US3401764A - Hydraulic control for fork lift trucks - Google Patents

Hydraulic control for fork lift trucks Download PDF

Info

Publication number
US3401764A
US3401764A US514823A US51482365A US3401764A US 3401764 A US3401764 A US 3401764A US 514823 A US514823 A US 514823A US 51482365 A US51482365 A US 51482365A US 3401764 A US3401764 A US 3401764A
Authority
US
United States
Prior art keywords
valve
spool
fork lift
hydraulic control
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US514823A
Inventor
Loren C Schafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US514823A priority Critical patent/US3401764A/en
Application granted granted Critical
Publication of US3401764A publication Critical patent/US3401764A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

Sept. 17, 1968 c. SCHAFER HYDRAULIC CONTROL FOR FORK LIFT TRUCKS Filed Dec. 20, 1965' 3 Sheets-Sheet 1 INVENTORL LOREN SCHAFER BY v 6 (Z M M ATTORNEY Sept. 17, 1968 c. SCHAFER 3,401,764
HYDRAULIC CONTROL FOR FORK LIFT TRUCKS Filed Dec. 20, 1965 5 Sheets-Sheet 2 INVENTOR. LOREN SCHAFER A .T TORNE Y P 1968 1.. c. SCHAFER 3,401,764
HYDRAULIC CONTROL FOR FORK LIFT TRUCKS Filed Dec. 20, 1965 3 Sheets-Sheet 5 3a 50 L J INVENTOR. LOREN SCHAFER flmg ATTORNEY United States Patent 3,401,764 HYDRAULIC CONTROL FOR FORK LIFT TRUCKS Loren C. Schafer, 245 Willow Drive, South Bend, Ind. 46637 Filed Dec. 20, 1965, Ser. No. 514,823 3 Claims. (Cl. 180-66) ABSTRACT OF THE DISCLOSURE A hydraulic control for fork lift trucks having hydraulic wheel drive motors arranged in parallel circuits and each in series with a valve having a spool shiftable endwise relative to circuit-controlling ports, wherein a land of said spool has a narrow circumferential part at one end having slight clearance in the valve housing and said spool has means for rotating it and a helical cam track engaging a part of said housing to advance said spool endwise by rotation thereof.
This invention relates to a hydraulic control for fork lift trucks.
The primary object of this invention is to provide a hydraulic control for a fork lift truck operation to govcm the wheel drive of the truck, the fork-elevating means of the truck, and the mast tilting means of the truck.
A further object is to provide a control of this character having a novel means for metering the flow of liquid through control valves and for regulating, not only the functioning speed of hydraulic components, but also regulating such functioning at two different rates relative to a unit of movement of a controlling element at different portions of the stroke thereof.
A further object is to provide a hydraulic control of this character having a spool type valve with a novel rotary action spool to accommodate long spool travel and accurate control of flow of oil through small increments of change of position of the spool.
Other objects will be apparent from the following specification. I
In the drawings:
FIG. 1 is a perspective view of a fork lift truck utilizing my new hydraulic control;
FIG. 2 is a schematic illustration of the hydraulic control;
FIG. 3 is a side elevational view of a novel spool element utilized in a valve of my new hydraulic control;
FIG. 4 is a schematic view illustrating one operative position of a valve utilizing my new valve spool;
FIG. 5 is a schematic view illustrating a second adjustment position of the valve using my new spool;
FIG. 6 is a schematic view illustrating a third operating position of a valve utilizing my new valve spool.
Referring to the drawings, and particularly to FIG.1, the numeral 10 designates a fork lift truck having a chassis 12 which is preferably provided with counterbalance weights and is supported upon front driving wheels 14 and one or more rear steering wheels 16. The chassis mounts a prime mover 18 or a drive motor, such as a gasoline engine or an electric motor. A hydraulic pump 20 is driven by prime mover 18 and a liquid reservoir 22 and other components of a hydraulic system are also mounted on the chassis. Suitable control members 24 for the hydraulic system and steering means are located within convenient reach of an operator from the seat 26. The chassis 12 mounts a tiltable mast 28 on which fork lift arms 30 are vertically adjustable between elevated and lowered positions. Mast 28 may be of any construction of the character well understood in the art.
