US3373639A - Automatically adjustable socket wrench - Google Patents

Automatically adjustable socket wrench Download PDF

Info

Publication number
US3373639A
US3373639A US647979A US64797967A US3373639A US 3373639 A US3373639 A US 3373639A US 647979 A US647979 A US 647979A US 64797967 A US64797967 A US 64797967A US 3373639 A US3373639 A US 3373639A
Authority
US
United States
Prior art keywords
jaws
jaw
closer
adjacent
shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US647979A
Inventor
Leonard Van Dalen
Jr Horace C Disston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seaboard Tools
Original Assignee
Seaboard Tools
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seaboard Tools filed Critical Seaboard Tools
Priority to US647979A priority Critical patent/US3373639A/en
Application granted granted Critical
Publication of US3373639A publication Critical patent/US3373639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B13/00Spanners; Wrenches
    • B25B13/44Spanners; Wrenches of the chuck type

Definitions

  • the instant invention is essentially concerned lwith an automatically adjustable socket wrench including a plurality of cylindrically arranged jaws retractably slidable into a 4generally cylindrical closer for radial contraction, and extendible therefrom for radial expansion, and wherein the closer is provided with internal projections entering between adjacent jaws, and the jaws are con figured to avoid overstressing the jaws and the projections, whereby reaction torque is effectively distributed over the structure.
  • an adjustable socket wrench of the type described which is automatically adjustable, and wherein manufacture and assembly are facilitated, as well as the useful life extended, by the construction and arrangement of jaws wherein the jaws are contractible to an adjacent side-by-side relation, while configured to receive between adjacent jaws internal projections of the closer, -for more evenly distributing reaction torque to minimize local stresses land possible damage.
  • FIGURE l is a side elevational view showing an automatically adjustable socket wrench constructed in accordance with the teachings of the instant invention.
  • FIGURE 2 is a longitudinal sectional view taken gen erally along the line 2--2 of FIGURE 1, enlarged for clarity, and showing the jaws in an extended, radiallyj. expanded position.
  • FIGURE 3 is a longitudinal sectional view similar to FIGURE 2, but illustrating the jaws in their retracted, radially contracted position.
  • FIGURE 4 is an end view taken generally along the line 4 4 of FIGURE 2.
  • FIGURE 5 is an end View taken generally along the line S-5 of FIGURE 3.
  • FIGURE 6 is a side elevational View showing the jaw structure apart from the remainder of the wrench.
  • the wrench structure is there generally designated 10, and is constituted of handle means ;11 including a handle proper or handgrip member 12, and a shank 13 extending from the handgrip.
  • handle member 12 may be of elongate configuration essentially similar to that of a conventional screwdriver, ⁇ and the shank 13 may extend longitudinally from one end of the handle, being rigidly secured thereto.
  • handle means may be employed, as desired, say for achieving increased torque, accommodating to conditions of limited rotation, or other.
  • shank 13 From the extending end of shank 13, remote from handle 12, there extends the socket structure, generally designated 15. This structure is best seen in FIGURES 2-6
  • the shank 413 is illustrated in FIGURES 2 and 3, as having a longitudinally extending, generally cylindrical distal end portion 16 remote from the handle y12.
  • the shank end portion 16 has a generally circular end face 17, facing away from the handle, and a circumferential or annular shoulder 1S is provided about the end portion 16 at a location spaced inward from the end face 17.
  • a hollow, open-ended, generally cylindrical or tubular member 2i) has one end portion 21 snugly engaged about the 4cylindrical shank end portion 16, with an end edge 22 of the tube 20 in abutting engagement with the shoulder 18.
  • the tubular member 20 is suitably fixed to the shank end portion 16 'by any suitable means, such as a transverse pin 23 extending through the tubular-member end portion 21 into the shank end portion 16.
  • the tubular member 20 serves as a closer, as will appear more fully hereinafter, and extends longitudinally of the shank 13 beyond the shank end face 17, having its extending or outer end open, as at 24.
  • a plurality of internal projections or lugs 2S are formed at circumferentially spaced locations about the outer end 24 of tubular closer 20.
  • the internal projections or lugs 25 may be defined by circumferentially spaced inwardly struck portions of the closer end 24.
  • the internal surface of the closer 20 may be generally cylindrical, and may be formed adjacent to its outer end 24 with an internal circumferential recess or groove, as at 26.
  • the inner closer end portion 21 may be reduced, as at 27 for rotatably receiving a rotary or swivel collar 28.
  • the closer 2() ⁇ may be provided intermediate its ends, in spaced relation between the external reduced portion 27 and mternal recess of diametrically opposed, longitudinally extending thrur slots 29.
  • FIGURE 3 Internally of the closer 2i), see FIGURE 3, there is located a generally cylindrical array of elongate jaws 30.
  • the array of jaws 30 is arranged concentrically within the closer 2t); and, the inner ends of the jaws are connected together to maintain the same in their cylindrical' 26, with a pair array while affording longitudinal movement to the jaws relative to the encompassing closer 20.
  • the inner ends of jaws are all connected to or integral with an annular connecting member 31 mounted slidably within the closerf20 Viewed otherwise, the several jaws extend longitudinally outward from circumferentially spaced locations on the connecting member 31.
  • the jaws 30 terminate at their outer ends in respective jaws proper 32 having radially inwardly facing jaw faces 33.
  • each jaw 3d is provided on its inner side with a radially inward projection, as at 34, adjacent to and spaced inward from the respective outer jaw end.
  • the internal projections 34 each define an abutment surface 35 extending radially1 inward from the inner end of a respective arcuate jaw face 33, approximately normal thereto, and facing longitudinally outward away from the shank 13.
  • the outer side of each jaw 30' is provided with a longitudinally extending oblique surface 36 which tapers in the longitudinally inward direction.
