275765A (en) Electrical connecting and switch device
US3200367A (en) Mating electrical pin and socket contacts and insulator therefor
KR101972237B1 (en) Connector device
US3388367A (en) Electrical connector for either flat or round conductors
US3412369A (en) Contact with multiple termination
US3273107A (en) Plug-and-socket connectors
JPH05205823A (en) Connector assembly
US3902153A (en) Circuit board socket
KR950034935A (en) Socket for electrical parts