US3382586A - Apparatus for freeze-drying - Google Patents

Apparatus for freeze-drying Download PDF

Info

Publication number
US3382586A
US3382586A US534326A US53432666A US3382586A US 3382586 A US3382586 A US 3382586A US 534326 A US534326 A US 534326A US 53432666 A US53432666 A US 53432666A US 3382586 A US3382586 A US 3382586A
Authority
US
United States
Prior art keywords
cooling
chamber
water vapor
chambers
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US534326A
Inventor
Lorentzen Jorgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas AS
Original Assignee
Atlas AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas AS filed Critical Atlas AS
Application granted granted Critical
Publication of US3382586A publication Critical patent/US3382586A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Description

ay 14, 1968 J. LORENTZEN 3,382,535
APPARATUS FOR FREEZE-DRYING Filed March 15, 1966 INVENTOR. v Janeen LoRENTzEN 'By: alalh 8 07411:,
ATTORNEYS United States Patent 3,382,586 APPARATUS FOR FREEZE-DRYING Jorgen Lorentzen, Narum, Denmark, assignor to A/S Atlas, Copenhagen, Denmark Filed Mar. 15, 1966, Ser. No. 534,326 Claims priority, application Denmark, Mar. 18, 1965, 1,370/ 65 6 Claims. (Cl. 34-92) The invention relates to an apparatus for freeze-drying products containing water in vacuum, said apparatus being of the type that has a cabinet with built-in cooling surfaces for freezing the water vapour out as ice, and means to thaw the formed ice 05.
In connection with freeze-drying in vacuum of prodncts containing water it is necessary to remove very large volumes of vapour from the products. At a pressure of 1 torr it is thus necessary to remove approx. 1000 m. of vapour pr. kg. of evaporated water. It is known to precipitate the large volumes of vapour as ice on the cooling surfaces at a temperature of, for instance -35 C.
There is known an apparatus in which the cooling surfaces are placed in the cabinet in which the drying takes place. This is a space saving and cheap solution which, though, has the very essential drawback, that the ice must be removed from the cooling surfaces after each drying operation so that said surfaces can become effective again for the subsequent drying operation, and this removal of the ice, which as a rule takes place by thawing, requires a certain amount of time which thereby is lost as production time for the apparatus.
Furthermore there is known an apparatus in which the mentioned drawback has been remedied by placing the cooling surfaces outside the drying cabinet itself in a special closeable chamber. In the last part of the drying period the water vapour emission from the material is, as a rule, much less than in the preceding part of the drying period. The smaller amount of water in the last part of the drying period can often be removed by means of the evacuation plant alone or possibly by means of a small auxiliary cooling surface, and said closeable chamber with cooling surfaces can then be closed off from the drying cabinet in this period, and it can be de-frosted, so that the next drying period can be initiated immediately after the termination of the preceding drying period. This known apparatus has the drawback that it is rather bulky and expensive. It is thus necessary to use a very large pipe for the connection between the cabinet and the special chamber, and this fact in connection with the fact that the space in the cabinet is not utilized as intensively as in the above mentioned construction with built-in cooling surfaces, entails that the total volume to be evacuated will be relatively large so that a rather large evacuation plant must be employed. Furthermore, the separation into a cabinet and a special chamber entails increased mounting expenses.
The object of the invention is to device an apparatus of the type indicated in which the drawbacks mentioned above are remedied so that a good utilization of the production time is obtained by means of a relatively cheap apparatus that does not require much space. The characteristic features of the apparatus according to the invention are that the cooling surfaces are separated from the rest of the cabinet by means of partition walls which have an aperture with a closing member that can be opened and closed. The function of the apparatus is substantially the same as the function of the known apparatus with the special closeable chamber for the cooling surfaces, but as, in connection with the thawing of the ice off the cooling surfaces, there only needs to appear a relatively small pressure in the chamber bounded by the partition walls,
e.g. 10-20 torr, and as a still smaller pressure exists in the rest of the cabinet, e.g. 1 torr, the stress on the partition walls will be slight so that said walls may be made with small strength. As there only exists a small pressure difference it is not necessary either to have a large degree of the cabinet.
According to the invention the apparatus may have partition walls to form two or more chambers, each having its own cooling surfaces and its own aperture, and closing members to open and close said apertures. In this manner ice can be thawed off from the cooling surfaces in one or more chambers that are closed off from the rest of the cabinet while the drying continues by means of the cooling surfaces in one or more other chambers that are open in relation to the cabinet so that a suitable cooling surface is at disposal at all times. In one embodiment there may be two chambers having cooling surfaces of equal sizes, but other embodiments are conceivable, e.g. with two chambers, one of said chambers having large cooling surfaces and being employed in the first part of the drying, the other chamber having a small cooling surface and being employed in the last part of the drying while thawing off is taking place in the first mentioned chamber. An embodiment with three or more chambers with cooling surfaces of equal size is also conceivable, it being possible in this embodiment to interchange in a suitable manner, so that in the beginning of the drying there is a large cooling surface at disposal, while later a changeover takes place between the chambers so that thawing off at all times is taking place in one of the chambers whereas in the final stage thawing off takes place in all chambers except one.