  • the external jaw surfaces 36 each extend from a medial jaw region obliquely outward, both longitudinally and radially, terminating in an outer generally flat holding surface 37.
  • this oblique external jaw surface 36 serves to thicken the outer jaw regions, particularly adjacent to the radial projections 34 and .jaws proper 32.
  • the jaws 30 may be relatively thin, as at 33, affording a desired degree of resilient flexibility.
  • the condition of jaws 3Q shown in FIGURE 2 may be the rest condition or relatively unstressed condition, with the jaws proper 32radially apart from each other or expanded. In this condition the jaw faces 33 may diverge slightly in the longitudinally outward direction, say about six degrees.
  • the jaw condition shown in FIGURE 3 is that of a relatively stressed condition, the inner jaw regions 38 being resiliently defiected inward toward each other to contract the jaws proper 32 radially inward toward eachother. In this contracted jaw condition the jaw faces 33 may define circumferentially spaced segments of a cylinder.
  • the adjacent sides or facing side surfaces 19 of the jaws 30 extend generally radially of the cylindrical jaw configuration, being movable with the jaws between a relatively spaced relation in the expanded jaw condition of FIGUREv 2, and an adjacent facing relation in the contracted, side-by-side condition of the jaws 3f) in FIG- URE 3.
  • the adjacent facing side edges or surfaces 19 of adjacent pairs of jaws 30 are spaced apart for receiving therebetween, the corners of a nut or bolthead, or the like.
  • the radially outer portions of the side jaw surfaces 19 are advantageously cut away, chamfered or beveled, as at 39.
  • adjacent cutouts or bevels 39 of adjacent jaws 30 combine to define an opening therebetween adapted to receive the internal projections or tits 25, even in the fully contracted position of the jaws 30. Further, the longitudinally extending space or groove defined by adjacent bevels 39 permits the relatively sturdy projections 25 to more evenly distribute reaction torque, minimizes the pressure between engaged jaw and projection pairs and obviates the possibility of malfunction, as well as facilitating manufacture and assembly. This construction may also be observed in FIGURE 6.
  • a generally cylindrical or tubular, open-ended slider or actuator 4f Circumposed about the tubular closer 30 is a generally cylindrical or tubular, open-ended slider or actuator 4f).
  • the tubular actuator 4i) is longitudinally slidable on the closer 20and a pin 41 may extend diametrically across the inner end region of actuator 46, slidably through slots 29, to constrain the actuator to limited longitudinal sliding movement. Further, the pin 41 extends diametrically through the jaw-connecting member 31, so that the jaws 30 are constrained to longitudinal movement with the slider or actuator 40.
  • the outer end region of the cylindrical actuator 40 may be internally recessed
  • the slider terminates at its outer end 43' adjacent to the outer ends of jaws 36 to protectively encompass the latter.
  • a coil compression spring may be interposed between shank end 17 and connecting member 31, as in said copending patent application.
  • FIGURES 1-6 The jaw construction shown in FIGURES 1-6 is illustrated as for use in driving hexagonal nuts or boltheads, having six jaws 3ft, but may be of other number and shape, if desired.
  • round, polygonal, and other-shape nuts, boltheads, and the likernay also be grasped and driven by a wrench of the present invention.
  • the wrench in the condition shown in FIGURE 2 is engaged on the-bolthead with the latter abutting the abutment surfaces35.
  • Force applied to the shank 13 effects movement of the closer 2f) with its end 24 riding on the cam surfaces 36 v-to close the jaws 32 and retract the latter toward the closer.
  • the angle of cam surfaces 36, and the resilience of jaws 30, as well as the force of a compression spring in the closer, if employed, may be selected to insure holding action of a nut, bolthead, or' other article engaged by the jaws 30; or, automatic dis-- charge of the held article, if desired.
  • tools having different characteristics may be provided of the same gener-al design.
  • the swivel collar or sleeve 28 facilitates holding the tool in gripping engagement with an article while effecting rotation thereof, as will readily be apparent. ⁇
  • the present invention provides an automatically adjustable socket wrench which fully accomplishes its intended objects and is well adapted to meet practical conditions of manufacture and use.
  • An automatically adjustable socket wrench comprising an elongate handle shank, a hollow tubular closer extending longitudinally from one end of said handle shank and terminating in an open end, a generally cylindrical array of elongate jaws having their inner ends internally of said closer and extending outwardly therefrom away from said shank to terminate in outer ends having radially inwardly facing spaced jaw faces, connection means internally of said closer connecting together the inner jaw ends and mounted for movement longitudinally of said closer to shift the outer jaw ends between Ian exten-ded position externally of said closer and a retracted position interiorly of said closer, said jaws being resiliently deectable between a relatively unstressed radially expanded position of said outer jaw ends and a relatively stressed radially contracted position of said outer jaw ends with the jaws in adjacent side-byside relation, cam means on the radially outer sides of said jaws slidably engageable with said closer to effect movement of said jaws to said radially contracted position upon retraction of said jaws and to release said jaws to their
  • An automatically adjustable socket wrench according to claim 1, in combination with an actuator slidable externally on said closer, and tie means connected to said actuator and jaws for manually effecting extension and re traction of said jaws upon sliding movement of said actuator on said closer.
  • said tie means comprising a transverse member extending through said closer and constrained against rotation relative to said jaws yand closer to at least partially transmit reaction torque from said jaws to said handle shank.
  • An automatically adjustable wrench according to claim 3, said actuator comprising a cylindrical cover protectively surrounding said closer and jaws.
  • An automatically adjustable socket wrench in combination with longitudinally outwardly facing abutment means on each of said jaws for abutment with a polygonal object to be engaged by said jaw faces, whereupon depression of said handle shank effects closure of said jaws.

