US3341050A - Cryogenic insulation system - Google Patents

Cryogenic insulation system Download PDF

Info

Publication number
US3341050A
US3341050A US411527A US41152764A US3341050A US 3341050 A US3341050 A US 3341050A US 411527 A US411527 A US 411527A US 41152764 A US41152764 A US 41152764A US 3341050 A US3341050 A US 3341050A
Authority
US
United States
Prior art keywords
panels
triplex
barrier
dimensionally stable
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US411527A
Inventor
Charles D Forman
Paul T Gorman
Augustus B Small
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US411527A priority Critical patent/US3341050A/en
Priority to GB46358/65A priority patent/GB1106647A/en
Priority to DE19651501704 priority patent/DE1501704A1/en
Priority to NL6514812A priority patent/NL6514812A/xx
Priority to FR38440A priority patent/FR1474766A/en
Priority to NO65160475A priority patent/NO118711B/no
Priority to SE14712/65A priority patent/SE320399B/xx
Priority to JP40070145A priority patent/JPS5128851B1/ja
Priority to ES0319645A priority patent/ES319645A1/en
Application granted granted Critical
Publication of US3341050A publication Critical patent/US3341050A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0119Vessel walls form part of another structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0379Manholes or access openings for human beings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/238Filling of insulants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • F17C2250/0417Level of content in the vessel with electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/902Foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • FIG. 1 CRYOGENIC INSULATION SYSTEM Filed Nov. 16, 1964 FIG. 1
  • cryogenic insulation system of this application is constructed from groups of prefabricated, dimensionally stable primary and secondary barrier panels connected side-by-side to define an inner and outer liquid-tight shell.
  • the prefabricated panels constituting the inner shell employ a material which has a very low coefficient of thermal expansion. The use of this material insures that the inner panels, though restrained, -will not be subjected to undue thermal stresses upon contact with the cryogenic cargo to be contained in the system.
  • the present invention relates to insulation systems and, more particularly, to integral insulation systems used in the storage and marine transportation of liquefied natural gas cargoes at atmospheric pressures under which conditions the liquefied natural gas cargoes are at cryogenic temperatures.
  • the containers must be capable of preventing heat losses which would lead to subsequent volatilization of the stored liquefied gas and of withstanding the internal stresses that may be induced therein by the large temperature gradients through the outer relatively warm walls of the ship to the supercooled inner surfaces of the container.
  • Certain conventional arrangements for transportating liquefied gases have involved the use of an aluminum or a stainless steel storage tank constituting a primary liquidtight barrier independently supported within an insulated chamber and separated therefrom by a secondary liquidtight barrier, the requirement of two barriers being dictated by well accepted safety practices and the provisions of certain regulatory codes.
  • so-called integral systems have been employed to achieve the same ends, in which the aforementioned primary and secondary barriers are directly superimposed and are supported by an enveloping structure, such as the walls of a cargo hold formed in a ships hull.
  • the above-mentioned systems invariably include some form of mechanical compensation, usually in the nature of expansion joints, to accommodate the normally contractive effects of the supercooled cargoes on the container structure itself.
  • a new and improved cryogenic insulation system which requires no mechanical expansion joints or the like.
  • a cryogenic cargo container embodying the new and improved system is constructed from groups of prefabricated, effectively dimensionally stable primary and and secondary barrier panels. Superimposed end-to-end, side-by-side arrays of each group of panels define two distinct liquid-tight barriers.
  • these prefabricated panels may be mounted progressively and with relative ease to a supporting structure such as a tanker cargo hold to define a new and improved closed cryogenic cargo container.
  • the panels comprising the secondary barrier are generally similar to the fiberglas reinforced polyester and polyurethane foam, thermal insulating panels first disclosed in the copending Harold R. Pratt et al. application Serial No. 394,287 filed Sept. 3, 1964, for Insulation System, and are effectively dimensionally stable, while in accordance with specific aspects of the present invention the primary barrier panels are in the nature of effectively dimensionally stable triplex panels formed by sandwiching a honeycomb core between spaced high nickel alloy steel sheets, possessing approximately 35.5 percent nickel and available commercially under the trade designation of Invar. The Invar sheets are held in a frame made of similar high nickel alloy steel.
  • the primary and second-ary barriers are integrally united by an intermediate liquid-tight barrier of epoxy adhesive thus providing a resultant structure having three liquid-tight barriers.
  • the importance of the impermeable barriers is to preclude cryogenic cargoes from contacting the supporting steel structure or ship hull and causing the embrittlement thereof.
  • the effectively dimensionally stable panels used in fabricating the new and improved cryogenic container are themselves non-embrittling, remaining relatively ductile at the supercooling temperatures of liquefied natural gases.
  • a further important aspect of the invention resides in the relatively high degree of fail safety obtained.
  • the nature of the construction and superimposition of the primary and secondary panels, with an interposed liquidtight intermediate barrier, is such that a failure in one will not cause a failure in the other.
  • this high degree of fail safety is further enhanced by providing a new and improved leakage system which includes a unique gas detection network which is an integral part of the primary barrier. More specifically, each of the honeycomb cores and each frame member of the triplex panels defines a passage therethrough which is linked to the passage of adjacent panels. Tthe interconnected passages are in turn associated with a gas detector which continually monitors the detection network for the presence of gas, which is, of course, an indication of the development of a leak.
  • FIG. 1 is a cross-sectional view of an insulated container, embodying the concepts of the present invention in a cargo hold of a ship;
  • FIG. 2 is an enlarged fragmentary cross-sectional view, taken along line 2-2 of FIG. 1, showing details of construction of the new and improved integral insulation system for the transportation of cargoes at cryogenic temperatures at atmospheric pressures;
  • FIG. 3 is a fragmentary perspective view of a new and improved, dimensionally stable, triplex primary barrier panel.
  • the cryogenic insulation system of the present invention is directly and fixedly supported by the secondary insulating barrier and is characterized as an integral system.
  • the supporting structure for a new and improved cryogenic cargo container 9 is the mild steel plate 10 of the cargo hold 11 of a dou-ble-hulled tanker 12.
  • the integral insulation system includes a secondary liquidtight barrier in the form of a continuous thermal insulating layer 13 supported in an end-to-end, side-by-side relation by the inner hull structure 14 of the ship and a primary liquid-tight barrier 15 superimposed upon the secondary barrier 13 and directly, fixedly anchored thereto.
  • the continuous, effectively dimensionally stable, secondary barrier 13 is established by securing stepped insulating panels 16 through mounting flanges 17 extending peripherally outwardly from base portions thereof, to the inner hull plate 11 by means of a nut 18, a clamping washer 19, and a Nelson stud 20.
  • the insulating panels 16 are generally similar to those dimensionally stable panels disclosed in more detail in the above-identified copending application of Harold R. Pratt et al. More specifically, the insulating panels 16 are approximately five feet by twentyfive feet in size, are generally symmetrical in shape (FIG. 2 showing opposite sides of two adjacent insulating panels), and include fiberglas reinforced polyester shells 21 filled with polyurethane foam 22. Each gap 23 formed between opposing faces 24 of adjacent insulating panels 16 is filled with a matingly stepped plug piece 25 having, similarly to the panels 16, a fiberglas reinforced polyester shell 26 filled with polyurethane foam 27 and being similarly effectively dimensionally stable.
