US3384061A - Means for suppressing ignition interference - Google Patents

Means for suppressing ignition interference Download PDF

Info

Publication number
US3384061A
US3384061A US537988A US53798866A US3384061A US 3384061 A US3384061 A US 3384061A US 537988 A US537988 A US 537988A US 53798866 A US53798866 A US 53798866A US 3384061 A US3384061 A US 3384061A
Authority
US
United States
Prior art keywords
stub
lss
frequencies
axial
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US537988A
Inventor
Eugene A Hanysz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US537988A priority Critical patent/US3384061A/en
Application granted granted Critical
Publication of US3384061A publication Critical patent/US3384061A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/025Reducing interference from ignition apparatus of fuel engines

Definitions

  • Fontaine, 3,041,498 discloses one form of suppressing means.
  • Co-axial stubs per se for general filtering purposes are also old as shown by Von Baeyer, 2,297,512.
  • the present invention is designed to suppress high frequency radiation in conductive electrical lines such, for example, as an ignition line for an internal combustion engine harness through the use of one or more lossy shorted co-axial stubs connected in said line.
  • lossy shorted co-axial stubs will be referred to in abbreviated form as LSS.
  • Interference is understood to be generated in an ignition system by the discharge of distributed capacity of the cable and transformer secondary coil across the spark gap. This pulse discharge has a steep rise, short duration and random occurrence. It contains energy over a very wide frequency spectrum which it is necessary to filter out or suppress.
  • FIGURE 1 is a longitudinal sectional view taken through a lossy shorted co-axial stub
  • FIG. 2 is a graph of reactance vs. frequency of a lossless co-axial stub in the vicinity of the fundamental frequency
  • FIG. 3 is a graph of reactance vs. frequency of a lossless stub showing the reactance curves for the fundamental and related frequencies;
  • FIG. 4 is a graph illustrating the effect of loss in the dielectric on the Q of a shorted co-axial stub at fundamental frequency
  • FIG. 5 shows the use of an LSS adjacent the spark plug
  • FIG. 6 shows the use of an LSS adjacent the distributor
  • FIG. 7 shows the use of a plurality of LSS devices distributed along the cable between the spark and the distributor
  • FIG. 8 shows the use of LSS devices oriented toward the plug and toward the distributor.
  • FIG. 9 shows the use of LSS devices which are stagger tuned to attenuate a wide band of frequencies.
  • a co-axi-al stub is shown in FIG. 1 and it consists of a cylindrical body 2 having a central axial member 4 fixedly secured to one end plate 6.
  • This member 3,384,061 Patented May 21, 1968 may be connected in any circuit in which it is to be used as a filter by connecting the same directly to the line.
  • a co-axial stub of the form shown in FIG. 1 has an electrical characteristic which is similar to that of an LC circuit when lossless and its resonances are dependent upon its loss.
  • FIG. 2 is illustrative of the reactance of such a lossless stub wherein the anti-resonant frequency is shown at F, and indicates an inductive reactance below to the left of F and a capacitive reactance above F
  • anti-resonant frequence F is determined by its length which is onequarter wave length or M 4 where A is the wave length in the co-axial line.
  • the co-axial stub of course, is also resonant at various related or harmonic frequencies which will bear numerical relationship to the fundamental, and FIG. 3 discloses reactance vs.
  • a lossy dielectric instead of maintaining a sharp resonance, such as would be the case if the co-axial stub were lossless, its resonant efiect may be broadened through the use of a lossy dielectric. This may be obtained by packing the stub with a lossy material 8 which may be a ferrite, a titinate, or a graphite compound which will absorb energy in the frequency range in which the designer is concerned.
  • the wave length in the LS5 will be reduced through the use of lossy material so that the physical length of the stub may also be shortened to preserve the center frequency.
  • FIG. 4 illustrates the effect of the use of packing the co-axial stub with lossy material.
  • this graph is likewise a graph of frequency vs. absolute impedance, frequency being plotted as the abscissa and the absolute impedance as the ordinate.
  • the curve A which is the nan rowest and highest of the curves, illustrates the response of the stub with little or no loss.
  • the curve can be broadened out to provide a response curve such as. B, and if material is packed in the same to give it a great deal of loss it can be flattened down to produce a curve similar to C. Therefore, its characteristics are controllable with the characteristics of the lossy material used.
  • FIG. 5 illustrates one manner and one location in which this is accomplished.
  • FIG. 5 shows 'a spark plug 10 which may be any one of the plugs of an internal combustion engine and an LSS 12 mounted adjacent the same to absorb or attenuate possible interfering energy which is generated in the line by mounting the same near the plug.
  • FIG. 6 illustrates another possible location in the ignition system and, therefore, shows an LSS 14 mounted adjacent the distributor cap 16. It is also possible to mount a plurality of LSS devices along the line between the spark plug 10 and the distributor cap 16 and these are shown at 18, 20, 22 and 24 in FIG. 7. These may be adjusted to different center frequencies.
  • FIG. 8 illustrates a still further modification in use wherein the LS8 devices 26 and 28 in the ignition cable near the spark plug 10 are oriented in opposite directions to prevent the reflection of energy which it is desired to attenuate.
  • FIG. 9 shows the use of stagger tuned and oppositely oriented LSS devices 30, 32, 34 and 36 in the ignition cable wherein the same are tuned to diiferent frequencies, inserted in different orders and are oriented in opposite directions.
  • the spacing between the LS8 elements would also have an effect on the filtering and thus would have to be optimized. Such a grouping would cover the largest band of frequencies and be most effective.
  • suppressing means for such energy waves comprising a coaxial stub connected in said line, said coaxial stub including a central member and a concentric cylindrical member mounted therearound forming an annular cavity, and material having a preselected loss characteristic packed in the cavity to provide loss in the coaxial stub to broaden out the response curve thereof to attenuate Wave energy in that vicinity.
  • suppressing means as defined in claim 1 in which the conductive line in which the energy waves exist in an ignition wire extending between a spark plug and a distributor, and a plurality of coaxial stubs packed with lossy material are connected in the line between the spark plug and the distributor.

