US3341049A - Cryogenic insulation system - Google Patents

Cryogenic insulation system Download PDF

Info

Publication number
US3341049A
US3341049A US411397A US41139764A US3341049A US 3341049 A US3341049 A US 3341049A US 411397 A US411397 A US 411397A US 41139764 A US41139764 A US 41139764A US 3341049 A US3341049 A US 3341049A
Authority
US
United States
Prior art keywords
panels
triplex
barrier
insulating
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US411397A
Inventor
Charles D Forman
Augustus B Small
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US411397A priority Critical patent/US3341049A/en
Priority to GB40430/65A priority patent/GB1103907A/en
Priority to JP40061404A priority patent/JPS5130293B1/ja
Priority to FR35799A priority patent/FR1459379A/en
Priority to DEE30331A priority patent/DE1254657B/en
Priority to NL6514811A priority patent/NL6514811A/xx
Priority to SE14711/65A priority patent/SE318897B/xx
Priority to ES0319644A priority patent/ES319644A1/en
Application granted granted Critical
Publication of US3341049A publication Critical patent/US3341049A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Description

sept. 12, 1967 .C. D. FORMAN ETAL CRYOGENIC INSULATION SYSTEM Filed Non 16, 1964 FIG.v 1
f-Il
DETECTOR INVENTORS CHARLES D. FORMAN wHELAN, cHAsAN, LITToN, MARX a wmGHT ATTORNEYS AUGUSTUS B. SMALLl United States Patent O 3,341,049 CRYOGENIC INSULATHON SYSTEM Charles D. Forman, Elizabeth, and Augustus B. Small,
Westfield, NJ., assignors to Esso Research and Engineering Company, a corporation of Delaware Filed Nov. 16, 1964, Ser. No. 411,397 8 Claims. (Cl. 220-9) ABSTRACT OF 'IHE DISCLQSURE An insulated container having two liquid-tight barriers which are provided by cladding a closed container, typically in the form of a cargo hold, with prefabricated, dimensionally stable insulating panels which constitute a continuous secondary barrier, to which barrier relatively flexibly interconnected cargo-resistant panels are loosely and independently secured to define a superimposed, continuous primary barrier.
The present invention relates to integral insulation systems, and more p-articularly, to a new and improved insulated container structure for the storage and marine transportation of liquefied natural gas cargoes at atmospheric pressures under which conditions the liquid cargoes are at cryogenic temperatures -and require structures of sufficient strength and displacement compensating characteristics to withstand the unusually large temperature gradients which exist from the outer, relatively warm side of the container to the inner, supercooled cargo side.
In accordance with the principles of the present invention, an insulated container having two liquid-tight barriers is provided by cladding a closed container, typically in the form of a cargo hold, with prefabricated, dimensionally stable insulating panels which constitute a continuous secondary barrier, to which barrier relatively dimensionally unstable, flexibly interconnected cargo-resistant panels are loosely and independently secured to define a superimposed, continuous primary barrier. The insulating panels employed are generally similar in construction to those disclosed in the copending Harold Pratt et al. Iapplication Ser. No. 394,287, for Insulation System, filed Sept. 3, 1964, and, in accordance with the present invention, the independently movable primary barrier is formed from a plurality of triplex panels which are of a sandwiched construction, the outer layers of which are thin sheets and the intermediate layer of which is a thin honeycomb core. The specific shape of the triplex panel itself is defined by a frame to which the outer sandwiching sheets are suitably adhered.
As an important specific aspect of the invention, the
triplex, primary barrier panels are relatively loosely mounted to the secondary insulating barrier to accommodate free and independent displacement thereof with respect to the insulating panels from which they are supported. This independent displacement, as will be understood, accommodates the induced changes in dimension of the primary panels, which are experienced when the triplex panels are subjected to cryogenic temperatures, without unduly stressing the supporting insulating panels. Continuity of the primary barrier is provided and maintained by flexible bellows-like elements which extend between adjacent primary panels in the completed insulated structure to accommodate relative mutual displacement of the individual triplex panels, themselves.
