Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3348992 A
Publication typeGrant
Publication date24 Oct 1967
Filing date13 Aug 1963
Priority date13 Aug 1963
Publication numberUS 3348992 A, US 3348992A, US-A-3348992, US3348992 A, US3348992A
InventorsCochran Ii William H
Original AssigneeMadison Res & Dev Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tufted products
US 3348992 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

0d. 24, 1967 w. H. COCHRAN ll 3,348,992

TUFTED PRODUCTS Filed Aug. 15, 1963 INVENTOR M4 4 //9M 19. Cow/mm] ATTORNEYS United States Patent 3,348,992 TUFTED PRODUCTS William H. Cochran II, Stonington, Conn., assignor to Madison Research & Development Corporation, Stonington, Conn, a corporation of New Jersey Filed Aug. 13, 1963, Ser. No. 301,782 5 Claims. (Cl. 16166) The present invention relates to certain improvements in the preparation of tufted products, eag. carpets or the like, which include a backing partially or wholly comprised of nonwoven fabric.

Carpeting or other forms of tufted products are frequently provided with nonwoven bac'kings comprising one or more materials such as jute, cotton, rayon, nylon and polyester fibers or the like. Usually, these fibers are bound together by means of a thermoplastic binder, e.g. acrylic resin, although in those cases where the fibers themselves are thermoplastic, the desired binding effect may be obtained by simply softening the fibers at elevated temperature.

Usually tufted products of the type referred to above are prepared by sewing or passing appropriate tufting yarn, e.g. nylon, rayon, acrylic, Wool and/ or cotton yarn, systematically back and forth through the backing fabric with the formation of a pile or yarn loop on the top face of the backing. These loops may or may not be cut, as desired. Rubber or some thermoplastic resinous mate rial is also generally applied to the bottom or back side of the backing fabric as a so-called backsize for the purpose of improving hand or body, retaining or locking the tufted yarn in position and improving dimensional stability of the tufted product. This backsizing material may be the same as the fabric binder or different therefrom and the material may completely or only partially impregnate the nonwoven backing.

Tufted products of the above-described type have several disadvantages. For one thing, it is conventional practice to piece dye these products, with the thermoplastic backsize thereon, using fairly long lengths of time and dyebath temperatures of the order of 180 to 212 F., i.e. temperatures at which the usual thermoplastic components are soft. Moreover, when the thus dyed tufted product is subsequently dried, it often encounters drying temperatures as high as about 250 F. The force applied to pull the goods through the dyebath and the post-dyeing drier is transmitted through the prodnet with the result that at these elevated temperatures Where the thermoplastic components of the product are in a softened state, permanent stretching and weakening of the product occur with a resultant loss in quality, tensile strength and other desired characteristics.

It has also been difficult, if not impossible, in the past to fabricate tufted products having tuft or loop heights substantially less than about 0.1 inch using prior tufting and processing conditions. This is due to the fact that tufts or loops having a height shorter than 0.1 inch tend to be pulled out during tufting and/ or when the backing fabric becomes Wet.

It will be seen from the foregoing that there is considerable room for improvement in the art of preparing tufted products using nonwoven backing fabrics. Accordingly, the principal object of the present invention is to provide an improved carpet or like tufted product which is free from the abovementioned disadvantages. Another object of the present invention is the provision of a tufted product having a backing partially or Wholly comprised of nonwoven fabric and characterized by its outstanding tensile strength and freedom from stretch even at elevated processing temperatures. A further object of the invention is the provision of a tufted fabric that may be advantageously dyed by means of conventional for- Patented Oct. 24, 1967 mula dyeing procedures with resultant savings in labor, time and material costs. Still another object is the provision of a commercially acceptable tufted fabric having an attainable loop height substantially less than is now efl'lciently provided using conventional prior practices. Another object is to provide a unique process for preparing the improved product of the invention. Other objects and advantages will be apparent from the following detailed description of the invention.

Broadly stated, the foregoing and other objects are realized by the provision of a tufted or pile fabric comprising a nonwoven layer of backing fabric, with tufting yarn passing back and forth through the backing fabric, the latter having a thermosetting resinous backsize applied thereto. A-dvantageously, a layer of paper, preferably high wet strength paper, and/ or polymer film comprising polyethylene or polypropylene according to U.S. Patent 3,075,865 may be superimposed upon the backing fabric to prevent strikethrough of the backsize.