Description

May 21, 1968 E. A. HANYSZ MEANS FOR SUPPRESSING IGNITION INTERFERENCE Filed March 28, 1966 I N VENTOR. fa gene /Z Hazysz A TIURNEY United States Patent 3,384,061 MEANS FOR SUPPRESSING IGNITION INTERFERENCE Eugene A. Hanysz, Troy, Mich., assignor to General Motors Corporation, Detroit, Mich, a corporation of Delaware Filed Mar. 28, 1966, Ser. No. 537,988 8 Claims. (Cl. 123148) ABSTRACT OF THE DISCLOSURE This invention relates to means built into the ignition system of an internal combustion engine to suppress high frequency radiation therein so that it will not interfere with radio reception in the vicinity.
State of the prior art The problem of high frequency currents generated in ignition systems for internal combustion engines is not new. Fontaine, 3,041,498 discloses one form of suppressing means. Co-axial stubs per se for general filtering purposes are also old as shown by Von Baeyer, 2,297,512.
Description of the invention The present invention is designed to suppress high frequency radiation in conductive electrical lines such, for example, as an ignition line for an internal combustion engine harness through the use of one or more lossy shorted co-axial stubs connected in said line. Throughout the specification, lossy shorted co-axial stubs will be referred to in abbreviated form as LSS.
Interference is understood to be generated in an ignition system by the discharge of distributed capacity of the cable and transformer secondary coil across the spark gap. This pulse discharge has a steep rise, short duration and random occurrence. It contains energy over a very wide frequency spectrum which it is necessary to filter out or suppress.
The formation and operation of such a system will be best understood by reference to the following specification and drawings in which:
FIGURE 1 is a longitudinal sectional view taken through a lossy shorted co-axial stub;
FIG. 2 is a graph of reactance vs. frequency of a lossless co-axial stub in the vicinity of the fundamental frequency;
FIG. 3 is a graph of reactance vs. frequency of a lossless stub showing the reactance curves for the fundamental and related frequencies;
FIG. 4 is a graph illustrating the effect of loss in the dielectric on the Q of a shorted co-axial stub at fundamental frequency;
FIG. 5 shows the use of an LSS adjacent the spark plug;
FIG. 6 shows the use of an LSS adjacent the distributor;
FIG. 7 shows the use of a plurality of LSS devices distributed along the cable between the spark and the distributor;
FIG. 8 shows the use of LSS devices oriented toward the plug and toward the distributor; and,
FIG. 9 shows the use of LSS devices which are stagger tuned to attenuate a wide band of frequencies.
The present problem deals with filtering out or attenuating energy having frequencies over relatively wide bands in order to prevent them from being radiated from an ignition cable to interfere with radio reception in the vicinity. Co-axial stubs are utilized as filter means in this instance. A co-axi-al stub is shown in FIG. 1 and it consists of a cylindrical body 2 having a central axial member 4 fixedly secured to one end plate 6. This member 3,384,061 Patented May 21, 1968 may be connected in any circuit in which it is to be used as a filter by connecting the same directly to the line. A co-axial stub of the form shown in FIG. 1 has an electrical characteristic which is similar to that of an LC circuit when lossless and its resonances are dependent upon its loss.
FIG. 2 is illustrative of the reactance of such a lossless stub wherein the anti-resonant frequency is shown at F, and indicates an inductive reactance below to the left of F and a capacitive reactance above F Its anti-resonant frequence F is determined by its length which is onequarter wave length or M 4 where A is the wave length in the co-axial line. The co-axial stub, of course, is also resonant at various related or harmonic frequencies which will bear numerical relationship to the fundamental, and FIG. 3 discloses reactance vs. frequency curves for a certain lossless co-axial stub in which the first anti-resonant frequency F may be that of the fundamental, whereas the next two in proceeding to the right in the diagram may be the next harmonic anti-resonant frequencies in order F and F Thus, such a device would not only filter out frequencies in the vicinity of the fundamental but also other frequencies in the vicinity of the higher harmonics.
Instead of maintaining a sharp resonance, such as would be the case if the co-axial stub were lossless, its resonant efiect may be broadened through the use of a lossy dielectric. This may be obtained by packing the stub with a lossy material 8 which may be a ferrite, a titinate, or a graphite compound which will absorb energy in the frequency range in which the designer is concerned. The wave length in the LS5 will be reduced through the use of lossy material so that the physical length of the stub may also be shortened to preserve the center frequency.