Description

March 19, 1968 L. VAN DALEN ETAL 3,373,639
AUTOMATICALLY ADJUSTABLE SOCKET WRENCH Filed June 22, 1967 /IVV/VTOAPJ. HORACE c. mssToN, Je. LEONARD VAN DALEN ar United States. Patient Oiice 3,373,639 AUTMATICALLY ADJUSTABLE SOCKET WRENCH Leonard Van Dalen and Horace C. Disston, Jr., Westmont, NJ., assignors to Seaboard Tools, Cherry Hiil, NJ., a corporation of New Jersey Continuationinpart of application Ser. No. 524,205,
Feb. 1, 1966. This application June 22, 1967, Ser.
6 Claims. (Cl. 81-112) ABSTRACT OF THE DISCLGSURE The instant invention is essentially concerned lwith an automatically adjustable socket wrench including a plurality of cylindrically arranged jaws retractably slidable into a 4generally cylindrical closer for radial contraction, and extendible therefrom for radial expansion, and wherein the closer is provided with internal projections entering between adjacent jaws, and the jaws are con figured to avoid overstressing the jaws and the projections, whereby reaction torque is effectively distributed over the structure.
Cross-references to related applications This application is a continuation-in-part of our copending prior application Ser. No. 524,205, tiled Feb. 1, 1966, now Patent No. 3,339,439.
Background of the invention While the device of said copending patent application has been found highly advantageous in use, and is achieving broad commercial acceptance, it has been found that certain improvements serve to facilitate manufacture and assembly, as well as durability and long useful life.`
Summary It is an important object of the present invention to provide an adjustable socket wrench of the type described, which is automatically adjustable, and wherein manufacture and assembly are facilitated, as well as the useful life extended, by the construction and arrangement of jaws wherein the jaws are contractible to an adjacent side-by-side relation, while configured to receive between adjacent jaws internal projections of the closer, -for more evenly distributing reaction torque to minimize local stresses land possible damage.
It is a further object of the present invention to provide an adjustable socket wrench having the advantageous characteristics mentioned in the preceding paragraph, wherein the internal projections are of increased size for resisting greater forces and the jaws are beveled for providing additional clearance for the projections and for minimizing jaw-to-protection pressure, while maintaining the jaws in their proper spaced relation under all conditions of contraction and expansion.
Other objects of the present invention -will become apparent upon reading the following specification and referring to the accompanying drawing, which form a material part of this disclosure.
The invention accordingly consists in the features of construction, combinations of elements, and arrangements of parts, which will be exemplified in the construction hereinafter described, and of which the scope -will be in-V dicated by the appended claims.
Brief description of the drawing- FIGURE l is a side elevational view showing an automatically adjustable socket wrench constructed in accordance with the teachings of the instant invention.
FIGURE 2 is a longitudinal sectional view taken gen erally along the line 2--2 of FIGURE 1, enlarged for clarity, and showing the jaws in an extended, radiallyj. expanded position.
FIGURE 3 is a longitudinal sectional view similar to FIGURE 2, but illustrating the jaws in their retracted, radially contracted position.
FIGURE 4 is an end view taken generally along the line 4 4 of FIGURE 2.
FIGURE 5 is an end View taken generally along the line S-5 of FIGURE 3.
FIGURE 6 is a side elevational View showing the jaw structure apart from the remainder of the wrench.
Description of the preferred embodiment Referring now more particularly to the drawings, and specifically to FIGURE 1 thereof, the wrench structure is there generally designated 10, and is constituted of handle means ;11 including a handle proper or handgrip member 12, and a shank 13 extending from the handgrip. In use a nut-and-bolt driver, the handle member 12 may be of elongate configuration essentially similar to that of a conventional screwdriver, `and the shank 13 may extend longitudinally from one end of the handle, being rigidly secured thereto. Of course, other handle means may be employed, as desired, say for achieving increased torque, accommodating to conditions of limited rotation, or other.
From the extending end of shank 13, remote from handle 12, there extends the socket structure, generally designated 15. This structure is best seen in FIGURES 2-6 The shank 413 is illustrated in FIGURES 2 and 3, as having a longitudinally extending, generally cylindrical distal end portion 16 remote from the handle y12. The shank end portion 16 has a generally circular end face 17, facing away from the handle, and a circumferential or annular shoulder 1S is provided about the end portion 16 at a location spaced inward from the end face 17.