The hydraulic control is illustrated schematically in FIG. 2. A line or conduit 32 connects with the reservoir I 3,401,764 Patented Sept. 17, 1968 "ice 22 and the pump 20 and preferably has a filter 34 interposed therein. A pump outlet line 36 extends to :a first control valve 38 which preferably is of a spool type and which preferably includes a spool 40, as illustrated in FIG. 3, which will be described hereafter. Valve 38 is adjusted or controlled by suitable manually operated member, such as a crank 42. A pair of lines 44 and 46 are connected to control valve 38 and extend to reversible hydraulic wheel motors 48 serving to drive the wheels 14. The wheel motors are preferably of a high torque low speed type and are preferably connected in parallel so as to provide differential action to accommodate short radius turning of the truck.
A line 50 connects the first control valve 38 with a second control valve 52 which is preferably a double action spool type valve controlled by actuator handle 54. A double acting power member, consisting of a cylinder 56 mounted on the chassis and a piston reciprocable in the cylinder and connected by a ram 60 with the tilting mast, has connection with the valve 52 through the conduits 61. Thus manipulation of the control handle 54 of the valve 52 will regulate actuation of mast-tilting member 56, 58 in selected direction, or serves to hold the mast in selected position by shutting off liquid flow from valve 52 through lines 61.
A single action valve 62, preferably of the spool type and having a valve actuating control handle 64, is connected at 66 to the outlet port of the valve 52. Connection 66 is herein shown diagrammatically as a conduit, but it will be understood that this is illustrative only inasmuch as the valves 52 and 62 may be a part of a single valve assembly or unit having two independently operable spools. A single action power member, consisting of a cylinder 68 and a piston 70, is mounted on the chassis, and the piston 70 actuates a ram 72 mounted upon the mast and connected with the fork lift arms 30. A line 74 provides a connection between the valve 62 and the cylinder 68 of the power member. The arrangement is such that in one valve setting the line 74 delivers liquid under pressure to the fork lifting cylinder 68 to elevate the fork arms, and in another valve setting line 74 returns liquid from the cylinder 68 to the valve 62 for flow therethrough to a return line 76 connected to the reservoir 22 to permit the ram to be lowered by the weight of the fork arms 30 and the load carried thereby. A relief line 78 may connect the upper end of the cylinder 68 to the reservoir 22. The relief line 78 provides for gravitational flow of liquid which may leak past piston 70 into the upper end of the fork lift hoisting cylinder 68.
The spool 40 of the valve 38 is preferably of a construction as illustrated in FIG. 3 and is provided with a plurality of spaced coaxial cylindrical portions or lands 'of any selected number, such as the lands 80, 82, 84 and 86, which form parts of an integral or unitary structure being interconnected by reduced neck parts 88. Each of the cylindrical spool parts or lands 80, 82, 84, 86, or selected ones thereof are provided with slightly reduced coaxial circular portions at least at one end thereof, as illustrated at 81, 83, and 87, adjacent one of the reduced neck parts 88 of the spool.