  • the secondary barrier 13 defined by the end-to-end and side-'by-side array of insulating panels 16 and plug pieces 25, is made continuous and liquid tight by the bonding of the plug pieces 25 to the opposing stepped faces 24 of adjacent insulating panels by a suitable adhesive sealant 28.
  • a suitable adhesive sealant 28 As set forth in more detail in the beforementioned Pratt et al. application, the above-described insulating secondary barrier 13 is effectively dimensionally stable and will not undergo deleterious contraction when subjected to the extreme temperatures (e.g., --258 F. for liquefied methane) encountered in the cryogenic environments of liquefied natural gases.
  • a cargo resistant, primary barrier is formed by a plurality of dimensionally stable triplex panels 30, each hav ing a generally rectangular shape defined by a peripheral frame member 31 fabricated from an extruded C-shaped channel having an outer flange 37 and an inner flange 38 connected by a web 39.
  • the triplex primary barrier panels 30 include inner and outer metallic sheets 33, 32, respectively, which, in accordance with the principles of the present invention are also made from a dimensionally stable metal and are welded or otherwise suitably united with the frame members 31.
  • the sheets 32, 33 are maintained in a predetermined spaced relation, advantageously of approximately one-fourth to onehalf inch, and the panel 30 is strengthened by an intermediate honeycomb core structure 34 advantageously of phenolic-impregnated paper, fiberglas reinforced polyester, aluminum or the like.
  • honeycomb core 34 enhances its insulating properties by providing dead air space 35 therein.
  • the frame member 31 and sheets 32, 33 are fabricated from a high nickel alloy steel, one having a nickel content of approximately 35.5 percent and having a sufficiently low coeificient of contraction (approximately zero percent) to be characterized as being effectively dimensionally stable. More specifically, such an alloy steel is commercially available under the trade name Invar from the International Nickel Co., Inc., and has an ultimate strength of 100,000 p.s.i. Of prime importance for its use in the contemplated cryogenic applications in which severe temperature gradients are encountered through the walls of the container and between laden and unladen conditions, the thermal stress induced in Invar materials for a temperature variation from ambient of 350 F. is approximately 5,000 p.s.i.
  • the Invar triplex panels are advantageously approximately four feet by twenty-five feet (the former dimension being dictated by the widths of Invar sheet stock commercially available) and include Invar sheets 32, 33 of .025 inch thickness.
  • the triplex primary barrier panels 30 are firmly and fixedly anchored to the secondary insulating barrier 13, in a general end-to-end, side-by-side array without the employment of any expansion joints or the like, such as have been commonly employed heretofore in cryogenic containers of this type.
  • selected panels and plug pieces of the dimensionally stable insulating barrier 13 include moldedin, tapped Invar anchor blocks 36 to which the outer flanges 37 (which advantageously may be overlapped and interlocking as shown) of the frame members are tightly fastened by Invar bolts 40.
  • the mounting of the triplex panels to the underlying secondary barrier 13 is made more secure by the inclusion of a continuous layer of adhesive sealant 45, such as epoxy, therebetween, which layer constitutes an intermediate liquid-tight barrier, enhancing the safety and reliability of the container 9.
  • adhesive sealant 45 such as epoxy
  • the inner Invar sheets 33 include flap portions 41 extending beyond the periphery of the frame 31 at two or more edges thereof.
  • the flap portions which advantageously are flexible before final assembly, may be infolded during the installation and alignment of the triplex panels upon the secondary barrier to facilitate the same. Thereafter, the flap portions 41 may be unfolded into overlapping relation with adjacent panels.
  • the overlapped Invar sheets are Welded together as shown at 42 and, as should be understood, thereby define a continuous, effectively dimensionally stable primary barrier 15.
  • the honeycomb structure 34 is provided with a series of perforations or orifices 46 in communication with ports 47 formed in opposite web portions 39 of the frame 31.
  • each of the triplex panels 30 thus provides a continuous passage therethrough, which passage directly communicates with the passages formed in the adjacent triplex panel to establish, in accordance with the inventive principles, a leakage detection network.
  • a gas detector 48 is directly linked with the established detection network, through piping 49 and an opening 50 formed in the primary barrier, for the immediate sensing of cargo in the detection network.
  • the new and improved cryogenic container possesses an unusually great degree of fail safety.
  • the direct mounting of dimensionally stable primary and secondary barrier panels, with an interposed liquid-tight barrier ensures that a failure in one barrier will not result in the failure of the other.
  • the novel gas detection system employing individual primary barrier panels as conduits in a detection network, enhances the safety and reliability of the complete system.
  • a secondary barrier is established in a progressive fashion from the prefabricated insulating panels and, then, the prefabricated primary barrier panels are progressively anchored thereto by bolts and an intermediate epoxy barrier, to establish generally a primary barrier. Thereafter, completion of the primary barrier and the container may be accomplished with relative ease by uniting the flap portions of the Invar primary barrier panels to adjacent panels.
  • An insulating container for liquefied natural gas including (a) a rigid support structure,
  • each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
  • said inner sheet members including flap portions extending beyond the peripheries ofsaid frame members and overlapping portions of the inner sheet members of adjacent triplex panels
  • said honeycomb structure is made from a material selected from the group of phenolic impregnated paper, fiberglas reinforced polyester, and aluminum.
  • An insulated wall for a cryogenic insulation system including (a) a rigid outer supporting structure,
  • (c) means mounting said insulating panels to said supporting structure in an end-to-end, side-by-side array whereby said insulating panels define a cryogenic liquid-tight secondary barrier
  • said frame elements including inner and outer peripheral flanges, said frame elements defining openings therein cooperating with said orifices to define a continuous gas passage through said triplex panels,
  • anchoring means cooperating with said outer flanges and fixedly securing said triplex panels to said secondary barrier
  • dimensionally stable sheet means interconnecting said inner flanges whereby said interconnected triplex panels define a cryogenic liquid-tight, dimensionally stable, primary barrier superimposed upon and fixed to said dimensionally stable secondary barrier, and gas detecting means operatively associated with said gas passage adapted to detect leakage of gas through said sheet means.
  • An insulating container for liquefied natural gas including (a) a rigid support structure,
  • each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
  • said triplex panels being effectively dimensionally stable when subjected to cryogenic temperatures
  • said inner sheet members including flap portions extending beyond the peripheries of said frame members and overlapping portions of the inner sheet members of adjacent triplex panels
  • said frame members define ports therein at opposite sides thereof
  • said honeycomb structures define passages therethrough and in communication with said ports
  • a gas sensing means is associated with said network and adapted to detect the presence of gas therein.
  • An insulating container for liquefied natural gas including (a) a rigid support structure,
  • thermoinsulating panels arrayed in a general endto-end, side-by-side relation, said insulating panels comprising glass fiber reinforced polyester shells filled with polyurethane,
  • each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
  • said triplex panels being effectively dimensionally stable when subjected to cryogenic temperatures
  • said inner sheet members including flap portions extending beyond the peripheries of said frame members and overlapping portions of the inner sheet members of adjacent triplex panels
  • a system of primary barrier panels for use in a cryogenic insulating structure said structure including insulating secondary barrier panels, wherein each of said primary barrier panels comprises in combination:

Description

Se t. 12,1967 c. o. FORMAN ETAL 3,341,050
CRYOGENIC INSULATION SYSTEM Filed Nov. 16, 1964 FIG. 1
- FIG. 2
GAS DETECTO'R I g I5 49 I 40 3| 34 30 46 p4 3o (35 47 4| .38 as 3y /47 Q m J 1 0 J v 39 39 j INVENTORS 2 CHARLES D. FORMAN AUGUSTUS B. SMALL PAUL T. GORMAN WHELAN, CHASAN, LITTON, MARX a WRIGHT ATTORNEYS United States Patent 3,341,050 CRYOGENIC INSULATION SYSTEM Charles D. Forman, Elizabeth, Paul T. German, Chatham,
and Augustus B. Small, Westfield, N.J., assignors to Esso Research and Engineering Company, a corporation of Delaware Filed Nov. 16, 1964, Ser. No. 411,527 8 Claims. (Cl. 220-9) ABSTRACT OF THE DISCLOSURE The cryogenic insulation system of this application is constructed from groups of prefabricated, dimensionally stable primary and secondary barrier panels connected side-by-side to define an inner and outer liquid-tight shell. In accordance with the disclosure, the prefabricated panels constituting the inner shell employ a material which has a very low coefficient of thermal expansion. The use of this material insures that the inner panels, though restrained, -will not be subjected to undue thermal stresses upon contact with the cryogenic cargo to be contained in the system.
The present invention relates to insulation systems and, more particularly, to integral insulation systems used in the storage and marine transportation of liquefied natural gas cargoes at atmospheric pressures under which conditions the liquefied natural gas cargoes are at cryogenic temperatures.
It has been established that the transportation of gases, such as natural gas, hydrogen, oxygen, methane, and the like, to remote locations, may best and most efiiciently be accomplished by reducing the volume of the gas through its conversion into the liquid state. Such a conversion enables the storage volume requirements to be greatly reduced (approximately six-hundredfold for a given quantity of methane gas, for example) and, as should be appreciated, enables the most efiicient transfer of the gas to a remote area.
In order to transfer liquefied gas in a practical and economical manner in relatively large volumes, it is necessary to store the liquefied gas at approximately atmospheric pressures, since large containers built to withstand superatmospheric pressures would be impractical, if not impossible, to construct for use on seagoing tankers or the like. However, liquefied gases maintained at atmospheric pressures have extremely low vaporization points, rainging from about -435 F. for liquefied hydrogen, to 28 F. for liquefied ammonia, and these unusually low temperatures of the liquids present certain problems in the design and production of insulated cargo containers. Specifically, the containers must be capable of preventing heat losses which would lead to subsequent volatilization of the stored liquefied gas and of withstanding the internal stresses that may be induced therein by the large temperature gradients through the outer relatively warm walls of the ship to the supercooled inner surfaces of the container.
Certain conventional arrangements for transportating liquefied gases have involved the use of an aluminum or a stainless steel storage tank constituting a primary liquidtight barrier independently supported within an insulated chamber and separated therefrom by a secondary liquidtight barrier, the requirement of two barriers being dictated by well accepted safety practices and the provisions of certain regulatory codes. Alternatively, so-called integral systems have been employed to achieve the same ends, in which the aforementioned primary and secondary barriers are directly superimposed and are supported by an enveloping structure, such as the walls of a cargo hold formed in a ships hull.
Due to the extremely low temperatures of the liquefied natural gases, the above-mentioned systems invariably include some form of mechanical compensation, usually in the nature of expansion joints, to accommodate the normally contractive effects of the supercooled cargoes on the container structure itself.
As an important aspect of the present invention, a new and improved cryogenic insulation system is provided which requires no mechanical expansion joints or the like. As a further important aspect of the invention, a cryogenic cargo container embodying the new and improved system is constructed from groups of prefabricated, effectively dimensionally stable primary and and secondary barrier panels. Superimposed end-to-end, side-by-side arrays of each group of panels define two distinct liquid-tight barriers. In accordance with the invention, these prefabricated panels may be mounted progressively and with relative ease to a supporting structure such as a tanker cargo hold to define a new and improved closed cryogenic cargo container.
More specifically, the panels comprising the secondary barrier are generally similar to the fiberglas reinforced polyester and polyurethane foam, thermal insulating panels first disclosed in the copending Harold R. Pratt et al. application Serial No. 394,287 filed Sept. 3, 1964, for Insulation System, and are effectively dimensionally stable, while in accordance with specific aspects of the present invention the primary barrier panels are in the nature of effectively dimensionally stable triplex panels formed by sandwiching a honeycomb core between spaced high nickel alloy steel sheets, possessing approximately 35.5 percent nickel and available commercially under the trade designation of Invar. The Invar sheets are held in a frame made of similar high nickel alloy steel. As will be appreciated, the utilization of efiectively dimensionally stable primary and secondary barriers obviates the need for sophisticated expansion systems, inasmuch as the new container undergoes no efiective or deleterious dimensional changes in use, although being subjected to cryogenic temperatures ranging as low as 260 F. during the loading and unloading cycles of the container.
As another aspect of the invention, the primary and second-ary barriers are integrally united by an intermediate liquid-tight barrier of epoxy adhesive thus providing a resultant structure having three liquid-tight barriers. It is to be understood that the importance of the impermeable barriers is to preclude cryogenic cargoes from contacting the supporting steel structure or ship hull and causing the embrittlement thereof. Likewise, it should be clear that the effectively dimensionally stable panels used in fabricating the new and improved cryogenic container are themselves non-embrittling, remaining relatively ductile at the supercooling temperatures of liquefied natural gases.
A further important aspect of the invention resides in the relatively high degree of fail safety obtained. The nature of the construction and superimposition of the primary and secondary panels, with an interposed liquidtight intermediate barrier, is such that a failure in one will not cause a failure in the other. Moreover, this high degree of fail safety is further enhanced by providing a new and improved leakage system which includes a unique gas detection network which is an integral part of the primary barrier. More specifically, each of the honeycomb cores and each frame member of the triplex panels defines a passage therethrough which is linked to the passage of adjacent panels. Tthe interconnected passages are in turn associated with a gas detector which continually monitors the detection network for the presence of gas, which is, of course, an indication of the development of a leak.
For a more complete understanding of the present invention and appreciation of its attendant advantages, reference should be made to the following detailed description taken in conjunction with the accompanying drawing, in which:
FIG. 1 is a cross-sectional view of an insulated container, embodying the concepts of the present invention in a cargo hold of a ship;
FIG. 2 is an enlarged fragmentary cross-sectional view, taken along line 2-2 of FIG. 1, showing details of construction of the new and improved integral insulation system for the transportation of cargoes at cryogenic temperatures at atmospheric pressures; and
FIG. 3 is a fragmentary perspective view of a new and improved, dimensionally stable, triplex primary barrier panel.
