US3376934A - Perforation sealer - Google Patents

Perforation sealer Download PDF

Info

Publication number
US3376934A
US3376934A US508814A US50881465A US3376934A US 3376934 A US3376934 A US 3376934A US 508814 A US508814 A US 508814A US 50881465 A US50881465 A US 50881465A US 3376934 A US3376934 A US 3376934A
Authority
US
United States
Prior art keywords
sealer
fluid
perforation
perforations
skirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US508814A
Inventor
Bertram T William
James F Mcphail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Priority to US508814A priority Critical patent/US3376934A/en
Application granted granted Critical
Publication of US3376934A publication Critical patent/US3376934A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation

Definitions

  • Hydraulic fracturing techniques, well stimulation procedures and other workover operations carried out in oil wells and similar boreholes often require the temporary sealing of perforations through which fluids tend to escape from the tubing or casing. This is normally done by means of ball sealers injected with the treating fluid. These sealers are usually neophrene-coated nylon spheres slightly larger than the nominal size of the perforations. The spheres are carried into the perforations by the escaping fluid and, once seated, tend to prevent further fluid losses. Such sealers are seldom wholly effective.
  • the present invention provides an improved sealer which effectively closes off irregular perforations and prevents the escape of fluids through them.
  • the improved sealer includes an at least partially spheroidal body of resilient material of suflicient size to lodge in a perforation as fluid enters the perforation and a flexible skirt of fluid-impervious material attached to and extending outwardly about the body a distance suflicient to overspread the wall surface adjacent the perforation.
  • FIGURE 1 is a vertical elevation, partially in section, of a perforated pipe string showing use of the sealers to plug irregular perforations;
  • FIGURE 2 is a sectional view of an alternate embodiment of the improved sealer.
  • the pipe string 11 shown in FIGURE 1 of the drawing is a string of easing which has been installed in a Well and cemented in place in the conventional manner.
  • the cement behind the casing and the adjacent subterranean formation are not shown.
  • a conventional explosive jet or gun-type perforator has been employed to perforate the casing at points 12, 13 and 14. In each case the perforator has split or cracked the casing around the perforation so that the resultant openings in the casing are noncircular.
  • the splits or cracks are indiacted by reference numerals 15, 16 and '17. These noncircular openings prevent the effective use of conventional ball sealers for plugging the perforations.
  • the improved perforation sealer shown in FIGURE 1 includes an at least partially spheroidal body of resilient material 18 of sufficient size to lodge in a perforation and is provided with a flexible, fluid-impervious skirt 19 which is attached to and extends from the body a distance suificient to overspread the wall surface adjacent the perforation.
  • the body 18 may be formed. of neophrenecoated nylon, polypropylene, polyethylene, polyisobutylene, polybutadiene or a similar polymeric material, synthetic rubber or resin.
  • the material employed should be resistant to hydrocarbons if the sealer is' to be used in an oil environment. Ordinarily, the density of the material should be greater than that of the fluid in which the sealer is to be used.
  • the body should be weighted so that it will sink in the fluid within the wellbore.
  • the diameter should be suflicient to permit lodging of the body within the perforation and prevent its being extruded under high differential pressures.
  • Most perforations are about one-half inch in diameter and hence a ball or similar body about five-eighths or three-quarters-of an inch in diameter will ordinarily be employed. For larger perforations, a correspondingly larger ball or similar body will be required.
  • the skirt 19 of the sealer shown in FIGURE 1 is made of rubberized fabric, plastic, synthetic rubber or a similar flexible, fluid-impervious material. It is generally preferred that the skirt consist of multiple overlapping strips of sheet rubber or similar material which will readily be carried into the cracks or splits surrounding the perforation as shown in FIGURE 1. In some cases, however, a single piece of suitable sheet material provided with folds or pleats may be used. In either case, the skirt may be mounted between the two body sections and secured with an adhesive or by means of a rivet or similar member 20.
  • the density of the material in the skirt should generally be less than that of body 18 so that the skirt will trail behind as the sealer drops through the fluid in the tubing or casing.
  • the length or radius of the skirt will normally be from about two to about six times the diameter of the sealer body but may be greater if desired.
  • FIGURE 2 of the drawing depicts an alternate embodiment of the sealer in which the body includes a hemispherical lower section 21 and a flat circular upper section 22.
  • the multiple overlapping strips 23 of the skirt are held in place between these two members by rivet 24.
  • the strips trail behind the body member as depicted.
  • the use of a body composed of a hemispherical member and a disc as thus shown in FIGURE 2 is advantageous in that the disc will contact the wall of the tubing or casing as the sealer approaches the perforation and help direct the lower hemispherical section 21 into the perforation.
  • the embodiment of FIGURE 2 may be made of materials similar to those referred to in connection with FIGURE 1 of the drawing.
  • the improved sealer of the invention is used in much the same way that conventional ball sealers are employed.
  • the sealers When the necessity for plugging the perforations in a string of tubing or casing containing fluid arises during a workover job or similar operation, the sealers are dropped into the fluid at the wellhead. As each sealer settles through the fluid, the skirt trails behind the body as shown. On approaching a perforation through which fluid is escaping, the sealer body is carried into the perforation. The flexible skirt attached to the body is then forced into any splits, cracks or other irregularities adjacent the body section by the escaping fluid.
  • the pressure is reduced in the wellbore and fluid is back flowed into the casing or tubing through the perforations. This dislodges the sealers from the perforations and adjacent splits, cracks or other 4 irregular openings. The sealers can then be circulated to the surface with the produced fluids.
  • a ball sealer for plugging a perforation in the wall of a pipe string in an oil well or similar borehole comprising an at least partially spheroidal body of suflicient size to lodge in said perforation in the wall of said pipe string as fluid carrying said body flows into the perforation and a skirt of a flexible, fluid-impervious material attached to and extending from said body a distance sufficient to overspread the wall surface adjacent the perforation, said body including two immediately adjacent portions between which said skirt is sandwiched.