A high degree of fail safety is inherent in the new system, since the novel iiexible and independent mounting of the primary barrier to the secondary barrier insures that a failure in one will not cause a failure in the other. Furthermore, the new insulating system is made safer yet by the incorporation therein of a monitoring system to detect any leakage which may develop through a failure in the primary barrier. To that end and in accordance with another specific aspect of th-e invention, the frame and intermediate honeycomb structure of the triplex panels are provided with orifices to define a cargo passage for any leakage that might penetrate the primary barrier through cracks therein. The passages of each of the panels are effectively interconnected to form a network which is in constant communication with a cargo monitoring device. Thus, leakage through the primary barrier will be readily and immediately detected through a system employing the primary barrier panels, themselves, as conduits.
For a more complete understanding of the present invention and the attendant advantages, reference should be made to the following detail-ed description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a cross-sectional view of an insulated container, embodying the concepts of the present invention in ,a cargo hold of a ship; and
FIG. 2 is an enlarged fragmentary cross-sectional View, taken along line 2-2 of FIG. l, showing details of construction of the new and improved integral insulation system for the transportation of cargoes at cryogenic temperatures at atmospheric pressures. 4
Referring to FIG. l, the integral insulation system of the present invention, a system in which the primary barrier is directly supported by the secondary insulating barrier, is shown in a preferred embodiment in the cargo hold of a double-hulled tanker 10. The insulation system includes a secondary liquid-tight barrier in the form of a continuous insulating layer 11 supported in an endto-end, side-by-side relation by the inner hull structure 12 of the ship and a primary liquid-tight barrier 13 superimposed upon the secondary barrier 11 and directly, but independently, supported thereby.
Specifically :and as shown in FIG. 2, the continuous, eectively dimensionally stable, secondary barrier 11 is established by securing stepped insulating panels 14, through integral flanges 16 extending peripherally out wardly from base portions thereof, to the inner hull plate 12 by means of a nut 15 and a Nelson stud 15. Advantageously, the insulating panels 14 are generally similar to those dimensionally stable panels disclosed in more det-ail in the above-identified copending application of Harold Pratt et al. More specifically, the panels 14 are approximately five feet by twenty-five feet in size, are generally symmetrical in shape (FIG. 2 showing opposite sides of two panels), and include glass fiber reinforced polyester shells 17 filled with polyurethane foam 18. Each gap 19 formed between opposing faces 20 of adjacent insulating panels 14 is closed by a matingly stepped plug piece 21, constructed similarly to the insulating panels 14 of a glass liber reinforced polyester shell filled with polyurethane foam and being correspondingly effectively dimensionally stable.
The secondary barrier 11 defined by the end-to-end and side-by-side arr-ay of insulating panels `and plug pieces, is made continuous and liquid tight by the adherence of the plug pieces 21 to the opposing stepped faces 20 of adjacent insulating panels by means of a suitable adhesive sealant 22. As set forth in more detail in the beforem-entioned Pratt et al. application, the above-described insulating secondary barrier 11 is effectively dimensionally stable and will not undergo deleterious contraction when subjected to the extreme temperatures (e.g., -258 F. for liquefied methane) encountered in the cryogenic environments of liquefied natural gases.
In accordance with the principles of the present invention, the cargo-resistant, primary barrier is formed by a plurality of triplex panels 24, the generally rectangular supercooling temperatures of the cargo,
shape of each of which is defined by a peripheral aluminum frarne 25 advantageously fabricated from an extruded C-shaped aluminum channel. As shown in FIG. 2, the triplex panels 24 include inner and outer metal foil or plastic layers 26, 27, respectively, which a-re welded or otherwise suitably united with the frame members 25 and which are maintained in a predetermined spaced relation of approximately one-half inch, by an intermediate, cargo-resistant honeycomb structure 2S. The honeycomb structure 2S is made from glass fiber reinforced |polyester, phenolic-impregnated paper, aluminum, or like material, which contributes to the strength of the triplex panel 24 and to its insulating properties by providing dead air space 29 therein. Desirably, the inner and outer layers 26, 27 and the frame 25 have similar thermal coefficients of expansion. Accordingly, aluminum foil, typically of about 0.025 inch thickness, is a most suitable material for the primary barrier layers 26, 27 when an aluminum frame is employed.