A hollow, open-ended, generally cylindrical or tubular member 2i) has one end portion 21 snugly engaged about the 4cylindrical shank end portion 16, with an end edge 22 of the tube 20 in abutting engagement with the shoulder 18. The tubular member 20 is suitably fixed to the shank end portion 16 'by any suitable means, such as a transverse pin 23 extending through the tubular-member end portion 21 into the shank end portion 16.
The tubular member 20 serves as a closer, as will appear more fully hereinafter, and extends longitudinally of the shank 13 beyond the shank end face 17, having its extending or outer end open, as at 24. At circumferentially spaced locations about the outer end 24 of tubular closer 20 are formed a plurality of internal projections or lugs 2S, being six in number in the illustrated embodiment. The internal projections or lugs 25 may be defined by circumferentially spaced inwardly struck portions of the closer end 24. The internal surface of the closer 20 may be generally cylindrical, and may be formed adjacent to its outer end 24 with an internal circumferential recess or groove, as at 26. Externally, adjacent to the inner closer end 22, the inner closer end portion 21 may be reduced, as at 27 for rotatably receiving a rotary or swivel collar 28. The closer 2()` may be provided intermediate its ends, in spaced relation between the external reduced portion 27 and mternal recess of diametrically opposed, longitudinally extending thrur slots 29.
Internally of the closer 2i), see FIGURE 3, there is located a generally cylindrical array of elongate jaws 30. The array of jaws 30 is arranged concentrically within the closer 2t); and, the inner ends of the jaws are connected together to maintain the same in their cylindrical' 26, with a pair array while affording longitudinal movement to the jaws relative to the encompassing closer 20. More particularly, the inner ends of jaws are all connected to or integral with an annular connecting member 31 mounted slidably within the closerf20 Viewed otherwise, the several jaws extend longitudinally outward from circumferentially spaced locations on the connecting member 31. The jaws 30 terminate at their outer ends in respective jaws proper 32 having radially inwardly facing jaw faces 33. The jaw faces 33 are generally arcuate, best seen in FIGURES 4 and 5, having their center of curvature generally coaxial with the annular jaw array. Further, each jaw 3d is provided on its inner side with a radially inward projection, as at 34, adjacent to and spaced inward from the respective outer jaw end. The internal projections 34 each define an abutment surface 35 extending radially1 inward from the inner end of a respective arcuate jaw face 33, approximately normal thereto, and facing longitudinally outward away from the shank 13. The outer side of each jaw 30'is provided with a longitudinally extending oblique surface 36 which tapers in the longitudinally inward direction. More specifically, the external jaw surfaces 36 each extend from a medial jaw region obliquely outward, both longitudinally and radially, terminating in an outer generally flat holding surface 37. In effect, this oblique external jaw surface 36 serves to thicken the outer jaw regions, particularly adjacent to the radial projections 34 and .jaws proper 32. inward of the longitudinally oblique, radially outer jaw surfaces 36, the jaws 30 may be relatively thin, as at 33, affording a desired degree of resilient flexibility.
The condition of jaws 3Q shown in FIGURE 2 may be the rest condition or relatively unstressed condition, with the jaws proper 32radially apart from each other or expanded. In this condition the jaw faces 33 may diverge slightly in the longitudinally outward direction, say about six degrees. The jaw condition shown in FIGURE 3 is that of a relatively stressed condition, the inner jaw regions 38 being resiliently defiected inward toward each other to contract the jaws proper 32 radially inward toward eachother. In this contracted jaw condition the jaw faces 33 may define circumferentially spaced segments of a cylinder.