The nonwoven backing fabric may comprise any one or more conventional fibrous materials, e.-g. jute, cotton, wool, acrylic, rayon, nylon and polyester (e.g. Dacron) fibers or mixtures of two or more of these. Where the backing fabric includes a thermoplastic fibrous material, it may not be necessary to use a separate thermoplastic binder for the nonwoven fabric. However, generally speaking, the fabric is bound together by means of conventional binders, e.g. acrylics, although in some cases, it may be possible to omit the thermoplastic binder and rely only on the thermosetting backsize to function also as the fabric binder.

When wet strength paper or a polymer sheet is superimposed on the backing fabric, as aforesaid, the fabric is generally about 5 to 25 times as thick as the superposed layer although this relationship can be varied.

According to the invention, the nonwoven backing fabric is backsized with the thermosetting resinous material prior to dyeing but either before or after tufting, preferably after. One or more conventional hardeners or catalysts for curing the thermosetting resin may also be used and, depending on the activity of the catalyst at the temperatures involved, the catalyst may be added with the resinous material or separately therefrom.

Any thermosetting resin may be conveniently employed herein, for instance, alkyds; .ally'ls; caseins; epoxies such as the reaction products of epichlorohydrin and bisphenol or the condensation products of phenol acetone and epichlorohydrin; melamine-formaldehyde resins; phenolformaldehyde resins; urea-formaldehyde resins; polyesters; urethanes, etc., and particularly those which are flexible when cured and give a product having good hand and freedom from boardiness. The resin may be applied to the nonwoven backing fabric in any convenient fashion, e.g. in liquid, organic solvent solution, water emulsion, powder, pellet or film form. Appropriate curing agents or catalyst are also available in these various forms but the physical form of the catalyst as used need not be the same as that of the thermosetting resinous material. The choice of the curing agent will depend, of course, on the thermosetting resinous material used. Thus, for example, strong bases such as sodium hydroxide are used with phenolformaldehyde resins while polyfunctional amines such as ethylene diamine, ethylene triamine, diethylene triamine, tetraethylene pentamine; anhydrides or polybasic acids may be utilized with the epoxy resins. In any case, however, the curing agent will usually be used in amounts varying from about 0.01 to 0.50% by weight, based on the weight of thermosetting resin solids.

When cured, the thermosetting resins are strong and tough and can vary from brittle to supple depending on the physical properties of the resin. The strength and toughness of the thermosetting resinous material substantially enhances the dimensional stability and loop lock in the tufted fabric and prevents the backing from stretching and weakening during finishing processes where the temperature may be as high as 375 F.

The thermosetting resinous material, when cured, is substantially hydrophobic and hence there is little or no dissolution or abrasion loss in the dyebath. Further, because the thermosetting resinous material thoroughly seals oil or coats the backing fabric, the latter accepts substantially no dye during the dyeing operation. Thus,

when a superposed layer is employed, e.g. polyethylene.

or polypropylene, this layer also accepts substantially no dye and only the pile yarn is available as a dye acceptor. Formula dyeing is thus most conveniently carried out. This represents an especially important advantage in the case of products where the backing fabric contains jute since heretofore there has been a tendency for such backing fabric to accept varying amounts of dye necessitating an adjustment of the concentration of the dye in the bath to produce uniform color results in any given piece of tufted product. However, in accordance with this invention, since only the pile yarn is available for dyeing when using the superposed paper or polymer layer, a given quantity of a dye will produce a uniform color without the necessity for continuous adjustment of the dye concentration in the bath.

The application of a thermosetting resinous material to the nonwoven backing fabric makes it possible to dye at the usual elevated temperatures and even higher without the prior art disadvantage of stretching and weakening of the tufted product. As an added advantage, the invention permits the fabrication of a product possessing a tuft or pile yarn height substantially less than about 0.1" which limitation heretofore was imposed because of the tendency of the pile or tuft to be pulled apart from the backing fabric when the latter became wet during the dyeing process. For instance, loops as low as 0.05 inch are possible with the present invention thereby facilitating high-low constructions heretofore only available in certain woven techniques.