In accordance with an important aspect of the invention, the triplex primary barrier panels 24 are independently and yieldably supported from the secondary insulating barrier. To that end and in accordance with the present invention each of the plug pieces 21 of the dimensionally stable insulating barrier 11, defines an inverted T-shaped open keyway 23. By lightly clamping the lower flanges 30 of the triplex panel frame 25 between a longitudinal aluminum or stainless steel mounting plate 31, freely supported in the keyway 23, and the face 11 of the secondary barrier, the primary barrier panels 24 may be supported from the secondary barrier with sufficient freedom of movement to be independently displaceable relative thereto.
More specifically, a lock nut 32 is lightly tightened down upon a stud 33, which is projected inward from the mounting plate 31 and through an opening 34 in the face of secondary barrier 11', by means of a clamping plate 35 which extends substantially beyond the edges of the gap 36 formed between the faces of the outer flanges 30 of opposing adjacent frame members 25. As will be understood, the gap 36 will be increased when the adjacent triplex panels contract from exposure to the cryogenic cargo. Accordingly, the width of the clamping plate is predetermined to bridge the gap and provide loose clamping under all temperature conditions and ensuing gap widths. Advantageously, the triplex primary barrier panels are free of the secondary barrier panels, except at the peripheral points of attachment with the studs 3.3-,
The continuity of the primary barrier is established, in accordance with the present invention, by connecting the opposing adjacent inner flanges 37 of the adjacent frame members 25 with a flexible bellows 38 constructed from aluminum foil or sheet similar to that of the inner and outer layers 26, 27 of the triplex panel. As shown, the bellows 38 is bonded to adjacent triplex panels and is additionally secured in grooves 25' formed therein.
As an important aspect of the invention, the honeycomb structure 28 is provided with a series of perforations or orifices 41 in communication with ports 42 formed in opposite web portions 46 of the frame 25'. As will be appreciated, each of the triplex panels 24 thus provides a continuous passage therethrough, which passage directly communicates with the passages formed in the adjacent triplex panel to establish, in accordance with the inventive principles, a leakage detection network. A gas detector 43 is directly linked with the established detection network, through piping 45 and an opening 44 formed in the aluminum foil layer 26 of the primary barrier, for the immediate sensing of cargo in the detection network.
In accordance with the principles of the invention, shrinkage of the continuous primary barrier 13 will be accommodated by the bellows connections of the triplex panels and their loose or flexible mountings to the secondary barrier. Specifically, upon being subjected to the each of the triplex panels 24 is free to contract, independently of the dimensionally stable secondary barrier, and in doing so to increase the gap 36 between the adjacent frames 25. As should be understood, the bellows structure 38 iaintains the continuity of the primary barrier, since it is sufficiently oversized to maintain the bridge between adjacent panels when the panels increase their mutual separation through contraction and the bellows material, itself, contracts due to the cryogenic temperatures. As will be further understood, the clamping member 35, which is of sufficient length to maintain a loose clamping contact with the adjacent frame flanges 30, maintains the independent support of the triplex panels from the sec- Y ondary insulating structure while accommodating their displacement relative thereto.
The novel independent mounting of the primary barrier to the secondary barrier provides a great degree of fail safety, since a failure of the secondary barrier will not cause a corresponding failure in the primary barrier layer. Correspondingly, a failure in the primary layer will not cause a failure in the secondary barrier layer. This high degree of fail safety is further enhanced, as may readily be appreciated, by the creation of an integral leakage detection network in the primary barrier panels themselves to provide immediate warning of any cargo leakage through the layer of the primary barrier.