Description

April 1968 B. T. WILLMAN ETAL 3,376,934
PERFORATI ON SEALER Filed Nov. 19, 1965 FIR-2 ELL ATTORNEY United States Patent 3,376,934 PERFORATION SEALER Bertram T. Willman, New York, N.Y., and James F. McPhail, Houston, Tex., assignors to Esso Production Research Company, a corporation of Delaware Filed Nov. 19, 1965, Ser. No. 508,814 6 Claims. (Cl. 166-193) ABSTRACT OF THE DISCLOSURE The present invention relates to an improved perforation sealer for use in oil wells, gas wells and similar boreholes.
Hydraulic fracturing techniques, well stimulation procedures and other workover operations carried out in oil wells and similar boreholes often require the temporary sealing of perforations through which fluids tend to escape from the tubing or casing. This is normally done by means of ball sealers injected with the treating fluid. These sealers are usually neophrene-coated nylon spheres slightly larger than the nominal size of the perforations. The spheres are carried into the perforations by the escaping fluid and, once seated, tend to prevent further fluid losses. Such sealers are seldom wholly effective. Most wells are per-v forated with tools which may produce elongated holes or cause the tubing or casing to split or crack in the vicinity of the hole, particularly where the tubing or casing is not firmly supported by a cement sheath or a competent formation. Ball sealers of conventional design do not effectively seal such splits, cracks or other irregular openings.
The present invention provides an improved sealer which effectively closes off irregular perforations and prevents the escape of fluids through them. The improved sealer includes an at least partially spheroidal body of resilient material of suflicient size to lodge in a perforation as fluid enters the perforation and a flexible skirt of fluid-impervious material attached to and extending outwardly about the body a distance suflicient to overspread the wall surface adjacent the perforation. When such a sealer seats in a non-circular perforation, the escape of fluid through the unplugged portion of the perforation around the sealer body forces the flexible skirt into or over the opening. This seals the irregular opening and thus reduces or prevents further escape of the fluid. When the pressure within the pipe is reduced and the well is placed on production, the sealer is dislodged and carried to the surface with the produced fluid. The device thus permits more effective temporary sealing of the perforations than can ordinarily be obtained with ball sealers of conventional design.
The nature and objects of the invention can best be understood by referring to the following detailed description of the improved sealer and to the accompanying drawing in which:
FIGURE 1 is a vertical elevation, partially in section, of a perforated pipe string showing use of the sealers to plug irregular perforations; and
FIGURE 2 is a sectional view of an alternate embodiment of the improved sealer.
The pipe string 11 shown in FIGURE 1 of the drawing is a string of easing which has been installed in a Well and cemented in place in the conventional manner. The cement behind the casing and the adjacent subterranean formation are not shown. A conventional explosive jet or gun-type perforator has been employed to perforate the casing at points 12, 13 and 14. In each case the perforator has split or cracked the casing around the perforation so that the resultant openings in the casing are noncircular. The splits or cracks are indiacted by reference numerals 15, 16 and '17. These noncircular openings prevent the effective use of conventional ball sealers for plugging the perforations.
The improved perforation sealer shown in FIGURE 1 includes an at least partially spheroidal body of resilient material 18 of sufficient size to lodge in a perforation and is provided with a flexible, fluid-impervious skirt 19 which is attached to and extends from the body a distance suificient to overspread the wall surface adjacent the perforation. The body 18 may be formed. of neophrenecoated nylon, polypropylene, polyethylene, polyisobutylene, polybutadiene or a similar polymeric material, synthetic rubber or resin. The material employed should be resistant to hydrocarbons if the sealer is' to be used in an oil environment. Ordinarily, the density of the material should be greater than that of the fluid in which the sealer is to be used. Alternatively, the body should be weighted so that it will sink in the fluid within the wellbore. The diameter should be suflicient to permit lodging of the body within the perforation and prevent its being extruded under high differential pressures. Most perforations are about one-half inch in diameter and hence a ball or similar body about five-eighths or three-quarters-of an inch in diameter will ordinarily be employed. For larger perforations, a correspondingly larger ball or similar body will be required.
As can be seen from the cross sectional view of the sealer lodged in perforation 12 of FIGURE 1 body 18 vmay be made in two pieces which are later joined by means of a suitable adhesive or with a rivet or similar metallic fastener 20. The use of a rivet or the like having an enlarged head provides a convenient method for joining the two pieces and at the same time weighting the body so that it will sink in the fluid in the wellbore at the desired rate. This rate will normally fall in the range between about one-half to about ten feet per second but may be somewhat lower if desired. The amount of weight required to achieve such a rate will depend, of course, upon the density and viscosity of the fluid in the wellbore, the density of the material from which the sealer is made, and the configuration of the sealer.