The closing members for two chambers may, according to the invention, be adapted to open one of the chambers while the other chamber simultaneously is closed and vice versa. By these means a simple and practical construction is obtained where a change-over between the cooling surfaces in the two chambers suitably may take place during each drying.
The apparatus may, according to the invention, have time program control members to control the opening and closing of the closing members for each of the chambers and the de-frosting of the cooling surfaces in question. In this manner a simple and advantageous control is obtained. However, it will be possible to provide for the control in another manner, eg in dependency of a sensing of the ice thickness on the cooling surfaces, a summation of the cooling machine calories, a summation of the heat supply calories or the pressure in the drying cabinet.
The chamber, or each of the chambers, may, according to the invention, be connected to a water vapour generator that has a member to maintain the water at a temperature below a certain maximum temperature. This maximum temperature is determined by the strength of the partition walls. Supposedly it would be sufiicient to dimension the partition walls for a pressure difference of l020 torr, as the maximum temperature corresponding hereto will be sutficient for a suitably rapid thawing of the ice on the cooling surfaces. It is possible to ensure in different manners that the water temperature does not become too high, and likewise it is possible to dispose simple and cheap security valves or like security means in the partition walls so as to avoid too large pressure differences. The water vapour generator may, according to the invention, be made like a heat exchanger that receives heat from cooling water or cooling medium from the components of the apparatus with the purpose of evacuation or of cooling the cooling surfaces. In this manner a heating medium with a suitable temperature is obtained in a simple manner.
In the accompanying drawing there is shown an apparatus according to the invention, the figure showing a vertical cross sectional view of a freeze-drying cabinet in an apparatus according to the invention.
A cylindrical freeze-drying cabinet is made of steel plate 1 with reinforcement rings 2 and is placed on legs 3. In the upper part of the cabinet a rail 4 is suspended in which a supporting frame 5 is suspended, said frame 5 carrying trays 6 for the material to be freeze-dried. The trays 6 are inserted between heating plates 7 which form part of a heating medium system not illustrated in the drawings.
In the bottom of the cabinet there are cooling surfaces 11 and 12 in the form of pipes in which a cold cooling medium can be circulated from a not shown cooling plant.
The cooling surfaces are separated from the rest of the cabinet and from each other by means of partition walls 8 and 9 and by means of a closing member in the shape of a hinged valve 10 that may be set to close an aperture in one or the other of the chambers formed by the partition walls. These chambers can be connected to an evacuation plant, not shown, by means of pipes 13 and 14, in which closing members 15 and 16 are arranged. Pipes 17 and 18 are connected to the bottom of the two chambers, closing valves 19 and 20 being arranged in said pipes, the latter forming a connection to a water vapour generator in the shape of a container 21 that is filled with water up to a level 22. The water in this container can receive heat from pipe 23, through which a medium warmer than the water can be circulated by means of the connection pipes 24 and 25. A temperature control member 29 is provided inside the container 21 to maintain temperature of the water below a certain maximum value which is determined by the strength of the partition walls. The container 21 has a spillover pipe 26 with a valve 27 through which the water above the level 22 can be removed in the pause between the freeze-drying periods, atmospheric pressure existing in the cabinet and parts connected thereto in said pause, that is, while a new batch of material to be freezedried is being inserted in the apparatus.
The freeze-drying process takes place in the following manner: Fresh goods in the trays 6 are placed in position in the cabinet between the heating plates 7. The cabinet is hermetically sealed and is evacuated, for instance through the pipe 13 with the valve 15 open, until the pressure has been reduced to approx. 1 torr. The necessary conditions for freeze-drying the goods are then present. Heating medium is then supplied to the heating plates 7 and cooling medium is supplied to the cooling surfaces 12. The closing valve 10 is in its right hand position, shown with full lines. The valve 19 is closed. So as to avoid rupture of the partition walls evacuation of the space around the cooling surfaces 11 must be provided for. This can possibly be done by not closing the valve 10 tightly or by keeping the valve 16 open during the first evacuation period in each freeze-drying process. As a result, the stress on the partition walls 8 and 9 will be reduced so that said walls may have substantially smaller strength than the steel plate 1.
The goods in the trays 6 now emit water vapour which is precipitated as ice on the cooling surfaces 12. When the ice thickness on the cooling surfaces 12 has grown so much that the latters efrectivity has been reduced considerably the valve 10 is moved to the left hand position shown with dotted lines. The valve 16 is opened whereas the valve 15 is closed. The pressure in the cabinet will then be kept down through the pipe 14. Furthermore, the cool ing surfaces 11 now are supplied with cooling medium, whereas this is no longer the case for the cooling surfaces 12. The valve 20 is closed and the valve 19 is opened. The
water vapour from the goods will now be precipitated as ice on the cooling surfaces 11. The cooling surfaces 12, which are separated from the rest of the cabinet, are connected to the container 21 by means of the pipe 17 and the valve 19. Water vapour is developed from the water in the container 21, said vapour flowing up through the pipe 17 and condensing on the ice on the cooling surfaces 12. Hereby heat is transmitted to the ice and the pressure in the chamber in question increases so that th ice melts successively. The water from the melting process flows through the pipe 17 down int-o the container 21.