The adjacent sides or facing side surfaces 19 of the jaws 30 extend generally radially of the cylindrical jaw configuration, being movable with the jaws between a relatively spaced relation in the expanded jaw condition of FIGUREv 2, and an adjacent facing relation in the contracted, side-by-side condition of the jaws 3f) in FIG- URE 3. However, even in the contracted condition of FIGURE 3, the adjacent facing side edges or surfaces 19 of adjacent pairs of jaws 30 are spaced apart for receiving therebetween, the corners of a nut or bolthead, or the like. However, the radially outer portions of the side jaw surfaces 19 are advantageously cut away, chamfered or beveled, as at 39. The adjacent cutouts or bevels 39 of adjacent jaws 30 combine to define an opening therebetween adapted to receive the internal projections or tits 25, even in the fully contracted position of the jaws 30. Further, the longitudinally extending space or groove defined by adjacent bevels 39 permits the relatively sturdy projections 25 to more evenly distribute reaction torque, minimizes the pressure between engaged jaw and projection pairs and obviates the possibility of malfunction, as well as facilitating manufacture and assembly. This construction may also be observed in FIGURE 6.
Circumposed about the tubular closer 30 is a generally cylindrical or tubular, open-ended slider or actuator 4f). The tubular actuator 4i) is longitudinally slidable on the closer 20and a pin 41 may extend diametrically across the inner end region of actuator 46, slidably through slots 29, to constrain the actuator to limited longitudinal sliding movement. Further, the pin 41 extends diametrically through the jaw-connecting member 31, so that the jaws 30 are constrained to longitudinal movement with the slider or actuator 40. 1f desired, the outer end region of the cylindrical actuator 40 may be internally recessed,
as at 42, and the slider terminates at its outer end 43' adjacent to the outer ends of jaws 36 to protectively encompass the latter.
It will now be apparent that, upon manual actuation of the slider 40, as between the extended and retracted positions of FIGURES 2 and 3, the outer ends of jaws 30 are extended beyond the outer end of closer 24, and retracted internally within the closer. Upon this relative extension and retraction of jaws 3u, the internal projections or lugs 25 each engage between an adjacent pair of jaws, particularly between the adjacent beveled surfaces 29, while the outer jaw surfaces y36 ride on the outer closer end 24, to effect by camming action, radiai expansion and contraction of the jaws proper 32, re spectively. In the fully contracted position of jaws proper 32, the nontapering outer jaw surfaces 37 may engage iu the closer end portion recess 26, as shown in'FIG- URE 3.
If desired, a coil compression spring may be interposed between shank end 17 and connecting member 31, as in said copending patent application.
The jaw construction shown in FIGURES 1-6 is illustrated as for use in driving hexagonal nuts or boltheads, having six jaws 3ft, but may be of other number and shape, if desired. For example, round, polygonal, and other-shape nuts, boltheads, and the likernay also be grasped and driven by a wrench of the present invention. In the removal of a hex-head bolt, the wrench in the condition shown in FIGURE 2 is engaged on the-bolthead with the latter abutting the abutment surfaces35. Force applied to the shank 13 effects movement of the closer 2f) with its end 24 riding on the cam surfaces 36 v-to close the jaws 32 and retract the latter toward the closer. Upon contraction of the jaws 32, the corners of the hex head will engage between adjacent pairs of the jaws,; and the jaw faces 33 will engage respective sides of the bolthead, until the bolthead is firmly grasped by the jaws, the effective jaw surfaces being the edges thereof vproximate to the hex-head corners. In this condition, rotative force applied to the shank 13 is effectively transmitted to the bolthead proximate to the corners thereof, so as to have a high moment arm. The slight taper of jaw faces 33 in the opened or expanded jaw condition facilitates entry of -a nut or bolthead into position between the jaw faces, while the reduced taper or absence thereof in the closed position insures maximum applied turning force, and retention of the free nut or bolt, if desired. This jaw-face divergence facilitates release of even the smallest articles grasped by the jaws. In the nutor boltturning action, the lugs 25 effectively maintain the desired jaw spacing and resist reaction torques and damage to the jaws.
As is apparent in FIGURES 4 and 5 illustrating the extreme open and closed positions of the jaws 32,v the abutment surfaces 35 extend radially inwardly sufficiently to engage a received nut, while the diametral spacing between the internal projections 34 is sufficient to rotat-f ably accommodate a bolt projecting beyond the received nut.