Referring to FIG. 1, the cryogenic insulation system of the present invention is directly and fixedly supported by the secondary insulating barrier and is characterized as an integral system. In the illustrated preferred embodiment, the supporting structure for a new and improved cryogenic cargo container 9 is the mild steel plate 10 of the cargo hold 11 of a dou-ble-hulled tanker 12. The integral insulation system includes a secondary liquidtight barrier in the form of a continuous thermal insulating layer 13 supported in an end-to-end, side-by-side relation by the inner hull structure 14 of the ship and a primary liquid-tight barrier 15 superimposed upon the secondary barrier 13 and directly, fixedly anchored thereto.
Specifically and as shown in FIG. 2, the continuous, effectively dimensionally stable, secondary barrier 13 is established by securing stepped insulating panels 16 through mounting flanges 17 extending peripherally outwardly from base portions thereof, to the inner hull plate 11 by means of a nut 18, a clamping washer 19, and a Nelson stud 20. Advantageously, the insulating panels 16 are generally similar to those dimensionally stable panels disclosed in more detail in the above-identified copending application of Harold R. Pratt et al. More specifically, the insulating panels 16 are approximately five feet by twentyfive feet in size, are generally symmetrical in shape (FIG. 2 showing opposite sides of two adjacent insulating panels), and include fiberglas reinforced polyester shells 21 filled with polyurethane foam 22. Each gap 23 formed between opposing faces 24 of adjacent insulating panels 16 is filled with a matingly stepped plug piece 25 having, similarly to the panels 16, a fiberglas reinforced polyester shell 26 filled with polyurethane foam 27 and being similarly effectively dimensionally stable.
The secondary barrier 13 defined by the end-to-end and side-'by-side array of insulating panels 16 and plug pieces 25, is made continuous and liquid tight by the bonding of the plug pieces 25 to the opposing stepped faces 24 of adjacent insulating panels by a suitable adhesive sealant 28. As set forth in more detail in the beforementioned Pratt et al. application, the above-described insulating secondary barrier 13 is effectively dimensionally stable and will not undergo deleterious contraction when subjected to the extreme temperatures (e.g., --258 F. for liquefied methane) encountered in the cryogenic environments of liquefied natural gases.
In accordance with the principles of the present invention, a cargo resistant, primary barrier is formed by a plurality of dimensionally stable triplex panels 30, each hav ing a generally rectangular shape defined by a peripheral frame member 31 fabricated from an extruded C-shaped channel having an outer flange 37 and an inner flange 38 connected by a web 39. As shown in FIG. 2, the triplex primary barrier panels 30 include inner and outer metallic sheets 33, 32, respectively, which, in accordance with the principles of the present invention are also made from a dimensionally stable metal and are welded or otherwise suitably united with the frame members 31. The sheets 32, 33 are maintained in a predetermined spaced relation, advantageously of approximately one-fourth to onehalf inch, and the panel 30 is strengthened by an intermediate honeycomb core structure 34 advantageously of phenolic-impregnated paper, fiberglas reinforced polyester, aluminum or the like. In addition to contributing to the strength of the thus formed triplex panel, the honeycomb core 34 enhances its insulating properties by providing dead air space 35 therein.
As an important aspect of the invention, the frame member 31 and sheets 32, 33 are fabricated from a high nickel alloy steel, one having a nickel content of approximately 35.5 percent and having a sufficiently low coeificient of contraction (approximately zero percent) to be characterized as being effectively dimensionally stable. More specifically, such an alloy steel is commercially available under the trade name Invar from the International Nickel Co., Inc., and has an ultimate strength of 100,000 p.s.i. Of prime importance for its use in the contemplated cryogenic applications in which severe temperature gradients are encountered through the walls of the container and between laden and unladen conditions, the thermal stress induced in Invar materials for a temperature variation from ambient of 350 F. is approximately 5,000 p.s.i. which is only five percent of its ultimate strength and well below its yield point. The Invar triplex panels are advantageously approximately four feet by twenty-five feet (the former dimension being dictated by the widths of Invar sheet stock commercially available) and include Invar sheets 32, 33 of .025 inch thickness.
In accordance with an important aspect of the invention, the triplex primary barrier panels 30 are firmly and fixedly anchored to the secondary insulating barrier 13, in a general end-to-end, side-by-side array without the employment of any expansion joints or the like, such as have been commonly employed heretofore in cryogenic containers of this type. To that end and in accordance with the present invention, selected panels and plug pieces of the dimensionally stable insulating barrier 13 include moldedin, tapped Invar anchor blocks 36 to which the outer flanges 37 (which advantageously may be overlapped and interlocking as shown) of the frame members are tightly fastened by Invar bolts 40. Furthermore and as an important aspect of the invention, the mounting of the triplex panels to the underlying secondary barrier 13 is made more secure by the inclusion of a continuous layer of adhesive sealant 45, such as epoxy, therebetween, which layer constitutes an intermediate liquid-tight barrier, enhancing the safety and reliability of the container 9.
As another important aspect of the invention, the inner Invar sheets 33 include flap portions 41 extending beyond the periphery of the frame 31 at two or more edges thereof. The flap portions, which advantageously are flexible before final assembly, may be infolded during the installation and alignment of the triplex panels upon the secondary barrier to facilitate the same. Thereafter, the flap portions 41 may be unfolded into overlapping relation with adjacent panels. The overlapped Invar sheets are Welded together as shown at 42 and, as should be understood, thereby define a continuous, effectively dimensionally stable primary barrier 15.
In accordance with a further important aspect of the invention, the honeycomb structure 34 is provided with a series of perforations or orifices 46 in communication with ports 47 formed in opposite web portions 39 of the frame 31. As will be appreciated, each of the triplex panels 30 thus provides a continuous passage therethrough, which passage directly communicates with the passages formed in the adjacent triplex panel to establish, in accordance with the inventive principles, a leakage detection network. A gas detector 48 is directly linked with the established detection network, through piping 49 and an opening 50 formed in the primary barrier, for the immediate sensing of cargo in the detection network.
The new and improved cryogenic container possesses an unusually great degree of fail safety. The direct mounting of dimensionally stable primary and secondary barrier panels, with an interposed liquid-tight barrier, ensures that a failure in one barrier will not result in the failure of the other. Moreover, the novel gas detection system, employing individual primary barrier panels as conduits in a detection network, enhances the safety and reliability of the complete system.
As may be appreciated, construction of a cryogenic insulating container, in accordance with the invention, is greatly simplified and extremely economical. A secondary barrier is established in a progressive fashion from the prefabricated insulating panels and, then, the prefabricated primary barrier panels are progressively anchored thereto by bolts and an intermediate epoxy barrier, to establish generally a primary barrier. Thereafter, completion of the primary barrier and the container may be accomplished with relative ease by uniting the flap portions of the Invar primary barrier panels to adjacent panels. An should be understood, the employment of dimensionally stable panels for both the primary and secondary barriers of a cryogenic insulation system is of extreme importance and results in significant savings of material and labor through the elimination of expansion joints and the problems associated with their installation.
