US3346950A - Method of making through-connections by controlled punctures - Google Patents

Method of making through-connections by controlled punctures Download PDF

Info

Publication number
US3346950A
US3346950A US464467A US46446765A US3346950A US 3346950 A US3346950 A US 3346950A US 464467 A US464467 A US 464467A US 46446765 A US46446765 A US 46446765A US 3346950 A US3346950 A US 3346950A
Authority
US
United States
Prior art keywords
line
pair
conductive
lines
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US464467A
Inventor
Henry C Schick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US464467A priority Critical patent/US3346950A/en
Priority to GB14760/66A priority patent/GB1077867A/en
Priority to FR7857A priority patent/FR1483563A/en
Priority to DE19661640468 priority patent/DE1640468B2/en
Application granted granted Critical
Publication of US3346950A publication Critical patent/US3346950A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4084Through-connections; Vertical interconnect access [VIA] connections by deforming at least one of the conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • H05K1/0289Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/091Locally and permanently deformed areas including dielectric material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0195Tool for a process not provided for in H05K3/00, e.g. tool for handling objects using suction, for deforming objects, for applying local pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0221Perforating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • Y10T29/49167Manufacturing circuit on or in base by forming conductive walled aperture in base with deforming of conductive path

Definitions

  • ABSTRACT F THE DISCLOSURE A method and associated means are disclosed for establishing small area through connections, between conductors disposed on opposite faces of an insulator. At desired points of interconnection a small area of a conductive line element on one surface of an insulator body is depressed into and through the adjacent insulator material into contact with a point on a conductor on the opposite surface of the insulator body. The opposite conductor is backed by a supporting plate or the equivalent to arrest the movement of the depressing tool at its inner surface.
  • the de pressing tool is shaped to exert a stressing force on the depressed conductor to a point beyond the elastic limit of its constituent material such that worked material of this conductor is capable of withstanding the tendency of the displaced insulator material to relax into its former position after removal of the depressing tool.
  • the connection thus formed may be electrically and structurally reinforced by plating additional conductive matter into the depressions utilizing the undeformed conductors as receiving electrodes of a plating system.
  • This invention pertains to the extension of electrical connections through insulator bodies by a method which is simpler, more reliable, and more convenient for miniaturized circuit applications than previous methods.
  • a primary object of this invention is to provide a method for extending electrical connections through insulator bodies which is distinguished by its relative simplicity, reliability, and adaptablity to miniaturized circuit applications.
  • Another object is to provide an improved method and apparatus for forming electrical through-connections in an insulator body which can be readily incorporated into a small portable kit and used by field maintenance personnel with little training.
  • a feature of the invention involves the use of a controlled piercing technique to form openings or depressions extending through conductors on one face of an insulator body and terminating at, but not penetrating, conductors on an opposite face of the same body. These openings are so formed that the insulator material displaced by the puncturing instrument is not fractured and yet cannot relax to its original position upon removal of the instrument to isolate the unpenetrated conductors from the opening. Thus the connections may be secured merely by filling the openings with conductive matter. This is preferably and most conveniently accomplished by a plating process as described herein.
  • FIG. 1 is an elevational view of a segment of a circuit member having relatively isolated patterns of conductive lines disposed on opposite faces of its insulator body;
  • FIG. 2 is a sectional view of the member of FIG. 1 taken along lines 22 shown in FIG. 1;
  • FIGS. 3-6 are sectional views corresponding to that in FIG. 2, taken at various stages of the application of the process of this invention to the member, as an electrical connection is being established between conductors disposed on opposite faces of the insulator body of the member;
  • FIG. 7 illustrates a field connection kit for making rapid connections
  • FIG. 8 is a view in elevation of a portion of an insulator member carrying predetermined patterns of unconnected conductive lines on its opposite surfaces which can be variably inter-connected in a simple manner by means of the present invention
  • FIGS. 9 to 11 inclusive are views in section of the member shown in FIG. 8 during various steps in the process of forming through and cross-over connections between conductors on the strip;
  • FIG. 12 is a view in elevation of the same member upon completion of the connection formations.
  • FIGS. 1 and 2 a segment of a circuit member, upon which the method of the present invention may be practiced, is illustrated therein.
  • This member includes conductors 1 and 2 which are adhered to opposite faces of the insulator body 3 of the member.
  • the present invention is practiced by controllably piercing an opening extending through a portion of the thickness of the member defined by the two conductors and the thickness of the insulator body.
  • the depression thus formed extends through one of the conductors, conductor 1 in this instance, and terminates at but does not penetrate the other conductor, conductor 2 in this instance.
  • restrained punctures are made, after first cleansing the surfaces of the members to remove oxide accumulations from the conductors such as l, which are to be pierced, by rigidly supporting the conductors such as 2, which are not to be penetrated, against a hard backing surface; for example, against the flat surface of a glass backing plate such as 4 (FIG. 3).
  • the unsupported conductor such as 1 is pierced with a sharp puncturing instrument or tool 5, wielded with moderate pressure.
  • the point of the tool 5 continues to penetrate through the insulator body 3 until it is restrained by the inner surface of the rigidly backed conductor 2 where considerably more pressure would be required to continue the movement of the tool.
  • the object at this point is to remove the tool 5 and establish a secure electrical connection between conductors 1 and 2 through the opening 6 remaining after removal of the tool.
  • the material of the insulator body 3 must not be permitted by virtue of its elasticity to flow back into the region of the opening 6 after removal of the tool, since the conductors l and 2 would then be again electrically isolated from each other by solid matter, and second, the material of the body 3 and conductor 2 must not be subjected to splitting or shearing stresses of such magnitude as to weaken, crack, or excessively deform the material of the member outside of the pierced regions such as 6.
  • FIGS. 3 and 4 One way of preventing elastic relaxation of insulator material into the region 6 after removal of the tool 5 is suggested in FIGS. 3 and 4.
  • the tool 5 is so dimensioned that it bends the soft copper of conductor 1 beyond its elastic limit forcing it to line the walls of the cavity region 6 in a relatively fixed position, thereby preventing movement of the insulator back into the region 6.
  • Such formations have been satisfactorily produced by a tool which tapers to a point at a 30 angle (this bends the cavity-lining conductor such as 1 through an angle of approximately 75) on members composed of polyethylene terephthalate insulator bodies .004 inch thick to which are adhered .001 inch thicknesses of copper conductor arranged in line patterns in which the line width is nowhere greater than .001 inch. Under such conditions secure through-connections have been established directly between point contact regions of the conductors without build-up of land area extension around the contact regions.