As discussed hereinbefore, the angle of cam surfaces 36, and the resilience of jaws 30, as well as the force of a compression spring in the closer, if employed, may be selected to insure holding action of a nut, bolthead, or' other article engaged by the jaws 30; or, automatic dis-- charge of the held article, if desired. Thus, the actuator 40= may require manual actuation, as. by outward sliding thereof, to discharge a held article, unless such discharge is automatic, in which case the actuator may be manually retracted to hold the jaws in gripping engagement with a received nut or the like, as for placement in a difficult or remote location. By this construction, tools having different characteristics may be provided of the same gener-al design. The swivel collar or sleeve 28 facilitates holding the tool in gripping engagement with an article while effecting rotation thereof, as will readily be apparent.`
While the wrench construction of the present invention has been illustrated and described in association with manual-handle means, it is appreciated that other such handle means may be employed, if desired, say that of a spiralratchet handle, an electric-drill chuck, or other.
From the foregoing, it is seen that the present invention provides an automatically adjustable socket wrench which fully accomplishes its intended objects and is well adapted to meet practical conditions of manufacture and use.
Although the present invention has been described in some detail by `way of illustration and example for purposes of clarity of understanding, it is understood that certain changes and modications may be made within the spirit of the invention and scope of the appended claims.
What is claimed is:
1. An automatically adjustable socket wrench comprising an elongate handle shank, a hollow tubular closer extending longitudinally from one end of said handle shank and terminating in an open end, a generally cylindrical array of elongate jaws having their inner ends internally of said closer and extending outwardly therefrom away from said shank to terminate in outer ends having radially inwardly facing spaced jaw faces, connection means internally of said closer connecting together the inner jaw ends and mounted for movement longitudinally of said closer to shift the outer jaw ends between Ian exten-ded position externally of said closer and a retracted position interiorly of said closer, said jaws being resiliently deectable between a relatively unstressed radially expanded position of said outer jaw ends and a relatively stressed radially contracted position of said outer jaw ends with the jaws in adjacent side-byside relation, cam means on the radially outer sides of said jaws slidably engageable with said closer to effect movement of said jaws to said radially contracted position upon retraction of said jaws and to release said jaws to their radially expanded position upon extension of said jaws, and a plurality of internal projections on said closer interposed between adjacent pairs of jaws to reinforce the latter against reaction torque, said jaws having their adjacent sides beveled for avoiding the overstressing of adjacent jaw and projection pairs.
2. An automatically adjustable socket wrench according to claim 1, in combination with an actuator slidable externally on said closer, and tie means connected to said actuator and jaws for manually effecting extension and re traction of said jaws upon sliding movement of said actuator on said closer.
3. An automatically adjustable socket wrench according to claim 2, said tie means comprising a transverse member extending through said closer and constrained against rotation relative to said jaws yand closer to at least partially transmit reaction torque from said jaws to said handle shank.
4. An automatically adjustable wrench according to claim 3, said actuator comprising a cylindrical cover protectively surrounding said closer and jaws.
5. An automatically adjustable socket wrench according to claim 1, in combination with longitudinally outwardly facing abutment means on each of said jaws for abutment with a polygonal object to be engaged by said jaw faces, whereupon depression of said handle shank effects closure of said jaws.
6. An 'automatically adjustable socket wrench according to claim S, said jaw faces being configured to diverge in the longitudinally outward direction of said jaws when said jaws are expanded, said jawface divergence being reduced upon jaw contraction, for effective gripping action and positive release of a gripped article.
References Cited Van Dalen et al. 81-112 MILTON s. MEHR, Primm-y Examiner.
US647979A 1967-06-22 1967-06-22 Automatically adjustable socket wrench Expired - Lifetime US3373639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US647979A US3373639A (en) 1967-06-22 1967-06-22 Automatically adjustable socket wrench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US647979A US3373639A (en) 1967-06-22 1967-06-22 Automatically adjustable socket wrench