It should be understood that the specific structure herein illustrated and described is intended to be representative only, as certain changes may be made therein without departing from the clear teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the invention.
What is claimed is:
1. An insulating container for liquefied natural gas including (a) a rigid support structure,
(b) a plurality of effectively dimensionally stable thermal insulating panels arrayed in a general endtO-end, side-by-side relation,
(c) means securing said insulating panels to said support in a manner whereby said panels define a continuous, liquid-tight secondary barrier,
(d) a plurality of triplex gas-resistant panels,
(e) each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
(f) said triplex panels being effectively dimensionally stable when subjected to cryogenic temperatures,
(g) said inner sheet members including flap portions extending beyond the peripheries ofsaid frame members and overlapping portions of the inner sheet members of adjacent triplex panels,
(h) dimensionally stable anchoring means securing said frame members of said triplex panels to said secondary barrier,
(i) adhesive means at the interfaces of said insulating and triplex panels and defining a continuous, liquidtight intermediate barrier therebetween,
(j) bonding means uniting said flap portions to adjacent ones of said inner sheet members whereby said members define a continuous substantially planer, liquid-tight primary barrier.
2. A container in accordance with claim 1, in which (a) said frame, sheet members and dimensionally stable mounting means are high nickel alloy steel, and
(b) said honeycomb structure is made from a material selected from the group of phenolic impregnated paper, fiberglas reinforced polyester, and aluminum.
3. An insulated wall for a cryogenic insulation system including (a) a rigid outer supporting structure,
(b) a plurality of effectively dimensionally stable insulating panels,
(c) means mounting said insulating panels to said supporting structure in an end-to-end, side-by-side array whereby said insulating panels define a cryogenic liquid-tight secondary barrier,
(d) a plurality of effectively dimensionally stable triplex panels including spaced apart sheet members supported by peripheral frame elements and sandwiching phenolic impregnated paper honeycomb core structures therebetween, said core structures defining a plurality of orifices therein,
(e) said frame elements including inner and outer peripheral flanges, said frame elements defining openings therein cooperating with said orifices to define a continuous gas passage through said triplex panels,
(f) anchoring means cooperating with said outer flanges and fixedly securing said triplex panels to said secondary barrier, and
(g) dimensionally stable sheet means interconnecting said inner flanges whereby said interconnected triplex panels define a cryogenic liquid-tight, dimensionally stable, primary barrier superimposed upon and fixed to said dimensionally stable secondary barrier, and gas detecting means operatively associated with said gas passage adapted to detect leakage of gas through said sheet means.
4. An insulated wall structure in accordance with claim 3, in which (a) a continuous layer of epoxy is interposed between said primary and secondary barriers and constitutes an intermediate liquid-tight barrier.
5. An insulated wall structure in accordance with claim 3, in which (a) said anchoring means includes high nickel alloy steel block molded into said secondary barrier and high nickel alloy steel bolts associated therewith.
6. An insulating container for liquefied natural gas including (a) a rigid support structure,
(b) a plurality of effectively dimensionally stable thermal insulating panels arrayed in a general endto-end, side-by-side relation,
(c) means securing said insulating panels to said support in a manner whereby said panels define a continuous, liquid-tight secondary barrier,
(d) a plurality of triplex gas-resistant panels,
(e) each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
(f) said triplex panels being effectively dimensionally stable when subjected to cryogenic temperatures, (g) said inner sheet members including flap portions extending beyond the peripheries of said frame members and overlapping portions of the inner sheet members of adjacent triplex panels,
(h) dimensionally stable anchoring means securing said frame members of said triplex panels to said secondary barrier,
(i) adhesive means at the interfaces of said insulating and triplex panels and defining a continuous, liquidtight intermediate barrier therebetween,
(j) bonding means uniting adjacent inner sheet members whereby said members define a continuous, liquid-tight primary barrier,
(k) said frame members define ports therein at opposite sides thereof,
(I) said honeycomb structures define passages therethrough and in communication with said ports,
(m) said passages of said triplex panels cooperating to define a leakage detection network, and
(n) a gas sensing means is associated with said network and adapted to detect the presence of gas therein.
7. An insulating container for liquefied natural gas including (a) a rigid support structure,
(b) a plurality of effectively dimensionally stable thermal insulating panels arrayed in a general endto-end, side-by-side relation, said insulating panels comprising glass fiber reinforced polyester shells filled with polyurethane,
(c) means securing said insulating panels to said support in a manner whereby said panels define a continous, liquid-tight secondary barrier,
(d) a plurality of triplex gas-resistant panels,
(e) each of said triplex panels including a peripheral frame member and inner and outer sheet members sandwiching a honeycomb core therebetween,
(f) said triplex panels being effectively dimensionally stable when subjected to cryogenic temperatures, (g) said inner sheet members including flap portions extending beyond the peripheries of said frame members and overlapping portions of the inner sheet members of adjacent triplex panels,
(h) dimensionally stable anchoring means securing said frame members of said triplex panels to said secondary barrier,
(i) adhesive means at the interfaces of said insulating and triplex panels and defining a continuous, liquidtight intermediate barrier therebetween,
(j) bonding means uniting adjacent inner sheet members whereby said members define a continuous, liquid-tight primary barrier.
8. A system of primary barrier panels for use in a cryogenic insulating structure, said structure including insulating secondary barrier panels, wherein each of said primary barrier panels comprises in combination:
(a) a rectangular frame member having a C-shaped cross-section fabricated from extruded high nickel alloy steel,
(b) said frame having peripheral inner and outer flanges and an intermediate web,
(c) a pair of spaced inner and outer sheets of high nickel alloy steel bonded to said inner and outer flanges,
(d) a honeycomb core structure sandwiched between said sheets,
(e) said inner sheets having flap portions extending beyond the periphery of said frame,
(f) means for continuously bonding said outer sheets of said primary barrier to said secondary barrier panels, and
(g) second bonding means for uniting said flap portions to the inner sheet members on adjacent ones of said primary barrier panels whereby said flap portions and said inner sheet members define a continuous, substantially planar, effectively dimensionally stable, liquid-tight primary barrier.
References Cited UNITED STATES PATENTS 2,708,774 5/1955 Seelen 220 2.1 2,728,702 12/1955 Simon etal 220 9 2,744,042 5/1956 Pace 220 9 2,772,860 12/1956 Nelson 22063 2,980,279 4/1961 Lueders 220 9 2,983,401 5/1961 Murphy 220 10 3,030,669 4/1962 Dosker 220 10 3,031,856 5/1962 Wiedemann et al. 220 9 3,150,793 9/1964 Messer 220 9 3,158,383 11/1964 Anderson etal 220 9 3,158,459 11/1964 Guilhem 220 15 3,189,211 6/1965 Podlaseck 220 9 3,273,740 9/1966 Herrenschmidt 220 9 THERON E. CONDON, Primary Examiner.
JAMES R. GARRETT, Examiner.