When so much ice has accumulated on the cooling surfaces 11 that the latters efiectivity has been considerably reduced, and when the cooling surfaces are completely free of ice, a change-over of the valves 15, 16, 19 and 20 and the hinged valve 10 is carried out so that cooling surfaces 11 and 12 exchange functions. In this manner a change-over between two groups of cooling surfaces is carried out until the drying is terminated. At this point the water will be removed to a desired degree from the goods in the trays 6 and will be collected in the container 21 that must have a correspondingly large volume. When the drying is terminated the pressure in the cabinet and the container 21 is increased to atmospheric pressure. The dried goods are taken out and packed and the water is let out of the container 21 until level 22 is attained. To control automatically the operation of respective closing members, the apparatus may have a control means which is adapted to control operatively the valves 10, 15, 16, 18, 19 and 27 according to a predetermined time program, or in dependency of a sensing member (not shown), such as for instance a member for sensing ice thickness on the cooling surfaces 11 and 12, or a pressure sensing member in the drying cabinet.
The shown and described embodiment is only to be considered by way of example as different variations are conceivable within the scope of the invention.
What we claim is:
1. Apparatus for the freeze drying in vacuum of products containing water, comprising a principal chamber for containing products to be dried; heating means in said principal chamber for heating said products; at least one cooling chamber, separated from said principal chamber by vacuum-tight partition means, for condensing water vapor out as ice; valve means in said vacuum-tight partition means for interconnecting said principal chamber and said cooling chamber; evacuating means for evacuating non-condensible gases from said principal chamber; melting means for melting ice formed in said cooling chamber; pressure control means for maintaining a pressure substantially lower than atmospheric pressure in said cooling chamber during the melting of ice in said cooling chamber; a plurality of cooling chambers separated from each other and from said principal chamber by vacuumtight partition means, a cooling conduit presenting a coo-ling surface for freezing water vapor out as ice positioned in each of said cooling chambers, valve means in said vacuum-tight partition means for opening a selected one of said cooling chambers to said principal chamber, evacuating means opening into said cooling chambers for evacuating the selected one of said cooling chambers and said principal chamber, cooling medium means for supplying a cooling medium to the cooling conduit of the selected one of said cooling chambers and for preventing the supply of said cooling medium to the others of said cooling conduits, a water vapor chamber, water vapor generating means in said water vapor chamber, and a plurality of valves each for opening a corresponding one of said coo-ling chambers to said water vapor chamber thereby supplying water vapor to the corresponding one of said cooling chambers to melt ice formed on the cooling surface of said corresponding one of said cooling chambers.
2. Apparatus for the freeze drying in vacuum of products containing Water, comprising a principal chamber for containing products to be dried, heating means in said principal chamber for heating said products, at least one cooling chamber, said cooling chamber being separated from said principal chamber 'by vacuum-tight partition means, for condensing water vapor out as ice, valve means in said vacuum-tight partition means for interconnecting said principal chamber and said cooling chamber, evacuating means for evacuating non-condensible gases from said principal chamber, melting means for melting ice formed in said cooling chamber, pressure control means for maintaining a pressure substantially lower than atmospheric pressure in said cooling chamber during the melting of ice in said cooling chamber, a water vapor chamber, vacuum-tight partition means separating said water vapor chamber from said cooling chamber, valve means in said last mentioned vacuum'tight partition means for interconnecting said cooling chamber and said water vapor chamber, said melting means comprising Water vapor generating means in said water vapor chamber, temperature control means for controlling the temperature of water vapor generated by said water vapor generating means, and time control means for controlling said valve means to selectively interconnect said cooling chamber and said water vapor chamber.
3. Apparatus as claimed in claim 1, wherein said water vapor generating means comprises a container for water, heating means for heating water in said container and overflow means for removing excess water above a determined level from said container.
4. Apparatus as claimed in claim 1, wherein said water vapor generating means comprises heat exchanging means.
5. Apparatus as claimed in claim 1, further comprising time control means coupled to and controlling said valve means and each of said plurality of valves for controlling the selection of a cooling chamber for freezing water vapor from said principal chamber out as ice and for controlling the selection of a cooling chamber for melting ice formed on the cooling surface thereof.
6. Apparatus .as claimed in claim 2, wherein said valve means is positioned to open said water vapor chamber into the lowest point of said cooling chamber to drain water formed by melting the ice in said cooling chamber into said water vapor chamber, and wherein said water vapor chamber includes discharge means for discharging part of the water therein.
References Cited UNITED STATES PATENTS 2,994,132 8/1961 Neumann 345 3,116,122 12/1963 Oetjen 34-92 3,132,930 5/1964 Abbott 34-5 3,178,829 4/1965 Cox 355 3,233,333 2/1966 Oppenheimer 34-5 3,255,534 6/1966 Kan 345 3,262,212 7/1966 De Buhr 345 3,273,259 9/1966 Hackenbcrg 345 WILLIAM J. WYE, Primary Examiner.