Publications (1)

Publication Number Publication Date
US3373639A true US3373639A (en) 1968-03-19

Family

ID=24598970

Family Applications (1)

Application Number Title Priority Date Filing Date
US647979A Expired - Lifetime US3373639A (en) 1967-06-22 1967-06-22 Automatically adjustable socket wrench

Country Status (1)

Country Link
US (1) US3373639A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911040A (en) * 1989-03-06 1990-03-27 Kim Ee J Adjustable socket wrench
US5213015A (en) * 1991-10-03 1993-05-25 Disston Jr Horace C Variable nut driver
US5375489A (en) * 1992-12-11 1994-12-27 Mcclure; Travis Self-locking universal socket tool
US6000300A (en) * 1996-10-23 1999-12-14 Plamondon; Walter J. Adjustable socket wrench
US6606924B2 (en) * 2000-10-31 2003-08-19 The Boeing Company Fastener starter tool
US20040158258A1 (en) * 2003-02-12 2004-08-12 Bonati Alfred O. Method for removing orthopaedic hardware
US6860889B2 (en) 2002-10-07 2005-03-01 Alfred O. Bonati Clamping screw extractor
US20070233155A1 (en) * 2005-12-07 2007-10-04 Lovell John R Device and method for holding and inserting one or more components of a pedicle screw assembly
US20100018358A1 (en) * 2006-09-13 2010-01-28 Power Robert W Tool for screws or bolts
US20100058900A1 (en) * 2008-09-08 2010-03-11 Dahar Jason A Installation tool for a threaded object
US20110100166A1 (en) * 2009-10-29 2011-05-05 Hrayr Darbinyan T-handle wrench
US9056359B1 (en) * 2012-09-27 2015-06-16 The Boeing Company Lock bolt collar removal tool
US20180297181A1 (en) * 2017-04-14 2018-10-18 Tym Labs L.L.C. Torque wrench having self-adjusting adapter
US20180297183A1 (en) * 2017-04-14 2018-10-18 Tym Labs L.L.C. Torque wrench having self-adjustng adapter
US10688629B2 (en) 2017-04-14 2020-06-23 Tym Labs, L.L.C. Torque wrench having self-adjusting adapter
US20210069873A1 (en) * 2019-09-05 2021-03-11 Ryan Robert Wach Adjustable fastener engaging tool
US11267110B2 (en) 2017-08-02 2022-03-08 Tym Labs L.L.C. Zero distance tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US636511A (en) * 1899-03-18 1899-11-07 Cly Stanley Fleming Self-adjusting ratchet-wrench.
US1232735A (en) * 1917-02-19 1917-07-10 Samuel S Torvik Wrench-head.
US2599026A (en) * 1949-03-26 1952-06-03 William B Strayer Wrench having axially cammed collet
US2669896A (en) * 1951-01-19 1954-02-23 Robert S Clough Retractable jaw wrench having parallel resilient jaws
US3052906A (en) * 1960-09-21 1962-09-11 Shiffman Jerome Tools for removing and fitting watch crystals
US3339439A (en) * 1966-02-01 1967-09-05 Seaboard Tools Automatically adjustable socket wrench

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US636511A (en) * 1899-03-18 1899-11-07 Cly Stanley Fleming Self-adjusting ratchet-wrench.
US1232735A (en) * 1917-02-19 1917-07-10 Samuel S Torvik Wrench-head.
US2599026A (en) * 1949-03-26 1952-06-03 William B Strayer Wrench having axially cammed collet
US2669896A (en) * 1951-01-19 1954-02-23 Robert S Clough Retractable jaw wrench having parallel resilient jaws
US3052906A (en) * 1960-09-21 1962-09-11 Shiffman Jerome Tools for removing and fitting watch crystals
US3339439A (en) * 1966-02-01 1967-09-05 Seaboard Tools Automatically adjustable socket wrench