The arrangement and functioning of the valve 38 is illustrated in FIGS. 4, 5 and 6, in which a schematic illustration of a part of the valve body and spool, an inlet connected with conduit 36 and an outlet connected with conduit 50, are shown. The inlet and outlet both preferably have a longitudinal dimension equal to the longitudinal spacing between the ends of adjacent spools, such as ends 82 and 84; that is, a spacing equal to the axial dimensions of the reduced land parts 83 and 85 plus the axial dimension of the intervening reduced neck part 88 of the spool. The lands 82 and 84 will each have an axial dimension adequate to completely span and close the inlet 36 and the outlet 50.
FIG. 4 illustrates a position of the spool 40 in the valve 38 in which the land 84 completely spans and closes both the inlet 36 and the outlet 50, so that no flow occurs through the valve between the inlet 36 and outlet 50.
FIG. 5 illustrates a position in which land 84 has been displaced slightly from closed position so that a reduced part 85 thereof is partly in register with inlet 36 and the outlet 50. Inasmuch as the cross-sectional dimension or area of the part 85 is only slightly less than the cross-sectional dimension or area of the land 84, only a slight or restricted path of flow is provided between inlet 36 and outlet 50 in the FIG. 5 position. This is particularly important in the drive control valve 38 which controls the operation of the wheel motors 48, for which purpose the lands 80 and 86 with reduced parts 81 and 87 serve the function of regulating the rate of flow to the lines 44 and 46 from the valve 38. Thus it will be apparent that the arrangement makes possible a very slow rate of operation of the wheel motors when one of the lands 80 and 86 is displaced only slightly from closing position. In practical terms it will be seen that this arrangement makes it possible to drive a fork truck at normal operating speed to a point adjacent to the point of use, and then to greatly reduce the speed and inch the truck to its final operating position.
Full speed or full open position of the valve is shown in FIG. 6, at which time unrestricted flow occurs through the valve 38 to the line 50. It will be understood that in this position the valve lands 80 and 86 will fully close the lines 44 and 46 so as to hold the vehicle in a brake operating position.
It will be observed that the control valve 38 permits flow in a number of different paths. Thus flow through th valve 38 can occur from conduit 36 only to the conduit 50, or flow can occur through valve 38 from conduit 36 to line 44, motor 48, line 46, back through valve 38 to the line 50, or flow can occur from line 36 through valve 38 to line 46, through wheel motors 48, back through conduit 44, and valve 38 to the conduit 50. In all of these positions it will be observed that flow from conduit 36 ultimately passes to conduit 50, and that in the various adjustments of the valve to control the drive wheels, various divisions and changes of path may occur before the ultimate delivery of fluid to the conduit 50.
In order to facilitate close control of the setting of the spool and the valve 38, it will preferably be actuated by a rotary cam of the construction illustrated in FIG. 3. Thus, one end of the spool will preferably have a reduced end part 90, on which is mounted a cylindrical cam 92 held in selected position by any suitable means, such as a pin 94 projecting from the end of the land 86 spaced from the reduced spool end part 90 and fitting into a socket 96 formed in the inner end of the cylindrical cam 92. If desired, a plurality of circumferentially spaced pockets may be provided to selectively receive pin 94. Cam 92 is characterized by a helical cam groove 98 into which may project a pin 100 carried by the valve casing, as illustrated in FIG. 4. The reduced spool end part'90 will preferably have a screw-threaded central or axial bore to receive a reduced screw-threaded part 102 mounted on the end of the crank 42. It will be apparent that the lead of the cam groove 98 will determine the rate of axial movement of the spool upon rotation of the cam to any predetermined angle. Thus if close control or accuracy of control is desired, lead of the cam groove will be short, or, if rapid movement of the valve spool through a long stroke is desired, a long lead of the cam groove will provide that result. The latter may be advantageous in some instances and can be provided without loss of sensitivity of control for inching the drive wheels when necessary by reason of the flow-restricting function provided by the slightly reduced portions 81, 83, and 87 of the valve spool lands 80, 82, 84 and 86, respectively.