FIG. 4 illustrates the effect of the use of packing the co-axial stub with lossy material. In that case this graph is likewise a graph of frequency vs. absolute impedance, frequency being plotted as the abscissa and the absolute impedance as the ordinate. The curve A, which is the nan rowest and highest of the curves, illustrates the response of the stub with little or no loss. As the stub is packed with material which tends to provide a certain loss, the curve can be broadened out to provide a response curve such as. B, and if material is packed in the same to give it a great deal of loss it can be flattened down to produce a curve similar to C. Therefore, its characteristics are controllable with the characteristics of the lossy material used.
In using an LSS device in an ignition system to reduce or filter out the interfering energy, FIG. 5 illustrates one manner and one location in which this is accomplished. FIG. 5 shows 'a spark plug 10 which may be any one of the plugs of an internal combustion engine and an LSS 12 mounted adjacent the same to absorb or attenuate possible interfering energy which is generated in the line by mounting the same near the plug.
FIG. 6 illustrates another possible location in the ignition system and, therefore, shows an LSS 14 mounted adjacent the distributor cap 16. It is also possible to mount a plurality of LSS devices along the line between the spark plug 10 and the distributor cap 16 and these are shown at 18, 20, 22 and 24 in FIG. 7. These may be adjusted to different center frequencies.
FIG. 8 illustrates a still further modification in use wherein the LS8 devices 26 and 28 in the ignition cable near the spark plug 10 are oriented in opposite directions to prevent the reflection of energy which it is desired to attenuate.
Lastly, FIG. 9 shows the use of stagger tuned and oppositely oriented LSS devices 30, 32, 34 and 36 in the ignition cable wherein the same are tuned to diiferent frequencies, inserted in different orders and are oriented in opposite directions. The spacing between the LS8 elements would also have an effect on the filtering and thus would have to be optimized. Such a grouping would cover the largest band of frequencies and be most effective.
It is, therefore, obvious that my invention is capable of considerable tailoring, use in the breadth, complication and number of units to be used. It could vary all the way from the use of a single LSS in the system if only a moderate amount of suppression is desired, to a more complicated multiple use of carefully selected and tailored LSS devices to cover carefully certain frequencies which it was required to remove. The LSS structure instead of being separate and independent and built into the cable could be designed and built into the spark plug or the distributor cap as well.
What is claimed is:
1. In a conductive line in which there periodically exist energy waves of short duration and random occurrence at a number of different frequencies in the high frequency band, suppressing means for such energy waves comprising a coaxial stub connected in said line, said coaxial stub including a central member and a concentric cylindrical member mounted therearound forming an annular cavity, and material having a preselected loss characteristic packed in the cavity to provide loss in the coaxial stub to broaden out the response curve thereof to attenuate Wave energy in that vicinity.
2. suppressing means as defined in claim 1 in which the conductive line in which the energy waves exist is an ignition wire extending between a spark plug and a distributor and the coaxial stub packed with lossy material is connected adjacent the spark plug.
3. suppressing means as defined in claim 1 in which the conductive line in which the energy Waves exist is an ignition wire extending between a spark plug and a distributor and the coaxial stub packed with lossy material is connected adjacent the distributor.
4. suppressing means as defined in claim 1 in which the conductive line in which the energy waves exist in an ignition wire extending between a spark plug and a distributor, and a plurality of coaxial stubs packed with lossy material are connected in the line between the spark plug and the distributor.
5. suppressing means as defined by claim 4 in which the plurality of coaxial stubs are tuned to different center frequencies and part faced in opposite directions.
6. suppressing means as defined in claim 1 in which the material packed in the coaxial stub cavity is a ferrite.
7. suppressing means as defined in claim 1 in which the material packed in the coaxial stub cavity is a titinate.
8. suppressing means as defined in claim 1 in which the material packed in the coaxial stub cavity is a graphite compound.
References Cited UNITED STATES PATENTS 2,297,512 9/1942 Von Baeyer 333-12 3,041,498 6/1962 Fontaine 315-54 3,134,950 5/1964 Cook 333-79 XR 3,191,132 6/1965 Mayer 333-79 3,191,133 6/1965 Texsier 123-148 LAURENCE M. GOODRIDGE, Primary Examiner.
US537988A 1966-03-28 1966-03-28 Means for suppressing ignition interference Expired - Lifetime US3384061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US537988A US3384061A (en) 1966-03-28 1966-03-28 Means for suppressing ignition interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US537988A US3384061A (en) 1966-03-28 1966-03-28 Means for suppressing ignition interference