  • circuit members are to be stacked vertically to produce multiple layered packages, a minimum amount of outcropping or deformation in each layer would be considered tolerable, whereas a member not confined to a restricted region of space in the direction of its thickness could tolerate considerably more displacement or deformation in that direction, subject, however, to the restriction that cracks or faults must not be produced in the body of the member.
  • the cross-sectional appearance of the member after removal of the piercing tool will correspond to the formation shown in FIG. 4.
  • the pierced conductor such as 1 will contact the unpenetrated conductor such as 2 in a more or less secure mechanical and electrical connection.
  • the connection is subsequently reinforced mechanically and electrically by depositing additional conductive matter into the depression 6, preferably by plating since depressions such as 6 which are imperfectly formed due to undertravel of the piercing tool or to elastic recovery of the displaced insulator would then fail to receive a build-up of plate metal and could be detected by visual inspection.
  • FIG. 5 Apparatu for brush plating, which can be used without extensive training by field maintenance personnel is suggested in FIG. 5, although for mass production of through connections more sophisticated apparatus would be preferred.
  • the unpierced face of the member is held in contact with a conductive plate such as 8 through which the conductors such as 2 make contact with negative terminal 9 of D.C. power source 10.
  • the positive terminal 11 of this source is connected to a plating electrode 12 which is immersed in a plating solution held in a container 13.
  • One end of this container contains ducts communicating with brush 14, so that when the brush is passed across the pierced face of the member plating metal 15 passes out of solution and collects primarily in the cavity regions such as 6.
  • a switch 16 is provided for controlling the flow of plating current.
  • the openings such as 6 would be formed by automatically operated and controlled mechanisms and after all openings had been formed, the pierced members would be immersed in a plating bath with the unperforated conductors such as 2 coupled to one electrode of a plating system and the cavity openings such as 6 exposed to the opposite electrode disposed within the bath. A predetermined amount of plating current would then be supplied for a predetermined time to deposit the desired thickness of plate material into the cavities.
  • a typical solution found to yield satisfactory results is composed of a suspension of gold in a weak acid maintained at 0.7 to 1.5 troy ounces of gold per gallon of liquid with a pH maintained between 4.2 and 4.5 and with conductive salts added to maintain a specific gravity of 1416 Baum.
  • the member may be inspected either visually through magni fying optics, or electrically, to determine whether all desired connections have been established.
  • An electrical test set-up is shown in FIG. -6.
  • the conductors such as 2 are coupled to one terminal of a D.C. source 17, the opposite polarity terminal of which is connected through a probe and indicating device 18 to perforated conductors such as 1.
  • Failure of the plate to take in any cavity region such as 6 is accompanied by an open circuit indication. If only a few out of many punctures in a member are found to be faulty it is a simple matter to re-puncture these few and re-plate selectively, only over the repunctured regions, using the brush plating apparatus of FIG. 5. If all punctures in an entire member were found to be electrically open after plating, it would be immediately apparent that either the travel of the punctur ing tool had been overly restricted or that the member undergoing processing was defective in some dimension or material of its composition.
  • a wedge-shaped tool could be used to cut completely through the line such as 1 leaving a wedge-shaped depression in the region 6. Then, however, the conductor such as 1 would not completely line the walls of the region and the probability of elastic recovery of the insulator into the region 6 would consequently be increased.
  • FIG. 7 This includes a supply of prefabricated polyethylene terephthalate insulator sheets 19, in rectangular 9 inch by 13 inch segments, each having pre-existing matrix patterns of thin conductive lines 20 and 21 adhered to opposite faces thereof. It should be observed that the sheets are devoid of extended conductive land areas both prior to and after the formation of through connections in the manner described below with reference to FIGS. 8 to 12.
  • a variable network of eletcrical connections is produced by forming connections between intersecting point regions of the lines.
  • the lines 26) on one face of the sheet extend parallel to each other in a first direction and the lines 21 on the opposite face also extend parallel to each other but in a second direction different from the first one, the conductors 2t ⁇ and 21 thereby forming a matrix of over-lapping point regions 22, at which through-connections may be formed.
  • the field kit further includes a glass back-up plate 23, a punching tool 24, a cleaning brush 25, a supply of cleansing soap powder 26, a scraping knife 27, for removing sections of pre-existing conductive lines, and portable brush plating equipment 28.
  • the plating equipment includes a power supply 29, cathode 30, and a plating anode chamber 31 terminating in brush fibers 32.
  • Portable plating equipment of this type is commercially sold by the aforementioned Selectrons Limited as Economy Model 220 SB, and by Brooktronic Engineering Corp. of North Hollywood, Calif, under the product designation Portable Plater.
  • through and cross-over connections may be formed using the kit assembly of FIG. 7 on flat strips or sheets 37.
  • the sheet 37 in the specific application shown in FIGS. 8 to 12 is a rectangular sheet, 9 inches by 13 inches, having pre-existing diagonally oriented conductive line patterns on opposite faces thereof.
  • the lines were intended to carry data signals characterized by frequencies of such magnitude that signal delays through connecting circuits such as those to be formed in the sheet 37, represent significant design factors.
  • the lines on the sheet 37 are shown, in FIG. 8, in what is considered the preferable diagonal orientation, the parallel lines 38 on the upper face of the sheet forming oblique angles with the edges of the sheet, and the parallel lines 39 on the lower face of the sheet (shown in broken outline in FIG. 8) extending in a direction perpendicular to the'lines 38.
  • the perforations are formed with the sheet 37 held against a glass backing plate 53.
  • the segments 40B and 40A (FIG. 9) isolated from each other by discontinuity 43, are respectively connected to over-lapped regions of conductors 56 and 57 on the underface of the sheet 37.
  • the strap-like segment 58 of conductor 42 (FIG. 11), isolated from the rest of conductor 42 by discontinuities 44 and 45, provides a bridging connection, between conductors 57 and 59 on the underface, via the perforations 49 and 50.
  • the segments 41A and 41B (FIG. 10) isolated from each other by discontinuity 46 are respectively joined to underface conductors 56 and 59, via perforations 51 and 52.
  • a method of forming an electrical connection between a pair of conductive lines adhered to opposite faces of an insulator body comprising:
  • step of depositing is accomplished by an electroplating process in which the said other conductive line of said pair is connected to one terminal of a source of direct current and the opening region retained by the one line of said pair is controllably exposed through an electroplating solution to an electrode of an electroplating system including said source and said other line.
  • a method of selectively forming multiple throughconnections between patterns of conductive lines adhered to opposite faces of an insulator body comprising the steps of:
  • said through connections References Cited being narrower than the respective line segments linked UNITED STATES PATENTS thereby, said method comprising steps of:

Description

H" C. SCHEQK Um 17 WW! METHOD OF MAKING THROUGH-CONNECTIONS BY CONTROLLED PUNCTURES 2 Sheets-Sheet 1 Filed June 16, 1965 INVEHTOR C. SONIC HENPY ATTORNEY UM, 117, fi fi' c, sc c 3,346,95Q
METHOD OF MAKING THROUGH-CONNECTIONS BY CONTROLLED PUNCTURES Filed June 16, 1965 2 Sheets-5heet 2 BRUSH PLATING EQUIPMENT United States Patent Ofitice 3,346,95d Patented Get. 17, 1967 3,346,950 METHOD 6F MAKING THRUUGH-CUNNEC- TIONS BY C(PNTROLLED PUNCTURES Henry C. Schick, Hopewell Junction, N.Y., assignor to international Business Machines Corporation, Armonk,
N .Y., a corporation of New York Filed .liune 1d, 1965, Ser. No. 464,467 3 Claims. (Cl. 29-625) ABSTRACT F THE DISCLOSURE A method and associated means are disclosed for establishing small area through connections, between conductors disposed on opposite faces of an insulator. At desired points of interconnection a small area of a conductive line element on one surface of an insulator body is depressed into and through the adjacent insulator material into contact with a point on a conductor on the opposite surface of the insulator body. The opposite conductor is backed by a supporting plate or the equivalent to arrest the movement of the depressing tool at its inner surface. The de pressing tool is shaped to exert a stressing force on the depressed conductor to a point beyond the elastic limit of its constituent material such that worked material of this conductor is capable of withstanding the tendency of the displaced insulator material to relax into its former position after removal of the depressing tool. The connection thus formed may be electrically and structurally reinforced by plating additional conductive matter into the depressions utilizing the undeformed conductors as receiving electrodes of a plating system.
This invention pertains to the extension of electrical connections through insulator bodies by a method which is simpler, more reliable, and more convenient for miniaturized circuit applications than previous methods.
In the art of extending electrical connections through insulator bodies, there has arisen a need for improved methods adaptable for use in increasingly concentrated miniaturized circuit applications. Methods known to be presently in use involve either the formation of conductive links via holes extending completely through the insulator body or the application of heat to deform the insulator body at selected regions whereby conductors on opposite surfaces may be crimped or welded together in such regions. These methods are more complicated, require more skill to practice, and require larger contact or land regions on the insulator body surface than the presently contemplated method.
A primary object of this invention, therefore, is to provide a method for extending electrical connections through insulator bodies which is distinguished by its relative simplicity, reliability, and adaptablity to miniaturized circuit applications.
Another object is to provide an improved method and apparatus for forming electrical through-connections in an insulator body which can be readily incorporated into a small portable kit and used by field maintenance personnel with little training.
A feature of the invention involves the use of a controlled piercing technique to form openings or depressions extending through conductors on one face of an insulator body and terminating at, but not penetrating, conductors on an opposite face of the same body. These openings are so formed that the insulator material displaced by the puncturing instrument is not fractured and yet cannot relax to its original position upon removal of the instrument to isolate the unpenetrated conductors from the opening. Thus the connections may be secured merely by filling the openings with conductive matter. This is preferably and most conveniently accomplished by a plating process as described herein.
These and other objects and features of this invention will become apparent upon consideration of the follow ing description given With reference to the accompanying drawings wherein: 7
FIG. 1 is an elevational view of a segment of a circuit member having relatively isolated patterns of conductive lines disposed on opposite faces of its insulator body;
FIG. 2 is a sectional view of the member of FIG. 1 taken along lines 22 shown in FIG. 1;
FIGS. 3-6 are sectional views corresponding to that in FIG. 2, taken at various stages of the application of the process of this invention to the member, as an electrical connection is being established between conductors disposed on opposite faces of the insulator body of the member;
FIG. 7 illustrates a field connection kit for making rapid connections FIG. 8 is a view in elevation of a portion of an insulator member carrying predetermined patterns of unconnected conductive lines on its opposite surfaces which can be variably inter-connected in a simple manner by means of the present invention;
FIGS. 9 to 11 inclusive are views in section of the member shown in FIG. 8 during various steps in the process of forming through and cross-over connections between conductors on the strip;
FIG. 12 is a view in elevation of the same member upon completion of the connection formations.
Referring to FIGS. 1 and 2, a segment of a circuit member, upon which the method of the present invention may be practiced, is illustrated therein. This member includes conductors 1 and 2 which are adhered to opposite faces of the insulator body 3 of the member. As shown in FIGS. 3-6 the present invention is practiced by controllably piercing an opening extending through a portion of the thickness of the member defined by the two conductors and the thickness of the insulator body. The depression thus formed extends through one of the conductors, conductor 1 in this instance, and terminates at but does not penetrate the other conductor, conductor 2 in this instance. In one specific application of the invention restrained punctures are made, after first cleansing the surfaces of the members to remove oxide accumulations from the conductors such as l, which are to be pierced, by rigidly supporting the conductors such as 2, which are not to be penetrated, against a hard backing surface; for example, against the flat surface of a glass backing plate such as 4 (FIG. 3). The unsupported conductor such as 1 is pierced with a sharp puncturing instrument or tool 5, wielded with moderate pressure. After passing through the conductor ll, the point of the tool 5 continues to penetrate through the insulator body 3 until it is restrained by the inner surface of the rigidly backed conductor 2 where considerably more pressure would be required to continue the movement of the tool. The object at this point is to remove the tool 5 and establish a secure electrical connection between conductors 1 and 2 through the opening 6 remaining after removal of the tool.
This is possible only if certain restrictions are observed. First, the material of the insulator body 3 must not be permitted by virtue of its elasticity to flow back into the region of the opening 6 after removal of the tool, since the conductors l and 2 would then be again electrically isolated from each other by solid matter, and second, the material of the body 3 and conductor 2 must not be subjected to splitting or shearing stresses of such magnitude as to weaken, crack, or excessively deform the material of the member outside of the pierced regions such as 6.
One way of preventing elastic relaxation of insulator material into the region 6 after removal of the tool 5 is suggested in FIGS. 3 and 4. As shown therein the tool 5 is so dimensioned that it bends the soft copper of conductor 1 beyond its elastic limit forcing it to line the walls of the cavity region 6 in a relatively fixed position, thereby preventing movement of the insulator back into the region 6. Such formations have been satisfactorily produced by a tool which tapers to a point at a 30 angle (this bends the cavity-lining conductor such as 1 through an angle of approximately 75) on members composed of polyethylene terephthalate insulator bodies .004 inch thick to which are adhered .001 inch thicknesses of copper conductor arranged in line patterns in which the line width is nowhere greater than .001 inch. Under such conditions secure through-connections have been established directly between point contact regions of the conductors without build-up of land area extension around the contact regions.