It will be observed that the vlaves 38, 52 and 62 are arranged in series. This is important in order to accommodate simultaneous functioning of the wheel motors 48, the mast-tilting unit 56, 58, and the fork lift unit 68, 70. The valve 52 is of a double-acting character and accommodates the following flow paths respectively: Flow from conduit 50 direct to conduit 66; flow from conduit 50 to a selected one of the conduits 61, and return flow from the other of said conduits through the valve 52 to the conduit 66.
The valve 62 is preferably of the single action type and normally will accommodate flow from conduit 66 to the line 76 connected to the reservoir 22. However, flow may occur through the valve from line 66 to conduit 74 to operate the fork lift power member 68, 70. The valve 62 will also provide return flow from conduit 74 to the discharge line 76 in 10116 setting so as to peritnit lowefring of the forks by the weight thereof.
Each of the valves 38, 52 and 62 may be of conven tional construction well understood in the art and, therefore, only schematic illustration thereof has been provided herein.
While the preferred embodiment of the invention has been illustrated and described, it will be understood that changes in the construction and arrangement may be made within the scope of the appended claims without departing from the spirit of the invention.
I claim:
1. In a vehicle having a drive wheel, a hydraulic motor for rotating said drive wheel, and a hydraulic control system including a reservoir, a pump, conduits defining a hydraulic circuit connecting said reservoir, pump and motor, and a spool-type valve in said circuit for controlling liquid fiow to said motor, the improvement comprising a shiftable valve spool shiftable endwise in a valve housing bore and having a land adapted in one position to span and close a port communicating with said motor, said land having a narrow circumferential portion at one end thereof having a slight clearance in said bore to restrict fiow therepast to said port when it registers with a portion of said port and the land spans the remainder of said port and thereby provide slow speed operation of said wheel drive motor.
2. The construction defined in claim 1, wherein said spool includes a cam portion having a helical cam track, a member on said valve housing and engaged by said cam track, and means for rotating said spool to advance it endwise relative to said port.
3. The construction defined in claim 1, wherein a pair of drive wheels are provided with individual motors, and said circuit includes conduits connecting said motors in parallel circuit arrangement to each other and in series circuit arrangement to said valve to accommodate dif ferential actuation of said wheel motors.
References Cited UNITED STATES PATENTS 1,723,066 8/1929 Ogden 25l2l5 2,157,240 5/1939 Keel. 2,604,109 7/1952 Tuttle. 2,634,679 4/1953 Kern 137-62569 X 2,919,679 1/1960 Lincoln et al. 137625.69 X 3,005,562 10/1961 Shaffer. 3,160,174 12/1964 Schmiel et al. 137-62569 X 3,186,162 6/1965 Pignolet et al. 66 X ALBERT J. MAKAY, Primary Examiner.
US514823A 1965-12-20 1965-12-20 Hydraulic control for fork lift trucks Expired - Lifetime US3401764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US514823A US3401764A (en) 1965-12-20 1965-12-20 Hydraulic control for fork lift trucks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US514823A US3401764A (en) 1965-12-20 1965-12-20 Hydraulic control for fork lift trucks