Claims (1)

1. APPARATUS FOR THE FREEZE DRYING IN VACUUM OF PRODUCTS CONTAINING WATER, COMPRISING A PRINCIPAL CHAMBER FOR CONTAINING PRODUCTS TO BE DRIED; HEATING MEANS IN SAID PRINCIPAL CHAMBER FOR HEATING SAID PRODUCTS; AT LEAST ONE COOLING CHAMBER, SEPARATED FROM SAID PRINCIPAL CHAMBER BY VACUUM-TIGHT PARTITION MEANS, FOR CONDENSING WATER VAPOR OUT AS ICE; VALVE MEANS IN SAID VACUUM-TIGHT PARTITION MEANS FOR INTERCONNECTING SAID PRINCIPAL CHAMBER AND SAID COOLING CHAMBER; EVACUATING MEANS FOR EVACUATING NON-CONDENSIBLE GASES FROM SAID PRINCIPAL CHAMBER; MELTING MEANS FOR MELTING ICE FORMED IN SAID COOLING CHAMBER; PRESSURE CONTROL MEANS FOR MAINTAINING A PRESSURE SUBSTANTIALLY LOWER THAN ATMOSPHERIC PRESSURE IN SAID COOLING CHAMBER DURING THE MELTING OF ICE IN SAID COOLING CHAMBER; A PLURALITY OF COOLING CHAMBERS SEPARATED FROM EACH OTHER AND FROM SAID PRINCIPAL CHAMBER BY VACUUMTIGHT PARTITION MEANS, A COOLING CONDUIT PRESENTING A COOLING SURFACE FOR FREEZING WATER VAPOR OUT AS ICE POSITIONED IN EACH OF SAID COOLING CHAMBERS, VALVE MEANS IN SAID VACUUM-TIGHT PARTITION MEANS FOR OPENING A SELECTED ONE OF SAID COOLING CHAMBERS TO SAID PRINCIPAL CHAMBER, EVACUATING MEANS OPENING INTO SAID COOLING CHAMBERS FOR EVACUATING THE SELECTED ONE OF SAID COOLING CHAMBERS AND SAID PRINCIPAL CHAMBER, COOLING MEDIUM MEANS FOR SUPPLYING A COOLING MEDIUM TO THE COOLING CONDUIT OF THE SELECTED ONE OF SAID COOLING CHAMBERS AND FOR PREVENTING THE SUPPLY OF SAID COOLING MEDIUM TO THE OTHERS OF SAID COOLING CONDUITS, A WATER VAPOR CHAMBER, WATER VAPOR GENERATING MEANS IN SAID WATER VAPOR CHAMBER, AND A PLURALITY OF VALVES EACH FOR OPENING A CORRESPONDING ONE OF SAID COOLING CHAMBERS TO SAID WATER VAPOR CHAMBER THEREBY SUPPLYING WATER VAPOR TO THE CORRESPONDING ONE OF SAID COOLING CHAMBERS TO MELT ICE FORMED ON THE COOLING SURFACE OF SAID CORRESPONDING ONE OF SAID COOLING CHAMBERS.
US534326A 1965-03-18 1966-03-15 Apparatus for freeze-drying Expired - Lifetime US3382586A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK137065AA DK117688B (en) 1965-03-18 1965-03-18 Apparatus for freeze-drying of aqueous products under vacuum.