Alternative choices of material to prevent recovery of the insulator material into the opening left by the piercing tool or of constraints to control the travel of the piercing tool will readily suggest themselves to those skilled in the art. For example, penetration of the tool may be resisted by permanently adhering a layer of insulative backing material to the surface of the member on which the conductors such as 2 are disposed. For best results the piercing tool should not be manipulated directly by hand, but should be guided and controlled by precisely positioned mechanical members.
It should also be understood by those skilled in the material working arts that there is a limit to the shape and volume of material which can be displaced by piercing or coining in the manner suggested in FIG. 3, beyond which cracks or deformities 7 (FIG. 4A) would be produced in the insulator body external to the displacement region 6. Constraints must therefore be placed on one or more of the following parameters: the thicknesses of the regions to be pierced, the shape of the piercing tool in the region of its piercing end, the elasticity of the materials used in the conductive line patterns and insulator body, and the amount of outcropping or deformation of the insulator body which will be considered tolerable. In connection with the last-mentioned factor it should be observed that if circuit members are to be stacked vertically to produce multiple layered packages, a minimum amount of outcropping or deformation in each layer would be considered tolerable, whereas a member not confined to a restricted region of space in the direction of its thickness could tolerate considerably more displacement or deformation in that direction, subject, however, to the restriction that cracks or faults must not be produced in the body of the member.
Assuming that precautions are observed as outlined above, the cross-sectional appearance of the member after removal of the piercing tool will correspond to the formation shown in FIG. 4. The pierced conductor such as 1 will contact the unpenetrated conductor such as 2 in a more or less secure mechanical and electrical connection. The connection is subsequently reinforced mechanically and electrically by depositing additional conductive matter into the depression 6, preferably by plating since depressions such as 6 which are imperfectly formed due to undertravel of the piercing tool or to elastic recovery of the displaced insulator would then fail to receive a build-up of plate metal and could be detected by visual inspection.
Apparatu for brush plating, which can be used without extensive training by field maintenance personnel is suggested in FIG. 5, although for mass production of through connections more sophisticated apparatus would be preferred. As shown in FIG. 5, the unpierced face of the member is held in contact with a conductive plate such as 8 through which the conductors such as 2 make contact with negative terminal 9 of D.C. power source 10. The positive terminal 11 of this source is connected to a plating electrode 12 which is immersed in a plating solution held in a container 13. One end of this container contains ducts communicating with brush 14, so that when the brush is passed across the pierced face of the member plating metal 15 passes out of solution and collects primarily in the cavity regions such as 6. A switch 16 is provided for controlling the flow of plating current.
In more sophisticated mass-production apparatus for use under controlled laboratory conditions, the openings such as 6 would be formed by automatically operated and controlled mechanisms and after all openings had been formed, the pierced members would be immersed in a plating bath with the unperforated conductors such as 2 coupled to one electrode of a plating system and the cavity openings such as 6 exposed to the opposite electrode disposed within the bath. A predetermined amount of plating current would then be supplied for a predetermined time to deposit the desired thickness of plate material into the cavities.
In plating into .005 inch deep openings 6 in polyethylene terephthalate members, satisfactory plates have been obtained under laboratory controlled conditions in which the pierced members are immersed in a weak acid aqueous solution of metallic salt, the metal constituent of which is gold, copper, cadmium, or the like, and are subjected to a plating current of 10 amperes for intervals ranging between 20 and 30' seconds per application. Such plating solutions and selective plating apparatus suitable for the applications thereof are extensively available commercially from plating equipment manufacturers such as Selectrons Limited of New York, NY. A typical solution found to yield satisfactory results is composed of a suspension of gold in a weak acid maintained at 0.7 to 1.5 troy ounces of gold per gallon of liquid with a pH maintained between 4.2 and 4.5 and with conductive salts added to maintain a specific gravity of 1416 Baum.
Following the application of the plating material, the member may be inspected either visually through magni fying optics, or electrically, to determine whether all desired connections have been established. An electrical test set-up is shown in FIG. -6. The conductors such as 2 are coupled to one terminal of a D.C. source 17, the opposite polarity terminal of which is connected through a probe and indicating device 18 to perforated conductors such as 1. Failure of the plate to take in any cavity region such as 6 is accompanied by an open circuit indication. If only a few out of many punctures in a member are found to be faulty it is a simple matter to re-puncture these few and re-plate selectively, only over the repunctured regions, using the brush plating apparatus of FIG. 5. If all punctures in an entire member were found to be electrically open after plating, it would be immediately apparent that either the travel of the punctur ing tool had been overly restricted or that the member undergoing processing was defective in some dimension or material of its composition.
It has been noted that even some poorly prepared members may take to plating. This has been verified by experiments in which control punctures were made using pressure calculated to barely leave the inner surfaces of the backed conductors exposed for plating. Yet it was found that a substantial proportion of such marginal formations could be effectively converted into complete connections by plating with the current specified above.
While it is considered most advantageous from an inspection and reliability viewpoint to use the plating procedure just described for reinforcing punched connections, it should be understood that the last step of the inventive process can in some instances be suitably carried out by other means, for example, by spraying a suspension of metal through a mask. The effects of the latter method, however, would not be subject to immediate visual inspection as with plating.
While it is probably most useful to employ a tool having a conically shaped piercing end, it is not absolutely necessary to do so. A wedge-shaped tool, for example, could be used to cut completely through the line such as 1 leaving a wedge-shaped depression in the region 6. Then, however, the conductor such as 1 would not completely line the walls of the region and the probability of elastic recovery of the insulator into the region 6 would consequently be increased.
Proceeding now with the description of a portable kit assembly for making printed wiring connections in the field, an exemplary arrangement is shown in FIG. 7. This includes a supply of prefabricated polyethylene terephthalate insulator sheets 19, in rectangular 9 inch by 13 inch segments, each having pre-existing matrix patterns of thin conductive lines 20 and 21 adhered to opposite faces thereof. It should be observed that the sheets are devoid of extended conductive land areas both prior to and after the formation of through connections in the manner described below with reference to FIGS. 8 to 12.