The thermosetting resinous material may be applied to the backing fabric in any convenient manner as by knife, dip or roll coating, dusting, spraying, in sheet form, etc. Generally, when the thermosetting material is coated on, the coating composition has a viscosity between about 100 to 2000 centipoises and a concentration between about 10 to 60% by weight of solids. The catalyst or hardener, if used, may be provided in amounts sufficient to cure or set the backsize within a convenient processing period and the exact amount of catalyst to be used in any particular situation can be readily determined from a consideration of other operating conditions.

As stated, there is advantageously employed a superposed or intermediate layer of paper, polyethylene or polypropylene which can be of the crystalline or conventional type. These layers may include minor amounts of other polymers, e.g. 50% of polyisobutylene. Usually, for purposes herein, the layer thickness may vary from about 0.002 inch to 0.02 inch although other sizes may also be used. When paper is used, this may comprise high wet strength paper, e.g. 20, 40, 50, 60 or 90 pounds wet strength natural kraft paper. Reinforced wet strength paper such as that known as Scrimtex (Mosinee Paper Co.) with rayon, fiberglass or the like as reinforcing filaments may also be used herein. Typical resin treated papers useful with the invention are those treated with,

for example, melamine resin and/or neoprene obtainable from St. RegisPaper Co. Usually this paper layer will vary from about 0.002 to 0.02 inch although other sizes may also be used.

The tufting yarn may be of any of those normally used for this purpose. Thus, for example, cotton, rayon, wool, acrylic or nylon yarns or mixtures thereof may be used. Mixtures of different types of yarns, e.g. wool and nylon blends, or yarns of different sizes may be utilized to give pattern effects as maybe desired.

The amount of thermosetting resinous backsize applied to the nonwoven backing will vary, depending on the physical properties of the nonwoven fabric and the form of the resin as applied. However, an amount of resin (resin solids) in the range of 0.1 to 5 ounces per square yard of the nonwoven fabric may be used. This is usually sufficient to not only coat the back of the fabric but also completely impregnate the backing. Complete impregnation of the backing fabric with the thermosetting backsize is particularly advantageous although there may be instances where only partial impregnation is desired.

Curing of the backsize may be effected separately or in conjunction with some other operation. Temperatures of the order of 200 to 375 F. for a period of 4 to 25 minutes are usually sufiicient for curing although this will vary depending on the thermosetting material and catalyst which are used.

The invention and its advantages are illustrated by the following example:

Example A film of conventional polyethylene 0.006 inch thick was superposed uppon a Z-ounce per square yard, nonwoven rayon/nylon (50%50%) backing fabric bound with acrylic resin (i.e. Rohm and Haas Rhoplex E-32) provided in amounts of about ounce per square yard of fabric. The bottomside of the backing fabric was dusted with a powdered epoxy resin and a curing agent (namely a filled B-stage epoxy comprising the reaction product of epichlorohydrin and bisphenol and ethylene diamine, respectively).

The thermosetting resin-containing laminate was fed into a conventional tufting machine (i.e. the so-called Super-Tufter) and tufted with the polymer film representing the upper laminate surface having viscose rayon tufting yarn. Thereafter, the tufted product was cured by holding the same dimensionally stable on a tenter frame with the back of the fabric given ten minutes contact with a Teflon coated roll heated to a surface temperature of 275 F. The thus cured product was then dyed at about 210 F. and dried in a hot air oven at a temperature of about 250 F. The product was characterized by excellent strength, freedom from stretch during processing, high tensile strength and outstanding loop lock and hand or feel. The height of the lowest loop was approximately 0.05 inch, unusually low for a product obtained on a conventional tufting machine without using a special construction to insure adequate loop lock.

In addition to the advantages noted above, the present products may be spot cleaned with household solvents or commercially dry cleaned, as well aslaundered, without any noticeable undesired effect. This is an important advantage becausethe conventional cleaning solvents cannot be used. on conventional rubber-backed tufted products since the rubber is dissolved by these solvents.

The tufted product of the invention, in one embodiment, is illustrated by the vertical sectional view set forthin the accompanying drawing. As shown, the numerals 1, 2 and 3 represent, respectively, the nonwoven backing fabric, tufted yarn and intermediate or superposed layer or sheet of polyethylene, polypropylene or high Wet strength paper. According to the invention, the bottom surface 4 of the backing fabric 1 is backsized with thermosetting resin which extends throughout the fabric so as to complete impregnate all of the fibrous material, including the tufting yarn, located below the layer of polyethylene, polypropylene or paper.