Publications (1)

Publication Number Publication Date
US3382586A true US3382586A (en) 1968-05-14

Family

ID=8104110

Family Applications (1)

Application Number Title Priority Date Filing Date
US534326A Expired - Lifetime US3382586A (en) 1965-03-18 1966-03-15 Apparatus for freeze-drying

Country Status (4)

Country Link
US (1) US3382586A (en)
DE (1) DE1753854B1 (en)
DK (1) DK117688B (en)
GB (1) GB1118352A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769717A (en) * 1970-08-25 1973-11-06 J Lorentzen Apparatus for freezedrying material with loading and discharging means
DE2510758A1 (en) * 1975-03-12 1976-09-30 Rautenbach Robert Freeze drying device with heat exchanger thawing system - has thin layer in surface of heat exchanger which is briefly heated to achieve partial ice removal
DE3107241A1 (en) * 1981-02-26 1982-09-09 Leybold-Heraeus GmbH, 5000 Köln Condenser for drying installations
US5131168A (en) * 1990-01-15 1992-07-21 Finn-Aqua Santasalo-Sohlberg Gmbh Procedure and apparatus for freezing a product to be subjected to freeze-drying
US5199187A (en) * 1991-07-31 1993-04-06 Sp Industries Freeze dryer apparatus having an interim condensing system and use thereof
US5425182A (en) * 1992-10-14 1995-06-20 Brunner; Reinhard Apparatus for drying wood and other solid material
US5433020A (en) * 1993-04-29 1995-07-18 Altos Engineering, Inc. Apparatus and method for vacuum drying
US6226887B1 (en) * 1998-05-07 2001-05-08 S.P. Industries, Inc., The Virtis Division Freeze drying methods employing vapor flow monitoring and/or vacuum pressure control
US6564471B1 (en) 2001-03-12 2003-05-20 S. P. Industries, Inc., The Virtis Division Method and apparatus for freeze-drying
US20100064541A1 (en) * 2008-09-17 2010-03-18 Slack Howard C Method for reconditioning fcr apg-68 tactical radar units
CN101776375B (en) * 2010-02-03 2011-06-15 上海东富龙科技股份有限公司 Defrosting device of vacuum freeze drier and method thereof
US8028438B2 (en) * 2004-07-02 2011-10-04 Aqualizer, Llc Moisture condensation control system
US8701307B2 (en) 2008-09-17 2014-04-22 Howard C. Slack Method for cleaning and reconditioning FCR APG-68 tactical radar units
CN104596206A (en) * 2015-01-13 2015-05-06 南京晓庄学院 Integrated radiation vacuum freeze-dry device and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806299A1 (en) * 1988-02-27 1989-09-07 Martin Christ Gefriertrocknung PLANT FOR SUBLIMATION DRYING OF SUBSTANCES
DE4006015A1 (en) * 1990-02-26 1991-09-05 Leybold Ag FREEZER DRYING DEVICE
DK0505586T3 (en) * 1991-03-23 1996-03-04 Brunner Reinhard Wood drying device
CN102278871B (en) * 2010-06-12 2015-03-11 王一田 Water catching system of freeze dryer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994132A (en) * 1956-08-22 1961-08-01 Neumann Karlheinz Freeze drying apparatus
US3116122A (en) * 1959-04-25 1963-12-31 Leybold Anlagen Holding A G Method and means for condensation of vapors
US3132930A (en) * 1961-04-13 1964-05-12 Fmc Corp Freeze drying system
US3178829A (en) * 1962-05-25 1965-04-20 J P Devine Mfg Company Process and apparatus for freeze dehydrating of food material
US3233333A (en) * 1962-06-01 1966-02-08 Oppenheimer Franz Method of freeze drying food products
US3255534A (en) * 1963-03-21 1966-06-14 United Fruit Co Vacuum apparatus
US3262212A (en) * 1963-03-11 1966-07-26 United Fruit Co Apparatus and process for freeze drying