Publications (1)

Publication Number Publication Date
US3401764A true US3401764A (en) 1968-09-17

Family

ID=24048842

Family Applications (1)

Application Number Title Priority Date Filing Date
US514823A Expired - Lifetime US3401764A (en) 1965-12-20 1965-12-20 Hydraulic control for fork lift trucks

Country Status (1)

Country Link
US (1) US3401764A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394678A (en) * 1992-01-03 1995-03-07 The Toro Company Electronic control for turf maintenance vehicle
US6230089B1 (en) 1992-01-03 2001-05-08 The Toro Company Turf maintenance vehicle multiple controller method and apparatus
US20040040275A1 (en) * 2002-09-03 2004-03-04 Norihiro Ishii Riding lawn mower
US20090025990A1 (en) * 2006-05-30 2009-01-29 Kensuke Futahashi Work Vehicle
US20090078488A1 (en) * 2007-09-24 2009-03-26 Clark Equipment Company Auxiliary hydraulic flow control system for a small loader
EP3486538A1 (en) 2017-11-15 2019-05-22 Robert Bosch GmbH Actuator assembly for a hydraulic valve, and hydraulic valve assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1723066A (en) * 1927-10-08 1929-08-06 Steel Drum Accessories Corp Valve
US2157240A (en) * 1935-02-21 1939-05-09 Ex Cell O Corp Valve structure
US2604109A (en) * 1947-03-14 1952-07-22 Tilmon T Tuttle Speed control valve unit
US2634679A (en) * 1951-01-23 1953-04-14 Perfection Steel Body Company Pump and valve assembly
US2919679A (en) * 1953-06-10 1960-01-05 Gen Motors Corp Fluid power steering gear with damping feature
US3005562A (en) * 1959-10-29 1961-10-24 Towmotor Corp Hydraulic drive for lift truck
US3160174A (en) * 1961-03-28 1964-12-08 Parker Hannifin Corp Remote power shift circuits for spool valves and the like
US3186162A (en) * 1963-09-10 1965-06-01 Gen Mecanique Applique S I G M Prime mover systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1723066A (en) * 1927-10-08 1929-08-06 Steel Drum Accessories Corp Valve
US2157240A (en) * 1935-02-21 1939-05-09 Ex Cell O Corp Valve structure
US2604109A (en) * 1947-03-14 1952-07-22 Tilmon T Tuttle Speed control valve unit
US2634679A (en) * 1951-01-23 1953-04-14 Perfection Steel Body Company Pump and valve assembly
US2919679A (en) * 1953-06-10 1960-01-05 Gen Motors Corp Fluid power steering gear with damping feature
US3005562A (en) * 1959-10-29 1961-10-24 Towmotor Corp Hydraulic drive for lift truck
US3160174A (en) * 1961-03-28 1964-12-08 Parker Hannifin Corp Remote power shift circuits for spool valves and the like
US3186162A (en) * 1963-09-10 1965-06-01 Gen Mecanique Applique S I G M Prime mover systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394678A (en) * 1992-01-03 1995-03-07 The Toro Company Electronic control for turf maintenance vehicle
US5657224A (en) * 1992-01-03 1997-08-12 The Toro Company Turf maintenance vehicle diagnostics and parameter condition logger
US6230089B1 (en) 1992-01-03 2001-05-08 The Toro Company Turf maintenance vehicle multiple controller method and apparatus
US20040040275A1 (en) * 2002-09-03 2004-03-04 Norihiro Ishii Riding lawn mower
US6951091B2 (en) * 2002-09-03 2005-10-04 Norihiro Ishii Riding lawn mower
US20090025990A1 (en) * 2006-05-30 2009-01-29 Kensuke Futahashi Work Vehicle
US8167078B2 (en) * 2006-05-30 2012-05-01 Mitsubishi Heavy Industries, Ltd. Work vehicle
US20090078488A1 (en) * 2007-09-24 2009-03-26 Clark Equipment Company Auxiliary hydraulic flow control system for a small loader
US8109356B2 (en) * 2007-09-24 2012-02-07 Clark Equipment Company Auxiliary hydraulic flow control system for a small loader
EP3486538A1 (en) 2017-11-15 2019-05-22 Robert Bosch GmbH Actuator assembly for a hydraulic valve, and hydraulic valve assembly

Similar Documents

Publication Publication Date Title
US2984985A (en) Hydraulic operating and control system
US2941365A (en) Hydraulic transmission
US2210144A (en) Hydraulic control apparatus
US2980136A (en) Hydraulic flow control system and valve with anti-cavitation feature
US2489435A (en) Power transmission
US2321377A (en) Hydraulic steering gear
US2890683A (en) Fluid actuated control valve means for fluid motors
US2640323A (en) Power unit of the fluid pressure type
JPH11311207A (en) Hydraulic valve unit of work vehicle
US3401764A (en) Hydraulic control for fork lift trucks
US3246472A (en) Hydraulic servo system for power steering
US4023650A (en) Hydraulic systems for two speed lifting
US3208221A (en) Hydraulic operating apparatus
USRE25036E (en) Fluid power steering system
US3493138A (en) Hydraulic control and drive system for a forklift truck
US1944700A (en) Steering mechanism, etc.
US3696836A (en) Power transmission
US2954052A (en) Pressure fluid control system and valve
US3811363A (en) Priority system for series-type hydraulic circuits
US2980193A (en) Fluid driving system for vehicles
US3633617A (en) Fluid system and valve assembly therefor
US3824043A (en) Hydraulic pump and valve unit
US2301122A (en) Control for hydraulic mechanism
US4551973A (en) Hydraulic power source and valve therefor
US3782249A (en) Hydraulic control system with locking valve to prevent accidental or unauthorized lowering of a tractor implement