In an exemplary application contemplated for the sheets 19, a variable network of eletcrical connections is produced by forming connections between intersecting point regions of the lines. For this application the lines 26) on one face of the sheet extend parallel to each other in a first direction and the lines 21 on the opposite face also extend parallel to each other but in a second direction different from the first one, the conductors 2t} and 21 thereby forming a matrix of over-lapping point regions 22, at which through-connections may be formed.
The field kit further includes a glass back-up plate 23, a punching tool 24, a cleaning brush 25, a supply of cleansing soap powder 26, a scraping knife 27, for removing sections of pre-existing conductive lines, and portable brush plating equipment 28. The plating equipment includes a power supply 29, cathode 30, and a plating anode chamber 31 terminating in brush fibers 32. Portable plating equipment of this type is commercially sold by the aforementioned Selectrons Limited as Economy Model 220 SB, and by Brooktronic Engineering Corp. of North Hollywood, Calif, under the product designation Portable Plater.
As shown by way of example in FIGS. 8 to 12, through and cross-over connections may be formed using the kit assembly of FIG. 7 on flat strips or sheets 37. The sheet 37 in the specific application shown in FIGS. 8 to 12 is a rectangular sheet, 9 inches by 13 inches, having pre-existing diagonally oriented conductive line patterns on opposite faces thereof. In this application the lines were intended to carry data signals characterized by frequencies of such magnitude that signal delays through connecting circuits such as those to be formed in the sheet 37, represent significant design factors. To maintain uniform signal delays, therefore, it is desirable to arrange the pre-existing copper line patterns to provide a long basic or nominal delay between opposite edges of the sheet, whereby departures from the basic delay, due to through and crossover connections, would be proportionately lessened in relation to the basic delay. Hence, the lines on the sheet 37 are shown, in FIG. 8, in what is considered the preferable diagonal orientation, the parallel lines 38 on the upper face of the sheet forming oblique angles with the edges of the sheet, and the parallel lines 39 on the lower face of the sheet (shown in broken outline in FIG. 8) extending in a direction perpendicular to the'lines 38.
By way of example, it is desired to form one connection between segments 40A and 41B of respective conductors 40 and 41 on the upper face of the sheet 37, and another connection between segments 40B and 41A of the same conductors which is electrically isolated from the firstmentioned connection. In preparation for this, the face of the sheet containing these conductors is thoroughly cleansed, and then discontinuities and through-connections are formed at selected positions along in the conductors 40 and 41, and the intermediate conductor 42. As shown in FIGS. 9 to 12, discontinuities are formed by scraping away portion of the conductors at, for example, region 43 of the conductor 40, regions 44 and 45 of conductor 42, and region 46 of conductor 41. Also shown in the same figures are the connection perforations, 47 and 48 in conductor 40, 49 and 50 in conductor 42, and 51 and 52in conductor 41.
As shown in FIGS. 9 to 11, the perforations are formed with the sheet 37 held against a glass backing plate 53. The segments 40B and 40A (FIG. 9) isolated from each other by discontinuity 43, are respectively connected to over-lapped regions of conductors 56 and 57 on the underface of the sheet 37. The strap-like segment 58 of conductor 42 (FIG. 11), isolated from the rest of conductor 42 by discontinuities 44 and 45, provides a bridging connection, between conductors 57 and 59 on the underface, via the perforations 49 and 50. Finally, the segments 41A and 41B (FIG. 10) isolated from each other by discontinuity 46 are respectively joined to underface conductors 56 and 59, via perforations 51 and 52. Thus, after plating over the cavities 47 to 52 there is an electrical connection (FIG. 12) extending from segment 40A to segment 41B, via plated-over perforation 47, conductor 57, plated-over perforation 49, strap 58, plated-over perforation 50, conductor 59, and plated-over perforation 52. Similarly, there is seen to be a connection between segments 40B and 41A, via plated-over perforation 48, conductor 56, and plated-over perforation 51.
While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that changes in form and details may be made therein without departing from the spirit and scope of the invention as characterized in the following claims.
What is claimed is:
1. A method of forming an electrical connection between a pair of conductive lines adhered to opposite faces of an insulator body comprising:
cleaning one face of said member to remove oxide film accumulations from the outer surfaces of conductive lines adhered thereto, including one line of said pair of lines;
controllably piercing an opening extending through one line of said pair and said insulator body and terminating at but not penetrating the other conductive line of said pair; employing a perforating instrument dimensioned to cause deformation of the material of said one line in the pierced region beyond the elastic limit of said material thereby deforming said line to form a retaining wall in said opening which will tend to retain its shape upon removal of the instrument; and
depositing additional conductive matter into said opening to provide a permanent electrical connection between said pair of lines;
wherein said step of depositing is accomplished by an electroplating process in which the said other conductive line of said pair is connected to one terminal of a source of direct current and the opening region retained by the one line of said pair is controllably exposed through an electroplating solution to an electrode of an electroplating system including said source and said other line.
2. A method of selectively forming multiple throughconnections between patterns of conductive lines adhered to opposite faces of an insulator body comprising the steps of:
cleaning the outer surfaces of the conductive lines adhered to one face of said insulator body to prepare said lines for connection to conductors on the other face;
backing the conductive lines on the other face of said insulator body against a rigid support member; piercing a plurality of openings extending through selected positions of lines on said one face and terminating at but not penetrating lines on said other 7 8 face, using a perforating tool dimensioned to cause of permanent or at least semi-permanent contact deformation of the conductive matter of the pierced with opposite interior points of conductive segments through lines in the pierced region beyond the elastic on said opposite face; limit of said matter; and utilizing one or more of said line segments on said electroplating additional conductive matter into all of 5 opposite face as a deposition electrode of a brush type said openings simultaneously electroplating system, brushing said line segments on 3. A method of producing small area through connecsaid one face with the brush electrode of said elections between thin conductive line segments carried on troplating system thereby plating additional conducopposite faces of an insulator substrate which method is tive material into one or more of said depressions in sufficiently simple to be performed in a field location 10 one operation. utilizing only a small complement of portable and relatively inexpensive apparatus, said through connections References Cited being narrower than the respective line segments linked UNITED STATES PATENTS thereby, said method comprising steps of:
cleansing the outer surfaces of all line segments on one 15 4/1961 Telfer 174-6185 X face of Said Substrate 55,809 11/1964 Griswold 17468.5 X 3 264 402 8/1966 Shaheen et a1. 17468.5 holding the opposite face of said substrate and the line iegments thereon in intimate contact with a con- OTHER REFERENCES orming surface of a relatively inflexible supporting Structure; 20 New Advances In Printed Circuits, U.S. Dept. of forming depressions at selected points in said line seg- InmerCe, National Bureau of Standards, Miscellaneous ments on said one face extending said segments into Publication Published 1948 PP- 48 and and completely through the intervening insulator material of said substrate into an unyielding position DARRELL CLAY Primary Exammer'