US3273259A (en) * 1963-06-06 1966-09-20 Hackenberg Ulrich Freeze drying apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751687A (en) * 1952-05-21 1956-06-26 Proctor Drying And Freezing Co Process and apparatus for producing stabilized products
GB757728A (en) * 1953-09-09 1956-09-26 Mitchell Engineering Ltd Improvements in or relating to drying apparatus
FR1261048A (en) * 1960-06-24 1961-05-12 Leybold Hochvakuum Anlagen Method of operating a working circuit in rhythm for continuous drying by freezing and device for carrying out this process
FR1380204A (en) * 1964-01-21 1964-11-27 Leybold Hochvakuum Anlagen Freezing drying device and method
FR1420111A (en) * 1965-01-07 1965-12-03 S E C N V Freezing and freeze drying apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994132A (en) * 1956-08-22 1961-08-01 Neumann Karlheinz Freeze drying apparatus
US3116122A (en) * 1959-04-25 1963-12-31 Leybold Anlagen Holding A G Method and means for condensation of vapors
US3132930A (en) * 1961-04-13 1964-05-12 Fmc Corp Freeze drying system
US3178829A (en) * 1962-05-25 1965-04-20 J P Devine Mfg Company Process and apparatus for freeze dehydrating of food material
US3233333A (en) * 1962-06-01 1966-02-08 Oppenheimer Franz Method of freeze drying food products
US3262212A (en) * 1963-03-11 1966-07-26 United Fruit Co Apparatus and process for freeze drying
US3255534A (en) * 1963-03-21 1966-06-14 United Fruit Co Vacuum apparatus
US3273259A (en) * 1963-06-06 1966-09-20 Hackenberg Ulrich Freeze drying apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769717A (en) * 1970-08-25 1973-11-06 J Lorentzen Apparatus for freezedrying material with loading and discharging means
DE2510758A1 (en) * 1975-03-12 1976-09-30 Rautenbach Robert Freeze drying device with heat exchanger thawing system - has thin layer in surface of heat exchanger which is briefly heated to achieve partial ice removal
DE3107241A1 (en) * 1981-02-26 1982-09-09 Leybold-Heraeus GmbH, 5000 Köln Condenser for drying installations
US5131168A (en) * 1990-01-15 1992-07-21 Finn-Aqua Santasalo-Sohlberg Gmbh Procedure and apparatus for freezing a product to be subjected to freeze-drying
US5199187A (en) * 1991-07-31 1993-04-06 Sp Industries Freeze dryer apparatus having an interim condensing system and use thereof
US5425182A (en) * 1992-10-14 1995-06-20 Brunner; Reinhard Apparatus for drying wood and other solid material
US5433020A (en) * 1993-04-29 1995-07-18 Altos Engineering, Inc. Apparatus and method for vacuum drying
US6226887B1 (en) * 1998-05-07 2001-05-08 S.P. Industries, Inc., The Virtis Division Freeze drying methods employing vapor flow monitoring and/or vacuum pressure control
US6564471B1 (en) 2001-03-12 2003-05-20 S. P. Industries, Inc., The Virtis Division Method and apparatus for freeze-drying
US8028438B2 (en) * 2004-07-02 2011-10-04 Aqualizer, Llc Moisture condensation control system
US20100064541A1 (en) * 2008-09-17 2010-03-18 Slack Howard C Method for reconditioning fcr apg-68 tactical radar units
US8056256B2 (en) * 2008-09-17 2011-11-15 Slack Associates, Inc. Method for reconditioning FCR APG-68 tactical radar units
US8701307B2 (en) 2008-09-17 2014-04-22 Howard C. Slack Method for cleaning and reconditioning FCR APG-68 tactical radar units
CN101776375B (en) * 2010-02-03 2011-06-15 上海东富龙科技股份有限公司 Defrosting device of vacuum freeze drier and method thereof
CN104596206A (en) * 2015-01-13 2015-05-06 南京晓庄学院 Integrated radiation vacuum freeze-dry device and method
CN104596206B (en) * 2015-01-13 2016-08-24 南京晓庄学院 A kind of integral type radiation vacuum freeze-drier and method