Claims (1)

1. AN INSULATING CONTAINER FOR LIQUEFIED NATURAL GAS INCLUDING (A) A RIGID SUPPORTED STRUCTURE, (B) A PLURALITY OF EFFECTIVELY DIMENSIONALLY STABLE THERMAL INSULATING PANELS ARRAYED IN A GENERAL ENDTO-END, SIDE-BY-SIDE RELATION, (C) MEANS SECURING SAID INSULATING PANELS TO SAID SUPPORT IN A MANNER WHEREBY SAID PANELS DEFINE A CONTINUOUS, LIQUID-TIGHT SECONDARY BARRIER, (D) A PLURALITY OF TRIPLEX GAS-RESISTANT PANELS, (E) EACH OF SAID TRIPLEX PANELS INCLUDING A PERIPHERAL FRAME MEMBER AND INNER AND OUTER SHEET MEMBERS SANDWICHING A HONEYCOMB CORE THEREBETWEEN, (F) SAID TRIPLEX PANELS BEING EFFECTIVELY DIMENSIONALLY STABLE WHEN SUBJECTED TO CRYOGENIC TEMPERATURES,
US411527A 1964-11-16 1964-11-16 Cryogenic insulation system Expired - Lifetime US3341050A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US411527A US3341050A (en) 1964-11-16 1964-11-16 Cryogenic insulation system
GB46358/65A GB1106647A (en) 1964-11-16 1965-11-02 Insulated liquefied gas containers
DE19651501704 DE1501704A1 (en) 1964-11-16 1965-11-05 Insulated container for liquefied natural gas
FR38440A FR1474766A (en) 1964-11-16 1965-11-15 Heat-insulating tank intended for use at very low temperatures
NL6514812A NL6514812A (en) 1964-11-16 1965-11-15
NO65160475A NO118711B (en) 1964-11-16 1965-11-15
SE14712/65A SE320399B (en) 1964-11-16 1965-11-15
JP40070145A JPS5128851B1 (en) 1964-11-16 1965-11-16
ES0319645A ES319645A1 (en) 1964-11-16 1965-11-16 Improvements in the manufacture of an insulated container for liquefied natural gas. (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US411527A US3341050A (en) 1964-11-16 1964-11-16 Cryogenic insulation system

Publications (1)

Publication Number Publication Date
US3341050A true US3341050A (en) 1967-09-12

Family

ID=23629301

Family Applications (1)

Application Number Title Priority Date Filing Date
US411527A Expired - Lifetime US3341050A (en) 1964-11-16 1964-11-16 Cryogenic insulation system

Country Status (8)