Obviously, various modifications may be made in the tufted fabric and method described herein, and the foregoing description is not intended to limit the invention, the scope of which is defined in the attached claims wherein:

I claim:

1. An improved tufted fabric comprising a non-Woven backing fabric with tufting yarn passing back and forth through the backing fabric and extending above the backing fabric to form the tufted surface of the fabric, said backing fabric being backsized with a thermosetting resin.

2. An improved tufted fabric comprising a nonwoven backing fabric, at least one layer of self-supporting liquid impermeable sheet selected from the group consisting of high Wet strength paper, film comprising polyethylene and film comprising polypropylene, superposed on the top surface of said backing fabric, tufting yarn passing back and forth through both said layer and backing fabric and extending above the layer to form the tufted surface of the fabric and a thermosetting resin backsize applied to the bottom surface of said nonwoven backing fabric.

3. The tufted fabric according to claim 2 wherein said layer comprises polyethylene.

4. The tufted fabric according to claim 2 wherein the backing fabric is completely impregnated With the thermosetting resin.

5. The tufted fabric according to claim 4 wherein the backing fabric comprises jute.




L. K. RIMROiDT, R. A. FLORES, Assistant Examiners.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2866206 *20 Aug 195630 Dec 1958Lees & Sons Co JamesPile fabric with resilient lining
US2913803 *22 Oct 195724 Nov 1959Artloom Carpet Company IncPile faced fabric
US2949660 *25 Jul 195723 Aug 1960Mohasco Ind IncMethod of making floor mats of irregular contour
US2983028 *2 Jun 19599 May 1961Du PontTufted structures
US3041224 *28 Feb 195626 Jun 1962Pittsburgh Plate Glass CoMethod of forming foam layers on carpeting
US3075867 *24 Apr 195929 Jan 1963Southern Latex CorpTufted products
US3086274 *19 May 195923 Apr 1963Btr Industries LtdMethod of making composite products incorporating textile fabrics
US3166465 *27 May 196019 Jan 1965Int Latex CorpBakced pile fabric and method of producing the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3424639 *12 May 196528 Jan 1969Burlington Industries IncMethod for pressing and laminating a pile fabric
US3523861 *20 Dec 196611 Aug 1970Kendall & CoNonwoven liner material and method of making same
US3546059 *9 Oct 19698 Dec 1970Grace W R & CoComposite fibrous article bonded with novel copolymer compositions and method of making same
US3953632 *29 Apr 197427 Apr 1976Woodall Industries Inc.Resin impregnated mats and method of making the same
US5494723 *10 Feb 199427 Feb 1996Norddeutsche Faserwerke GmbhTufting carpet
US74653668 Apr 200516 Dec 2008Velero Industries B.V.Needling loops into carrier sheets
US75474698 Apr 200516 Jun 2009Velcro Industries B.V.Forming loop materials
US75624268 Apr 200521 Jul 2009Velcro Industries B.V.Needling loops into carrier sheets
US86730975 Jun 200818 Mar 2014Velcro Industries B.V.Anchoring loops of fibers needled into a carrier sheet
US87534595 Jun 200817 Jun 2014Velcro Industries B.V.Needling loops into carrier sheets
US907879318 Jun 201214 Jul 2015Velcro Industries B.V.Hook-engageable loop fasteners and related systems and methods
US911944318 Jun 20121 Sep 2015Velcro Industries B.V.Loop-engageable fasteners and related systems and methods
US20060234574 *31 Mar 200619 Oct 2006Larry MullinaxFloor covering product and method of making same
US20080069846 *12 Sep 200720 Mar 2008Korean Research Institute Of Bioscience And BiotechnologyProtease, a Gene Therefor and the Use Thereof
US20130101756 *31 May 201225 Apr 2013Kolonglotech, Inc.Artificial turf structure and apparatus and method for manufacturing the same
U.S. Classification428/94, 112/410, 28/159, 428/95, 428/97, 156/72
International ClassificationD05C17/00, D05C17/02
Cooperative ClassificationD05C17/02
European ClassificationD05C17/02