The skirt 19 of the sealer shown in FIGURE 1 is made of rubberized fabric, plastic, synthetic rubber or a similar flexible, fluid-impervious material. It is generally preferred that the skirt consist of multiple overlapping strips of sheet rubber or similar material which will readily be carried into the cracks or splits surrounding the perforation as shown in FIGURE 1. In some cases, however, a single piece of suitable sheet material provided with folds or pleats may be used. In either case, the skirt may be mounted between the two body sections and secured with an adhesive or by means of a rivet or similar member 20. The density of the material in the skirt should generally be less than that of body 18 so that the skirt will trail behind as the sealer drops through the fluid in the tubing or casing. The length or radius of the skirt will normally be from about two to about six times the diameter of the sealer body but may be greater if desired.
FIGURE 2 of the drawing depicts an alternate embodiment of the sealer in which the body includes a hemispherical lower section 21 and a flat circular upper section 22. The multiple overlapping strips 23 of the skirt are held in place between these two members by rivet 24. As the sealer drops through the fluid in the tubing or casing, the strips trail behind the body member as depicted. The use of a body composed of a hemispherical member and a disc as thus shown in FIGURE 2 is advantageous in that the disc will contact the wall of the tubing or casing as the sealer approaches the perforation and help direct the lower hemispherical section 21 into the perforation. The embodiment of FIGURE 2 may be made of materials similar to those referred to in connection with FIGURE 1 of the drawing.
The improved sealer of the invention is used in much the same way that conventional ball sealers are employed. When the necessity for plugging the perforations in a string of tubing or casing containing fluid arises during a workover job or similar operation, the sealers are dropped into the fluid at the wellhead. As each sealer settles through the fluid, the skirt trails behind the body as shown. On approaching a perforation through which fluid is escaping, the sealer body is carried into the perforation. The flexible skirt attached to the body is then forced into any splits, cracks or other irregularities adjacent the body section by the escaping fluid. Due to the overlapping of the strips and generally small width of the cracks, a seal capable of withstanding high pressures without rupturing can be readily obtained, particularly where the fabric or other material seats in contact with the cement or formation adjacent the outer wall of the pipe string. The use of an elastic material capable of stretching in two different directions minimizes tearing within the crack or split. The perforations in the upper part of the string or casing are normally sealed first and the sealers then seat in progressively lower perforations. In cases where some perforations are not taking fluid because of low permeability, however, the sealers will preferentially seat in the perforations communicating with high permeability zones into which fluid flow rates are highest. This makes the use of sealers for increasing differential pressure into the less permeable Zones advantageous. When it becomes necessary to remove the sealers and restore communication, the pressure is reduced in the wellbore and fluid is back flowed into the casing or tubing through the perforations. This dislodges the sealers from the perforations and adjacent splits, cracks or other 4 irregular openings. The sealers can then be circulated to the surface with the produced fluids.
What is claimed is:
1. A ball sealer for plugging a perforation in the wall of a pipe string in an oil well or similar borehole comprising an at least partially spheroidal body of suflicient size to lodge in said perforation in the wall of said pipe string as fluid carrying said body flows into the perforation and a skirt of a flexible, fluid-impervious material attached to and extending from said body a distance sufficient to overspread the wall surface adjacent the perforation, said body including two immediately adjacent portions between which said skirt is sandwiched.
2. A sealer as defined by claim 1 wherein said skirt is composed of multiple overlapping strips of said flexible, fluid-impervious material.
3. A sealer as defined by claim 1 wherein the adjacent portions of said body comprise a substantially hemispherical member and a flat circular member having a greater diameter than said substantially hemispherical member, the base of said substantially hemispherical member being adjoined to the face of said circular memher.
4. A sealer as defined by claim 1 wherein the adjacent portions of said body are composed of at least two members held together be a metallic fastener.
5. A sealer as defined by claim 1 wherein said body is composed at least in part of a resilient polymeric material.
6. A sealer as defined by claim 1 wherein the length of said skirt is from about two to about six times the diameter of said body.
References Cited UNITED STATES PATENTS 1,606,206 11/1926 Boynton 166-193 2,253,224 8/1941 Bleakley 166192 2,646,845 7/1953 Schillinger 166-192 X 2,651,367 9/1953 Baker 166194 2,754,910 7/1956 Derrick 166--193 X 3,032,115 5/1962 Smith 166-192 X 3,054,455 9/1962 Keltner 166192 X CHARLES E. OCONNELL, Primary Examiner.
NILE C. BYERS, IR., Examiner.
US508814A 1965-11-19 1965-11-19 Perforation sealer Expired - Lifetime US3376934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US508814A US3376934A (en) 1965-11-19 1965-11-19 Perforation sealer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US508814A US3376934A (en) 1965-11-19 1965-11-19 Perforation sealer