Publications (1)

Publication Number Publication Date
US3384061A true US3384061A (en) 1968-05-21

Family

ID=24144943

Family Applications (1)

Application Number Title Priority Date Filing Date
US537988A Expired - Lifetime US3384061A (en) 1966-03-28 1966-03-28 Means for suppressing ignition interference

Country Status (1)

Country Link
US (1) US3384061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451764A (en) * 1983-05-05 1984-05-29 Gerry Martin E Ignition system high voltage cable with minimized radio interference
US4683450A (en) * 1982-07-01 1987-07-28 Feller Ag Line with distributed low-pass filter section wherein spurious signals are attenuated

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297512A (en) * 1939-05-26 1942-09-29 Baeyer Hans Jakob Ritter Von Arrangement for supressing waves along cable casings
US3041498A (en) * 1959-08-29 1962-06-26 Antoine T H Fontaine Cable terminal for ignition systems
US3134950A (en) * 1961-03-24 1964-05-26 Gen Electric Radio frequency attenuator
US3191133A (en) * 1961-04-25 1965-06-22 Texsier Leon Interference suppressor for internal combustion engines
US3191132A (en) * 1961-12-04 1965-06-22 Mayer Ferdy Electric cable utilizing lossy material to absorb high frequency waves

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297512A (en) * 1939-05-26 1942-09-29 Baeyer Hans Jakob Ritter Von Arrangement for supressing waves along cable casings
US3041498A (en) * 1959-08-29 1962-06-26 Antoine T H Fontaine Cable terminal for ignition systems
US3134950A (en) * 1961-03-24 1964-05-26 Gen Electric Radio frequency attenuator
US3191133A (en) * 1961-04-25 1965-06-22 Texsier Leon Interference suppressor for internal combustion engines
US3191132A (en) * 1961-12-04 1965-06-22 Mayer Ferdy Electric cable utilizing lossy material to absorb high frequency waves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683450A (en) * 1982-07-01 1987-07-28 Feller Ag Line with distributed low-pass filter section wherein spurious signals are attenuated
US4451764A (en) * 1983-05-05 1984-05-29 Gerry Martin E Ignition system high voltage cable with minimized radio interference

Similar Documents

Publication Publication Date Title
US4761623A (en) Broadband RFI power line filter
US2297512A (en) Arrangement for supressing waves along cable casings
US4131824A (en) Filter device for high frequency generating device
US3191133A (en) Interference suppressor for internal combustion engines
US4029990A (en) Spark plug construction
US3384061A (en) Means for suppressing ignition interference
US2490782A (en) Antenna testing shield
US3871349A (en) RFI suppression spark plug
US1984526A (en) Filter for suppression of high frequency current
US2419577A (en) Antenna system
US3603835A (en) Spark plug with an internal resistor
US2641646A (en) Coaxial line filter structure
US2710945A (en) Mode suppression in resonant cavities
US3542006A (en) Internal combustion engine radio frequency radiation suppressing ignition system
US2363641A (en) Low loss tuning apparatus
US3041498A (en) Cable terminal for ignition systems
US3251010A (en) Two-terminal lossy resonant filter for suppressing interference frequencies in ignition systems
US2626317A (en) Radio-frequency filter
US2376189A (en) Ignition system
US2453114A (en) Filter condenser and brush holder
JP3528209B2 (en) Ignition code
CN112786413A (en) Magnetron filtering component, magnetron and household appliance
US2972146A (en) Folded dipole antenna with internally mounted loading means
US2411858A (en) Tuning apparatus
US3317839A (en) Closed-circular annular tank circuit for spark gap transmitter