Claims (1)

1. A METHOD OF FORMING AN ELECTRICAL CONNECTION BETWEEN A PAIR OF CONDUCTIVE LINES ADHERED TO OPPOSITE FACES OF AN INSULATOR BODY COMPRISING: CLEANING ONE FACE OF SAID MEMBER TO REMOVE OXIDE FILM ACCUMULATIONS FROM THE OUTER SURFACES OF CONDUCTIVE LINES ADHERED THERETO, INCLUDING ONE LINE OF SAID PAIR OF LINES; CONTROLLABLY PIERCING AN OPENING EXTENDING THROUGH ONE LINE OF SAID PAIR AND SAID INSULATOR BODY AND TERMINATING AT BUT NOT PENETRATING THE OTHER CONDUCTIVE LINE OF SAID PAIR; EMPLOYING A PERFORATING INSTRUMENT DIMENSIONED TO CAUSE DEFORMATION OF THE MATERIAL OF SAID ONE LINE IN THE PIERCED REGION BEYOND THE ELASTIC LIMIT OF SAID MATERIAL THEREBY DEFORMING SAID LINE TO FORM A RETAINING WALL IN SAID OPENING WHICH WILL TEND TO RETAIN ITS SHAPE UPON REMOVAL OF THE INSTRUMENT; AND DEPOSITING ADDITIONAL CONDUCTIVE MATTER INTO SAID OPENING TO PROVIDE A PERMANENT ELECTRICAL CONNECTION BETWEEN SAID PAIR OF LINES; WHEREIN SAID STEP OF DEPOSITING IS ACCOMPLISHED BY AN ELECTROPLATING PROCESS IN WHICH THE SAID OTHER CONDUCTIVE LINE OF SAID PAIR IS CONNECTED TO ONE TERMINAL OF A SOURCE OF DIRECT CURRENT AND THE OPENING REGION RETAINED BY THE ONE LINE OF SAID PAIR IS CONTROLLABLY EXPOSED THROUGH AN ELECTROPLATING SOLUTION TO AN ELECTRODE OF AN ELECTROPLATING SYSTEM INCLUDING SAID SOURCE AND SAID OTHER LINE.
US464467A 1965-06-16 1965-06-16 Method of making through-connections by controlled punctures Expired - Lifetime US3346950A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US464467A US3346950A (en) 1965-06-16 1965-06-16 Method of making through-connections by controlled punctures
GB14760/66A GB1077867A (en) 1965-06-16 1966-04-04 Improvements in or relating to electrical interconnections
FR7857A FR1483563A (en) 1965-06-16 1966-06-13 Method of making electrical connections by means of perforations
DE19661640468 DE1640468B2 (en) 1965-06-16 1966-06-15 ELECTRICAL CONNECTION BETWEEN OPERATING SIDES OF CIRCUIT BOARDS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US464467A US3346950A (en) 1965-06-16 1965-06-16 Method of making through-connections by controlled punctures