Publications (1)

Publication Number Publication Date
US3376934A true US3376934A (en) 1968-04-09

Family

ID=24024186

Family Applications (1)

Application Number Title Priority Date Filing Date
US508814A Expired - Lifetime US3376934A (en) 1965-11-19 1965-11-19 Perforation sealer

Country Status (1)

Country Link
US (1) US3376934A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437147A (en) * 1967-02-23 1969-04-08 Mobil Oil Corp Method and apparatus for plugging well pipe perforations
US3595314A (en) * 1970-06-02 1971-07-27 Cities Service Oil Co Apparatus for selectively plugging portions of a perforated zone
US4102401A (en) * 1977-09-06 1978-07-25 Exxon Production Research Company Well treatment fluid diversion with low density ball sealers
US4139060A (en) * 1977-11-14 1979-02-13 Exxon Production Research Company Selective wellbore isolation using buoyant ball sealers
DE2849023A1 (en) * 1977-11-14 1979-05-17 Exxon Production Research Co METHOD OF APPLYING BALL SEALS TO PERFORATIONS IN DRILL LINING
US4160482A (en) * 1977-09-06 1979-07-10 Exxon Production Research Company Ball sealer diversion of matrix rate treatments of a well
US4187909A (en) * 1977-11-16 1980-02-12 Exxon Production Research Company Method and apparatus for placing buoyant ball sealers
US4194561A (en) * 1977-11-16 1980-03-25 Exxon Production Research Company Placement apparatus and method for low density ball sealers
US4244425A (en) * 1979-05-03 1981-01-13 Exxon Production Research Company Low density ball sealers for use in well treatment fluid diversions
US4258801A (en) * 1979-06-14 1981-03-31 Eastman Whipstock, Inc. Dump valve for use with downhole motor
WO1991011587A1 (en) * 1990-01-29 1991-08-08 Conoco Inc. Method and apparatus for sealing pipe perforations
US5253709A (en) * 1990-01-29 1993-10-19 Conoco Inc. Method and apparatus for sealing pipe perforations
US20090101334A1 (en) * 2007-10-18 2009-04-23 Belgin Baser Multilayered ball sealer and method of use thereof
US20120067447A1 (en) * 2009-04-16 2012-03-22 Nicholas John Ryan Delivery method and compositions
US8205677B1 (en) * 2010-06-28 2012-06-26 Samuel Salkin System and method for controlling underwater oil-well leak
US20160251930A1 (en) * 2015-02-27 2016-09-01 Schlumberger Technology Corporation Technique and apparatus for using an untethered object to form a seal in a well
US9523267B2 (en) 2015-04-28 2016-12-20 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9551204B2 (en) * 2015-04-28 2017-01-24 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567826B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567825B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567824B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Fibrous barriers and deployment in subterranean wells
US9708883B2 (en) 2015-04-28 2017-07-18 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9745820B2 (en) 2015-04-28 2017-08-29 Thru Tubing Solutions, Inc. Plugging device deployment in subterranean wells
US9816341B2 (en) 2015-04-28 2017-11-14 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US9920589B2 (en) 2016-04-06 2018-03-20 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US20180171745A1 (en) * 2016-12-16 2018-06-21 MicroPlug, LLC Micro Frac Plug