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911040A (en) * 1989-03-06 1990-03-27 Kim Ee J Adjustable socket wrench
US5213015A (en) * 1991-10-03 1993-05-25 Disston Jr Horace C Variable nut driver
US5375489A (en) * 1992-12-11 1994-12-27 Mcclure; Travis Self-locking universal socket tool
US6000300A (en) * 1996-10-23 1999-12-14 Plamondon; Walter J. Adjustable socket wrench
US6606924B2 (en) * 2000-10-31 2003-08-19 The Boeing Company Fastener starter tool
US6860889B2 (en) 2002-10-07 2005-03-01 Alfred O. Bonati Clamping screw extractor
US20040158258A1 (en) * 2003-02-12 2004-08-12 Bonati Alfred O. Method for removing orthopaedic hardware
US7090680B2 (en) 2003-02-12 2006-08-15 Bonati Alfred O Method for removing orthopaedic hardware
US20070233155A1 (en) * 2005-12-07 2007-10-04 Lovell John R Device and method for holding and inserting one or more components of a pedicle screw assembly
US7575581B2 (en) * 2005-12-07 2009-08-18 Blackstone Medical, Inc. Device for holding and inserting one or more components of a pedicle screw assembly
US20100018358A1 (en) * 2006-09-13 2010-01-28 Power Robert W Tool for screws or bolts
US7913593B2 (en) * 2008-09-08 2011-03-29 Raytheon Company Installation tool for a threaded object
US20100058900A1 (en) * 2008-09-08 2010-03-11 Dahar Jason A Installation tool for a threaded object
US20110100166A1 (en) * 2009-10-29 2011-05-05 Hrayr Darbinyan T-handle wrench
US8485070B2 (en) * 2009-10-29 2013-07-16 Jpj Investment Holding Corp. T-handle wrench
US9056359B1 (en) * 2012-09-27 2015-06-16 The Boeing Company Lock bolt collar removal tool
US20180297181A1 (en) * 2017-04-14 2018-10-18 Tym Labs L.L.C. Torque wrench having self-adjusting adapter
US20180297183A1 (en) * 2017-04-14 2018-10-18 Tym Labs L.L.C. Torque wrench having self-adjustng adapter
CN110997240A (en) * 2017-04-14 2020-04-10 Tym 实验室有限公司 Torque wrench with self-adjusting adapter
US10688629B2 (en) 2017-04-14 2020-06-23 Tym Labs, L.L.C. Torque wrench having self-adjusting adapter
US11148264B2 (en) * 2017-04-14 2021-10-19 Tym Labs, L.L.C. Torque wrench having self-adjusting adapter
US11453104B2 (en) * 2017-04-14 2022-09-27 Tym Labs L.L.C. Torque wrench having self-adjusting adapter
US11267110B2 (en) 2017-08-02 2022-03-08 Tym Labs L.L.C. Zero distance tool
US20210069873A1 (en) * 2019-09-05 2021-03-11 Ryan Robert Wach Adjustable fastener engaging tool

Similar Documents

Publication Publication Date Title
US3373639A (en) Automatically adjustable socket wrench
US2735325A (en) Multiple wrench with telescoping sections
US9278434B2 (en) Socket fastener removal tool
US2949800A (en) Tool for installing threaded elements
US9132531B2 (en) Nut removal tool
US11511409B2 (en) Foreign object removal socket adapter
US2592781A (en) Ratchet wrench
US20160263730A1 (en) Impact Socket
WO2021033152A2 (en) Foreign object removal socket adapter
US3339439A (en) Automatically adjustable socket wrench
US4608887A (en) Adjustable socket including rotatable adjuster
US5768961A (en) Self-adjusting socket for a wrench handle
US3877328A (en) End wrench and socket with reducing inserts
US20230076724A1 (en) Foreign Object Removal Socket Adapter
US20140090520A1 (en) Holding sleeve and rod tool including the same, and fabrication methods thereof
AU2015258243A1 (en) Marking torque wrench
JPH0347963B2 (en)
EP1539428A1 (en) Wrench with split ring
US2358362A (en) Ratchet wrench
US2720127A (en) Spanner wrenches for threaded spanner nuts
JPH01289608A (en) Tool chuck
GB2329859A (en) Universal wrench
RU178312U1 (en) UNIVERSAL END HEAD
JP2001353664A (en) Socket wrench
US2343130A (en) Ratchet open-ended wrench