Also Published As

Publication number Publication date
DE1604786B1 (en) 1974-08-29
DK117688B (en) 1970-05-19
DE1753854B1 (en) 1978-01-05
GB1118352A (en) 1968-07-03

Similar Documents

Publication Publication Date Title
US3382586A (en) Apparatus for freeze-drying
US4286456A (en) Gas chromatographic chamber
US4194296A (en) Vacuum drying kiln
US2453033A (en) Vacuum drying apparatus using a refrigerant system for heating and cooling
US5090132A (en) Method and apparatus for freeze drying
US3192645A (en) Apparatus and method for vacuum freeze drying substances in a tunnel dryer having sealing locks
US2001628A (en) Method for preserving foodstuffs
US3299525A (en) Carrier gas sublimation
JP6289557B2 (en) Steamed grain cooling device
KR20210084578A (en) Continuous freeze dryer, hopper and freeze drying method
US3132929A (en) Apparatus for freeze drying
US4468866A (en) Method of and apparatus for vacuum drying of systems
JPH04313677A (en) Method and device for freezing product to be freeze-dried
US2389452A (en) Drying
RU2119622C1 (en) Vacuum sublimation plant for drying biological materials
US2634591A (en) Vacuum cooling system employing chamber surface condensation
US4326341A (en) Drying method and apparatus for drying prunes, fish, brewers grain, shelled corn, and the like
CN110108097A (en) The controlled nucleation of the pressure difference ice crystal distribution come autocondensation frost is utilized in the refrigerating process of freeze-drying circulation
US4073226A (en) Processing apparatus
KR101702492B1 (en) thermal strain tray for freezing dryer
RU2716056C1 (en) Energy-efficient convective-vacuum pulse drying unit with thermal accumulators
JPH048712B2 (en)
US3264745A (en) Process and apparatus for freezing and freeze-drying liquid substances, and apparatus for carrying out said process
JP2562189B2 (en) Freeze dryer
US3287926A (en) Method of making and harvesting ice