US10233719B2 (en) 2015-04-28 2019-03-19 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10513653B2 (en) 2015-04-28 2019-12-24 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10641057B2 (en) 2015-04-28 2020-05-05 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10753174B2 (en) 2015-07-21 2020-08-25 Thru Tubing Solutions, Inc. Plugging device deployment
US10774612B2 (en) 2015-04-28 2020-09-15 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10851283B2 (en) 2014-10-06 2020-12-01 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion with shaped particles
US10851615B2 (en) 2015-04-28 2020-12-01 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10871049B2 (en) 2019-02-05 2020-12-22 Thru Tubing Solutions, Inc. Well operations with grouped particle diverter plug
US10927639B2 (en) 2016-12-13 2021-02-23 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US11022248B2 (en) 2017-04-25 2021-06-01 Thru Tubing Solutions, Inc. Plugging undesired openings in fluid vessels
US11105180B2 (en) * 2019-08-19 2021-08-31 Saudi Arabian Oil Company Plugging formation fractures
US11293578B2 (en) 2017-04-25 2022-04-05 Thru Tubing Solutions, Inc. Plugging undesired openings in fluid conduits
US11448026B1 (en) 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
US11549329B2 (en) 2020-12-22 2023-01-10 Saudi Arabian Oil Company Downhole casing-casing annulus sealant injection
US11598178B2 (en) 2021-01-08 2023-03-07 Saudi Arabian Oil Company Wellbore mud pit safety system
US11761295B2 (en) 2015-07-21 2023-09-19 Thru Tubing Solutions, Inc. Plugging device deployment
US11828128B2 (en) 2021-01-04 2023-11-28 Saudi Arabian Oil Company Convertible bell nipple for wellbore operations
US11851611B2 (en) 2015-04-28 2023-12-26 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US11859815B2 (en) 2021-05-18 2024-01-02 Saudi Arabian Oil Company Flare control at well sites
US11905791B2 (en) 2021-08-18 2024-02-20 Saudi Arabian Oil Company Float valve for drilling and workover operations
US11913298B2 (en) 2021-10-25 2024-02-27 Saudi Arabian Oil Company Downhole milling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1606206A (en) * 1926-11-09 Device
US2253224A (en) * 1940-10-28 1941-08-19 Zero Hour Bomb Company Plugging device
US2646845A (en) * 1951-08-01 1953-07-28 Zero Hour Bomb Company Well bridge
US2651367A (en) * 1948-01-12 1953-09-08 Baker Oil Tools Inc Plug device for well conduits
US2754910A (en) * 1955-04-27 1956-07-17 Chemical Process Company Method of temporarily closing perforations in the casing
US3032115A (en) * 1960-08-02 1962-05-01 Robbie J Smith Well cavity plug forming device
US3054455A (en) * 1959-08-31 1962-09-18 Keltner Haskell Owen Tool for sealing a fissure along a mine shaft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1606206A (en) * 1926-11-09 Device
US2253224A (en) * 1940-10-28 1941-08-19 Zero Hour Bomb Company Plugging device
US2651367A (en) * 1948-01-12 1953-09-08 Baker Oil Tools Inc Plug device for well conduits
US2646845A (en) * 1951-08-01 1953-07-28 Zero Hour Bomb Company Well bridge
US2754910A (en) * 1955-04-27 1956-07-17 Chemical Process Company Method of temporarily closing perforations in the casing
US3054455A (en) * 1959-08-31 1962-09-18 Keltner Haskell Owen Tool for sealing a fissure along a mine shaft
US3032115A (en) * 1960-08-02 1962-05-01 Robbie J Smith Well cavity plug forming device