Country Link
US (1) US3341050A (en)
JP (1) JPS5128851B1 (en)
DE (1) DE1501704A1 (en)
ES (1) ES319645A1 (en)
GB (1) GB1106647A (en)
NL (1) NL6514812A (en)
NO (1) NO118711B (en)
SE (1) SE320399B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489311A (en) * 1967-05-25 1970-01-13 Aerojet General Co Tanks for storage of liquefied gas
US3504505A (en) * 1968-02-06 1970-04-07 Hughes Aircraft Co Insulated cryogenic refrigerator cold head
US4273818A (en) * 1978-09-20 1981-06-16 Messerschmitt-Bolkow-Blohm Gmbh Force infeed element for laminar panel assembly
US4747513A (en) * 1986-06-03 1988-05-31 Societe Nouvelle Technigaz Heat insulating wall structure for a fluid-tight tank
WO2006003192A1 (en) * 2004-07-06 2006-01-12 Shell Internationale Research Maatschappij B.V. Container for storing liquefied gas
WO2007064212A1 (en) * 2005-12-01 2007-06-07 Det Norske Veritas As Panel tank for storage of fluids
DE102008003626A1 (en) * 2008-01-09 2009-07-23 R & M Ship Tec Gmbh Lining for liquefied petroleum gas tank in tanker, has rinsing-channels attached to supply rinsing lines and discharge rinsing lines and rinsing layers that are sealed against each other by adjacent rows in liquid and gas-impermeable manner
US20090218353A1 (en) * 2005-10-07 2009-09-03 Magna Steyr Fahrzeugtechnik Ag & Co Kg Outer Tank For A Cryogenic Fuel
US20110076092A1 (en) * 2008-05-02 2011-03-31 Samsung Heavy Ind.Co., Ltd. Apparatus for fixing an insulation panel of a cargo and insulation panel thereof
US20120012473A1 (en) * 2009-04-14 2012-01-19 Adnan Ezzarhouni Termination of the secondary membrane of an lng tank
US8530533B2 (en) 2007-01-09 2013-09-10 Basf Se Water-blown rigid foams for the insulation of liquefied natural gas tanks
WO2014037476A1 (en) 2012-09-07 2014-03-13 Basf Se Rigid polyurethane foams with reduced shrinkage
US8940803B2 (en) 2008-12-10 2015-01-27 Basf Se Water-blown rigid foams with improved mechanical properties at low temperatures
WO2016046487A1 (en) * 2014-09-26 2016-03-31 Gaztransport Et Technigaz Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
US20170101163A1 (en) * 2014-02-28 2017-04-13 Mgi Thermo Pte Ltd Insulation apparatus and method
US20180050765A1 (en) * 2015-03-31 2018-02-22 Lnt Marine Pte, Ltd. Hull insulation
CN111295327A (en) * 2017-09-12 2020-06-16 丁泰瑛 Thermal insulation structural material and low-temperature and ultra-low-temperature liquefied gas carrier using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784596B2 (en) 2010-11-19 2014-07-22 The Boeing Company Method for making and joining composite sandwich shell edge joint
US8875931B2 (en) 2010-11-19 2014-11-04 The Boeing Company Composite sandwich shell edge joint
FR3003626B1 (en) * 2013-03-20 2015-04-17 Technip France PROTECTIVE PANEL FOR LOW TEMPERATURE FLUID OPERATING SYSTEM, ASSEMBLY, INSTALLATION AND METHOD THEREOF

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708774A (en) * 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
US2744042A (en) * 1951-06-21 1956-05-01 Goodyear Tire & Rubber Laminated panels
US2772860A (en) * 1953-07-28 1956-12-04 Shell Dev Vessel with continuous helical liner
US2980279A (en) * 1958-07-22 1961-04-18 Armstrong Cork Co Insulated structure
US2983401A (en) * 1958-06-25 1961-05-09 Conch Int Methane Ltd Insulation space and panels for use in same
US3030669A (en) * 1958-07-02 1962-04-24 Conch Int Methane Ltd Modular insulation panel and use
US3031856A (en) * 1960-08-17 1962-05-01 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3150793A (en) * 1961-01-23 1964-09-29 Conch Int Methane Ltd Membrane-type insulated tanks
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3158459A (en) * 1960-03-22 1964-11-24 & Chantiers De La Seine Mariti Self-discharging container for conveying and storing low temperature fluids or othermaterials
US3189211A (en) * 1963-01-15 1965-06-15 Martin Marietta Corp Ultrahigh vacuum chamber
US3273740A (en) * 1963-05-07 1966-09-20 Tank for liquefied natural gas and other products stored at low temperatures

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708774A (en) * 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2744042A (en) * 1951-06-21 1956-05-01 Goodyear Tire & Rubber Laminated panels
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
US2772860A (en) * 1953-07-28 1956-12-04 Shell Dev Vessel with continuous helical liner
US2983401A (en) * 1958-06-25 1961-05-09 Conch Int Methane Ltd Insulation space and panels for use in same
US3030669A (en) * 1958-07-02 1962-04-24 Conch Int Methane Ltd Modular insulation panel and use
US2980279A (en) * 1958-07-22 1961-04-18 Armstrong Cork Co Insulated structure
US3158459A (en) * 1960-03-22 1964-11-24 & Chantiers De La Seine Mariti Self-discharging container for conveying and storing low temperature fluids or othermaterials
US3031856A (en) * 1960-08-17 1962-05-01 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3150793A (en) * 1961-01-23 1964-09-29 Conch Int Methane Ltd Membrane-type insulated tanks
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3189211A (en) * 1963-01-15 1965-06-15 Martin Marietta Corp Ultrahigh vacuum chamber
US3273740A (en) * 1963-05-07 1966-09-20 Tank for liquefied natural gas and other products stored at low temperatures