Publications (1)

Publication Number Publication Date
US3346950A true US3346950A (en) 1967-10-17

Family

ID=23844048

Family Applications (1)

Application Number Title Priority Date Filing Date
US464467A Expired - Lifetime US3346950A (en) 1965-06-16 1965-06-16 Method of making through-connections by controlled punctures

Country Status (4)

Country Link
US (1) US3346950A (en)
DE (1) DE1640468B2 (en)
FR (1) FR1483563A (en)
GB (1) GB1077867A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519959A (en) * 1966-03-24 1970-07-07 Burroughs Corp Integral electrical power distribution network and component mounting plane
US3576407A (en) * 1966-03-14 1971-04-27 Morris Lavine Time control system and method for producing television, radio and video tape programs and for other uses
US3628243A (en) * 1969-11-14 1971-12-21 Bell Telephone Labor Inc Fabrication of printed circuit
US3668762A (en) * 1969-10-13 1972-06-13 Alfred Charles Clark Preparation of artwork masters
US3969815A (en) * 1973-09-19 1976-07-20 Siemens Aktiengesellschaft Process for forming a through connection between a pair of circuit patterns disposed on opposite surfaces of a substrate
EP0109084A1 (en) * 1982-11-15 1984-05-23 Storno A/S A method of making a double-sided thick-film integrated circuit
EP0187399A1 (en) * 1984-12-11 1986-07-16 Koninklijke Philips Electronics N.V. Method of manufacturing a multilayer printed circuit board in which conductors of different layers are interconnected and multilayer printed circuit board manufactured by this method
US4635358A (en) * 1985-01-03 1987-01-13 E. I. Du Pont De Nemours And Company Method for forming electrically conductive paths through a dielectric layer
US5189261A (en) * 1990-10-09 1993-02-23 Ibm Corporation Electrical and/or thermal interconnections and methods for obtaining such
WO1993026144A1 (en) * 1992-06-15 1993-12-23 Dyconex Patente Ag Process for producing subsequently conditionable contact points on circuit substrates and circuit substrates with such contact points
US5276964A (en) * 1992-04-03 1994-01-11 International Business Machines Corporation Method of manufacturing a high density connector system
US6010769A (en) * 1995-11-17 2000-01-04 Kabushiki Kaisha Toshiba Multilayer wiring board and method for forming the same
WO2001076336A1 (en) * 2000-03-31 2001-10-11 Dyconex Patente Ag Method for fabricating electrical connecting elements, and connecting element
WO2001078475A1 (en) * 2000-03-31 2001-10-18 Dyconex Patente Ag Method and device for fabricating electrical connecting elements, and connecting element
WO2001080612A1 (en) * 2000-03-31 2001-10-25 Dyconex Patente Ag Method for fabricating electrical connecting element, and electrical connecting element
US6423910B1 (en) * 1998-12-23 2002-07-23 Lucas Industries Limited Printed circuit device
US6640433B1 (en) * 1997-05-13 2003-11-04 Canon Kabushiki Kaisha Method for forming a micro-pattern
US20110154658A1 (en) * 2009-12-29 2011-06-30 Subtron Technology Co. Ltd. Circuit substrate and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380686A1 (en) * 1977-02-15 1978-09-08 Lomerson Robert PROCESS FOR ESTABLISHING AN ELECTRICAL CONNECTION THROUGH A PLATE OF INSULATING MATERIAL
FR2516311B1 (en) * 1981-11-06 1985-10-11 Thomson Csf BASE FOR MOUNTING A SEMICONDUCTOR PELLET ON THE BASE OF AN ENCAPSULATION BOX, AND METHOD FOR PRODUCING THE BASE
JPH0666549B2 (en) * 1988-08-31 1994-08-24 信越ポリマー株式会社 Method of manufacturing flexible substrate with through hole
JP2767645B2 (en) * 1990-03-07 1998-06-18 富士通株式会社 Method for manufacturing multilayer wiring board
DE19522338B4 (en) * 1995-06-20 2006-12-07 Pac Tech-Packaging Technologies Gmbh Chip carrier assembly with a via
DE19531970A1 (en) * 1995-08-30 1997-03-06 Siemens Ag Method for producing a connection between at least two electrical conductors, one of which is arranged on a carrier substrate
GB2336161B (en) 1998-04-06 2003-03-26 John Michael Lowe Method of providing conductive tracks on a printed circuit and apparatus for use in carrying out the method
US6939447B2 (en) 1998-04-06 2005-09-06 Tdao Limited Method of providing conductive tracks on a printed circuit and apparatus for use in carrying out the method
DE10205521A1 (en) * 2002-02-08 2003-08-28 Heraeus Gmbh W C Process for the electrical contacting of two metal structures
WO2004027866A2 (en) * 2002-09-23 2004-04-01 Johnson Controls Technology Company Method for creating a link in an integrated metal substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977672A (en) * 1958-12-12 1961-04-04 Gen Electric Method of making bonded wire circuit
US3155809A (en) * 1964-04-21 1964-11-03 Digital Sensors Inc Means and techniques for making electrical connections
US3264402A (en) * 1962-09-24 1966-08-02 North American Aviation Inc Multilayer printed-wiring boards