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437147A (en) * 1967-02-23 1969-04-08 Mobil Oil Corp Method and apparatus for plugging well pipe perforations
US3595314A (en) * 1970-06-02 1971-07-27 Cities Service Oil Co Apparatus for selectively plugging portions of a perforated zone
US4102401A (en) * 1977-09-06 1978-07-25 Exxon Production Research Company Well treatment fluid diversion with low density ball sealers
US4160482A (en) * 1977-09-06 1979-07-10 Exxon Production Research Company Ball sealer diversion of matrix rate treatments of a well
US4139060A (en) * 1977-11-14 1979-02-13 Exxon Production Research Company Selective wellbore isolation using buoyant ball sealers
DE2849023A1 (en) * 1977-11-14 1979-05-17 Exxon Production Research Co METHOD OF APPLYING BALL SEALS TO PERFORATIONS IN DRILL LINING
US4195690A (en) * 1977-11-14 1980-04-01 Exxon Production Research Company Method for placing ball sealers onto casing perforations
US4187909A (en) * 1977-11-16 1980-02-12 Exxon Production Research Company Method and apparatus for placing buoyant ball sealers
US4194561A (en) * 1977-11-16 1980-03-25 Exxon Production Research Company Placement apparatus and method for low density ball sealers
US4244425A (en) * 1979-05-03 1981-01-13 Exxon Production Research Company Low density ball sealers for use in well treatment fluid diversions
US4258801A (en) * 1979-06-14 1981-03-31 Eastman Whipstock, Inc. Dump valve for use with downhole motor
WO1991011587A1 (en) * 1990-01-29 1991-08-08 Conoco Inc. Method and apparatus for sealing pipe perforations
US5253709A (en) * 1990-01-29 1993-10-19 Conoco Inc. Method and apparatus for sealing pipe perforations
US20090101334A1 (en) * 2007-10-18 2009-04-23 Belgin Baser Multilayered ball sealer and method of use thereof
US8714250B2 (en) * 2007-10-18 2014-05-06 Schlumberger Technology Corporation Multilayered ball sealer and method of use thereof
US20120067447A1 (en) * 2009-04-16 2012-03-22 Nicholas John Ryan Delivery method and compositions
US8950438B2 (en) * 2009-04-16 2015-02-10 Brinker Technology Ltd Method and compositions for delivery of a concentrated quantity of sealing elements to a leak site in a vessel
US8205677B1 (en) * 2010-06-28 2012-06-26 Samuel Salkin System and method for controlling underwater oil-well leak
US10851283B2 (en) 2014-10-06 2020-12-01 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion with shaped particles
US20160251930A1 (en) * 2015-02-27 2016-09-01 Schlumberger Technology Corporation Technique and apparatus for using an untethered object to form a seal in a well
US10415344B2 (en) * 2015-02-27 2019-09-17 Schlumberger Technology Corporation Technique and apparatus for using an untethered object to form a seal in a well
US10641070B2 (en) 2015-04-28 2020-05-05 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9523267B2 (en) 2015-04-28 2016-12-20 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567824B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Fibrous barriers and deployment in subterranean wells
US9708883B2 (en) 2015-04-28 2017-07-18 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9745820B2 (en) 2015-04-28 2017-08-29 Thru Tubing Solutions, Inc. Plugging device deployment in subterranean wells