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489311A (en) * 1967-05-25 1970-01-13 Aerojet General Co Tanks for storage of liquefied gas
US3504505A (en) * 1968-02-06 1970-04-07 Hughes Aircraft Co Insulated cryogenic refrigerator cold head
US4273818A (en) * 1978-09-20 1981-06-16 Messerschmitt-Bolkow-Blohm Gmbh Force infeed element for laminar panel assembly
US4747513A (en) * 1986-06-03 1988-05-31 Societe Nouvelle Technigaz Heat insulating wall structure for a fluid-tight tank
AU2005259146B2 (en) * 2004-07-06 2008-07-31 Shell Internationale Research Maatschappij B.V. Container for storing liquefied gas
CN100483006C (en) * 2004-07-06 2009-04-29 国际壳牌研究有限公司 Container for storing liquefied gas
US20090223974A1 (en) * 2004-07-06 2009-09-10 Tanno Maarten Felius Container for storing liquefied gas
WO2006003192A1 (en) * 2004-07-06 2006-01-12 Shell Internationale Research Maatschappij B.V. Container for storing liquefied gas
US20090218353A1 (en) * 2005-10-07 2009-09-03 Magna Steyr Fahrzeugtechnik Ag & Co Kg Outer Tank For A Cryogenic Fuel
US8794476B2 (en) * 2005-10-07 2014-08-05 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Outer tank for cryogenic fuel
WO2007064212A1 (en) * 2005-12-01 2007-06-07 Det Norske Veritas As Panel tank for storage of fluids
US8530533B2 (en) 2007-01-09 2013-09-10 Basf Se Water-blown rigid foams for the insulation of liquefied natural gas tanks
DE102008003626A1 (en) * 2008-01-09 2009-07-23 R & M Ship Tec Gmbh Lining for liquefied petroleum gas tank in tanker, has rinsing-channels attached to supply rinsing lines and discharge rinsing lines and rinsing layers that are sealed against each other by adjacent rows in liquid and gas-impermeable manner
DE102008003626B4 (en) * 2008-01-09 2010-01-21 R & M Ship Tec Gmbh Lining of a liquid-gas container
US8776707B2 (en) 2008-05-02 2014-07-15 Samsung Heavy Ind. Co., Ltd. Apparatus for fixing an insulation panel of a cargo and insulation panel thereof
US20110076092A1 (en) * 2008-05-02 2011-03-31 Samsung Heavy Ind.Co., Ltd. Apparatus for fixing an insulation panel of a cargo and insulation panel thereof
US8940803B2 (en) 2008-12-10 2015-01-27 Basf Se Water-blown rigid foams with improved mechanical properties at low temperatures
US20120012473A1 (en) * 2009-04-14 2012-01-19 Adnan Ezzarhouni Termination of the secondary membrane of an lng tank
US9291308B2 (en) * 2009-04-14 2016-03-22 Gaztransport & Technigaz LNG container with a connecting device which connects a secondary impermeable barrier to a load bearing structure
WO2014037476A1 (en) 2012-09-07 2014-03-13 Basf Se Rigid polyurethane foams with reduced shrinkage
US20170101163A1 (en) * 2014-02-28 2017-04-13 Mgi Thermo Pte Ltd Insulation apparatus and method
US9963207B2 (en) * 2014-02-28 2018-05-08 Lnt Marine Pte. Ltd. Insulation apparatus and method
JP2017530064A (en) * 2014-09-26 2017-10-12 ギャズトランスポルト エ テクニギャズ Sealed insulated container with bridging elements between the panels of the secondary insulation barrier
FR3026459A1 (en) * 2014-09-26 2016-04-01 Gaztransp Et Technigaz SEALED AND INSULATING TANK WITH A BRIDGE ELEMENT BETWEEN THE PANELS OF THE SECONDARY INSULATING BARRIER
WO2016046487A1 (en) * 2014-09-26 2016-03-31 Gaztransport Et Technigaz Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
AU2015323629B2 (en) * 2014-09-26 2018-05-24 Gaztransport Et Technigaz Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
US10072798B2 (en) 2014-09-26 2018-09-11 Gaztransport Et Technigaz Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
RU2679995C2 (en) * 2014-09-26 2019-02-14 Газтранспорт Эт Технигаз Sealed and thermally insulated tank with connecting elements between auxiliary thermally insulating barrier panels
RU2763009C2 (en) * 2014-09-26 2021-12-24 Газтранспорт Эт Технигаз Sealed and heat-insulated tank with connecting elements between panels of auxiliary heat-insulating barrier
US20180050765A1 (en) * 2015-03-31 2018-02-22 Lnt Marine Pte, Ltd. Hull insulation
CN111295327A (en) * 2017-09-12 2020-06-16 丁泰瑛 Thermal insulation structural material and low-temperature and ultra-low-temperature liquefied gas carrier using the same
EP3683132A4 (en) * 2017-09-12 2021-06-30 Tae Young Chung Heat-insulating structural material, and low temperature and ultra-low temperature liquefied gas carrier using same
CN111295327B (en) * 2017-09-12 2023-03-21 丁泰瑛 Thermal insulation structural material and low-temperature and very-low-temperature liquefied gas carrier using same
US11618536B2 (en) * 2017-09-12 2023-04-04 Tae Young Chung Heat-insulating structural material, and low temperature and ultra-low temperature liquefied gas carrier using the same

Also Published As

Publication number Publication date
NL6514812A (en) 1966-05-17
JPS5128851B1 (en) 1976-08-21
NO118711B (en) 1970-02-02
ES319645A1 (en) 1966-08-01
SE320399B (en) 1970-02-09
GB1106647A (en) 1968-03-20
DE1501704A1 (en) 1969-04-03

Similar Documents

Publication Publication Date Title
US3341050A (en) Cryogenic insulation system
US3339783A (en) Cryogenic container
US3341049A (en) Cryogenic insulation system
US3547302A (en) Container for liquefied gases
US4116150A (en) Cryogenic insulation system
US4452162A (en) Corner structure for cryogenic insulation system
US4366917A (en) Cryogenic tank
US4105819A (en) Laminated sheets particularly for cryogenic enclosures, pipes, and the like
US3367492A (en) Insulation system
KR890000444B1 (en) Insulating tank from shich leakage is not generated
US2983401A (en) Insulation space and panels for use in same
US4066184A (en) Thermal insulation systems
US3485409A (en) Tankship container for liquefied gas
US3298345A (en) Double hulled ship
US3341051A (en) Cryogenic insulation system
US3206057A (en) Supported liquefied gas storage tank
KR20190027795A (en) Sealing and adiabatic tanks integrated into a polyhedral support structure
US3583351A (en) Vessel for transporting liquefied hydrocarbon
US3339780A (en) Duplex insulating panel
US3337079A (en) Stressed membrane liquified gas container
US3490639A (en) Containers for liquefied gases
US3477606A (en) Membrane tank structures
US3339515A (en) Atmospheric pressure storage and transportation of volatile liquids
US3109206A (en) Insulated space and elements thereof
KR102010883B1 (en) Membrane type insulation system for cargo of lng carrier and fuel tank