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977672A (en) * 1958-12-12 1961-04-04 Gen Electric Method of making bonded wire circuit
US3264402A (en) * 1962-09-24 1966-08-02 North American Aviation Inc Multilayer printed-wiring boards
US3155809A (en) * 1964-04-21 1964-11-03 Digital Sensors Inc Means and techniques for making electrical connections

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576407A (en) * 1966-03-14 1971-04-27 Morris Lavine Time control system and method for producing television, radio and video tape programs and for other uses
US3519959A (en) * 1966-03-24 1970-07-07 Burroughs Corp Integral electrical power distribution network and component mounting plane
US3668762A (en) * 1969-10-13 1972-06-13 Alfred Charles Clark Preparation of artwork masters
US3628243A (en) * 1969-11-14 1971-12-21 Bell Telephone Labor Inc Fabrication of printed circuit
US3969815A (en) * 1973-09-19 1976-07-20 Siemens Aktiengesellschaft Process for forming a through connection between a pair of circuit patterns disposed on opposite surfaces of a substrate
EP0109084A1 (en) * 1982-11-15 1984-05-23 Storno A/S A method of making a double-sided thick-film integrated circuit
EP0187399A1 (en) * 1984-12-11 1986-07-16 Koninklijke Philips Electronics N.V. Method of manufacturing a multilayer printed circuit board in which conductors of different layers are interconnected and multilayer printed circuit board manufactured by this method
US4663840A (en) * 1984-12-11 1987-05-12 U.S. Philips Corporation Method of interconnecting conductors of different layers of a multilayer printed circuit board
US4635358A (en) * 1985-01-03 1987-01-13 E. I. Du Pont De Nemours And Company Method for forming electrically conductive paths through a dielectric layer
US5189261A (en) * 1990-10-09 1993-02-23 Ibm Corporation Electrical and/or thermal interconnections and methods for obtaining such
US5276964A (en) * 1992-04-03 1994-01-11 International Business Machines Corporation Method of manufacturing a high density connector system
WO1993026144A1 (en) * 1992-06-15 1993-12-23 Dyconex Patente Ag Process for producing subsequently conditionable contact points on circuit substrates and circuit substrates with such contact points
US6010769A (en) * 1995-11-17 2000-01-04 Kabushiki Kaisha Toshiba Multilayer wiring board and method for forming the same
US6640433B1 (en) * 1997-05-13 2003-11-04 Canon Kabushiki Kaisha Method for forming a micro-pattern
US6423910B1 (en) * 1998-12-23 2002-07-23 Lucas Industries Limited Printed circuit device
WO2001076336A1 (en) * 2000-03-31 2001-10-11 Dyconex Patente Ag Method for fabricating electrical connecting elements, and connecting element
WO2001078475A1 (en) * 2000-03-31 2001-10-18 Dyconex Patente Ag Method and device for fabricating electrical connecting elements, and connecting element
WO2001080612A1 (en) * 2000-03-31 2001-10-25 Dyconex Patente Ag Method for fabricating electrical connecting element, and electrical connecting element
US20030121146A1 (en) * 2000-03-31 2003-07-03 Walter Schmidt Method for fabricating electrical connecting elements, and connecting element
US20030121700A1 (en) * 2000-03-31 2003-07-03 Walter Schmidt Method for fabricating electrical connecting element, and electrical connecting element
US6954986B2 (en) * 2000-03-31 2005-10-18 Dyconex Ag Method for fabricating electrical connecting element
US20110154658A1 (en) * 2009-12-29 2011-06-30 Subtron Technology Co. Ltd. Circuit substrate and manufacturing method thereof

Also Published As

Publication number Publication date
FR1483563A (en) 1967-06-02
GB1077867A (en) 1967-08-02
DE1640468B2 (en) 1971-06-03
DE1640468A1 (en) 1970-08-20

Similar Documents

Publication Publication Date Title
US3346950A (en) Method of making through-connections by controlled punctures
US2433384A (en) Method of manufacturing unitary multiple connections
US4319708A (en) Mechanical bonding of surface conductive layers
US3252203A (en) Welding process
US5024735A (en) Method and apparatus for manufacturing interconnects with fine lines and spacing
US4000558A (en) Process of fabricating wiring harness
US3385773A (en) Process for making solid electrical connection through a double-sided printed circuitboard
EP0906640B1 (en) A method for the production of coiled electrode assemblies
US4482445A (en) Methods and apparatus for electrochemically deburring perforate metallic clad dielectric laminates
DE10250151A1 (en) Method of connecting conductive links
JPH0929445A (en) Conductor fixing jig and welding device including the same
DE3924716A1 (en) Forming pattern of conductive traces on insulating substrate - using lift=off process on metal-layer deposited by arc-discharge on photoresist pattern
JP2000340277A (en) Interconnector and its manufacture
JPS6436430A (en) Method of assembling plurality of part made of polymer material
GB2248979A (en) Anisotropically electroconductive membrane.
US6298530B1 (en) Reinforced coiled electrode assemblies and methods of producing same
DE1640468C (en) Electrical connection between conductor strips running on opposite sides of circuit cards
JPH04110491A (en) Circuit board
US6051119A (en) Plating structure for a pin grid array package
DE2437673C3 (en) Device for testing the inner layers of multi-layer printed circuit boards
JPH09214133A (en) Connecting method for double-sided circuits
EP2127508B1 (en) Electric contacting device, particularly for electronic circuits, and electric/electronic circuit
Corl Anion Reaction for Failure Analysis of Microcircuit Components
JPH0350786A (en) Method and device for drilling printed board
MXPA98009470A (en) Assemblies of elbow elbows and methods of production of the mis