US9816341B2 (en) 2015-04-28 2017-11-14 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US11851611B2 (en) 2015-04-28 2023-12-26 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US11427751B2 (en) 2015-04-28 2022-08-30 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10233719B2 (en) 2015-04-28 2019-03-19 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US20190136662A1 (en) * 2015-04-28 2019-05-09 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567826B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10513653B2 (en) 2015-04-28 2019-12-24 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10513902B2 (en) 2015-04-28 2019-12-24 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US9551204B2 (en) * 2015-04-28 2017-01-24 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10641069B2 (en) * 2015-04-28 2020-05-05 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10641057B2 (en) 2015-04-28 2020-05-05 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10655427B2 (en) 2015-04-28 2020-05-19 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US11242727B2 (en) * 2015-04-28 2022-02-08 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10738565B2 (en) 2015-04-28 2020-08-11 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10738566B2 (en) 2015-04-28 2020-08-11 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10738564B2 (en) 2015-04-28 2020-08-11 Thru Tubing Solutions, Inc. Fibrous barriers and deployment in subterranean wells
US11002106B2 (en) 2015-04-28 2021-05-11 Thru Tubing Solutions, Inc. Plugging device deployment in subterranean wells
US10907430B2 (en) 2015-04-28 2021-02-02 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US10767442B2 (en) * 2015-04-28 2020-09-08 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10774612B2 (en) 2015-04-28 2020-09-15 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567825B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10851615B2 (en) 2015-04-28 2020-12-01 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10900312B2 (en) 2015-04-28 2021-01-26 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US10753174B2 (en) 2015-07-21 2020-08-25 Thru Tubing Solutions, Inc. Plugging device deployment
US11761295B2 (en) 2015-07-21 2023-09-19 Thru Tubing Solutions, Inc. Plugging device deployment
US11377926B2 (en) 2015-07-21 2022-07-05 Thru Tubing Solutions, Inc. Plugging device deployment
US9920589B2 (en) 2016-04-06 2018-03-20 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US10655426B2 (en) 2016-04-06 2020-05-19 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US11333000B2 (en) 2016-12-13 2022-05-17 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US11939834B2 (en) 2016-12-13 2024-03-26 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US10927639B2 (en) 2016-12-13 2021-02-23 Thru Tubing Solutions, Inc. Methods of completing a well and apparatus therefor
US20180171745A1 (en) * 2016-12-16 2018-06-21 MicroPlug, LLC Micro Frac Plug
US10760370B2 (en) * 2016-12-16 2020-09-01 MicroPlug, LLC Micro frac plug
US11492868B2 (en) 2016-12-16 2022-11-08 MicroPlug, LLC Micro frac plug
US11293578B2 (en) 2017-04-25 2022-04-05 Thru Tubing Solutions, Inc. Plugging undesired openings in fluid conduits
US11022248B2 (en) 2017-04-25 2021-06-01 Thru Tubing Solutions, Inc. Plugging undesired openings in fluid vessels
US10871049B2 (en) 2019-02-05 2020-12-22 Thru Tubing Solutions, Inc. Well operations with grouped particle diverter plug
US11105180B2 (en) * 2019-08-19 2021-08-31 Saudi Arabian Oil Company Plugging formation fractures
US11549329B2 (en) 2020-12-22 2023-01-10 Saudi Arabian Oil Company Downhole casing-casing annulus sealant injection
US11828128B2 (en) 2021-01-04 2023-11-28 Saudi Arabian Oil Company Convertible bell nipple for wellbore operations
US11598178B2 (en) 2021-01-08 2023-03-07 Saudi Arabian Oil Company Wellbore mud pit safety system
US11448026B1 (en) 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
US11859815B2 (en) 2021-05-18 2024-01-02 Saudi Arabian Oil Company Flare control at well sites
US11905791B2 (en) 2021-08-18 2024-02-20 Saudi Arabian Oil Company Float valve for drilling and workover operations
US11913298B2 (en) 2021-10-25 2024-02-27 Saudi Arabian Oil Company Downhole milling system

Similar Documents

Publication Publication Date Title
US3376934A (en) Perforation sealer
US5253709A (en) Method and apparatus for sealing pipe perforations
US4714117A (en) Drainhole well completion
US7478676B2 (en) Methods and devices for treating multiple-interval well bores
US5669448A (en) Overbalance perforating and stimulation method for wells
US4498543A (en) Method for placing a liner in a pressurized well
US3174546A (en) Method for selectively sealing-off formations
US8397803B2 (en) Packing element system with profiled surface
US7874365B2 (en) Methods and devices for treating multiple-interval well bores
US5597040A (en) Combination gravel packing/frac apparatus for use in a subterranean well bore
US2970645A (en) Producing multiple fractures in a well
US7152687B2 (en) Expandable tubular with port valve
US7841397B2 (en) Straddle packer and method for using the same in a well bore
MXPA05000551A (en) Wellbore sealing system and method.
US20230069715A1 (en) Micro frac plug
BR112019013105B1 (en) PACKER APPARATUS AND METHOD FOR PROVIDING A PACKER APPARATUS
US20070062690A1 (en) Packer washout assembly
CA2049974A1 (en) Method and apparatus for sealing pipe perforations
BR112015012140B1 (en) systems for performing underground operations and for supporting an inner liner in a liner, and, method for coupling an inner liner with a liner of a well bore coated in an underground formation
US3012608A (en) Orientation of perforating guns in wells
US3047025A (en) Tubing protectors
US5853224A (en) Method for completing a well in a coal formation
US4378843A (en) Method for completion of wells
US20050252657A1 (en) Method and Apparatus to Isolate Fluids During Gravel Pack Operations
US6491105B2 (en) Cross-over housing for gas lift valve