Furthermore, the new insulation system may be constructed with maximum efficiency. Thus, as the secondary insulating layer is progressively built up, the primary triplex panels may be superimposed thereover and ilexibly mounted thereto with minimum effort and great expediency. The closed insulated container thus formed in accordance with the principles of the present invention is highly reliable and extremely fail safe.
It should be understood that the specific structure herein illustrated and described is intended to be representative only, as certain changes may be made therein without departing from the clear teachings of the disclosure. Accordingly, reference should be made to theV following appended claims in determining the yfull scope of the invention.
What is claimed is:
1. An insulated container structure for materials maintained at cryogenic temperatures and atmospheric pressures comprising:
(a) a rigid outer supporting structure,
(b) a plurality of effectively dimensionally stable insulating panels arrayed in a general end-to-end and side-by-side relation,
(c) means maintaining said panels in said array and against said outer rigid constructure, stepped edge plug means interposed between said panels,
(d) adhesive sealing means joining said stepped edge plug means to adjacent ones of said insulating panels in -a manner whereby said panels cooperatively define a continuous liquid-tight secondary barrier,
(e) a plurality of triplex primary barrier panels having peripheral frame members supporting spaced layers of cargo-resistant sheet material sandwichng honeycomb structures therebetween,
(f) said frame members having inner and outer anges,
(g) flexible bellows-like elements interconnecting the inner flanges of adjacent triplex panels,
(h) lmounting means slidably engaging said plug means to hold said triplex panels against said insulating panels while accommodating relative movement therebetween,
(i) whereby said triplex panels define a continuous primary barrier which is freely movable relative to and independently of said secondary barrier.
2. An insulated container structure in accordance with claim 1, in which v- (a) said frame members define ports therein at opposite sides thereof,
(b) said honeycomb structures define passages therethrough and in communication with said ports,
(c) said passages of said triplex panels cooperating to define a leakage detection network, and
(d) a -gas sensing means is associated with said network and adapted to detect the presence of gas therein.
3. An insulated container in accordance with claim 1,
in which (a) said insulating panels are comprised of glass fiber reinforced polyester lshells filled with foamed polyurethane,
(b) said cargo resistant sheet material and said peripheral frame members are aluminum.
4. An insulated container in accordance with claim 1,
in which (a) said plug means including a keyway immediately below the face thereof,
(b) said mounting means includes a mounting plate supported in said keyway,
(c) a stud means is associated with said mounting plate and extends inwardly through the face of said plug means and between adjacent frame members,
(d) a lock nut means is associated with said stud means,
(e) said mounting means further including a clamping plate in contact with the outer anges of said adjacent frame members,
(f) said clamping plate with a light clamping force urges said frame members against the face of said plug means and secondary barrier in a manner whereby said frame members are freely and independently movable relative to said secondary barrier.
5. An insulated wall for a cryogenic insulation system including (a) a rigid outer supporting structure,
(b) a plurality of effectively dimensionally stable insulating panels,
(c) means mounting said insulating panels to said supporting structure, plug means interposed between said panels, adhesive sealing means joining said plug means to adjacent ones of said panels, whereby said insulating panels define a cryogenic liquid-tight secondary barrier,
(d) a plurality of triplex panels including spaced sheet members supported by peripheral frame elements and sandwiching honeyc-omb core structures therebetween,
(e) said frame elements including inner and outer peripheral flanges, (f) mounting means slidably engaging said plug means to hold said triplex panels to said plug means and 5 secondary barrier to accommodate relative movement therebetween, and (g) flexible bellows means interconnecting said inner flanges whereby said interconnected triplex panels define a cryogenic liquid-tight primary barrier super- 10 imposed on said secondary barrier and independently displaceable relative thereto. 6. An insulated Wall in accordance with claim 5, in which (a) said sheet members and frame elements of said triplex panels are aluminum, and
(b) said bellows-like means are aluminum. 7. An insulated wall in accordance with claim 5, in which (a) said honeycomb core structures dene a plurality yof orifices therein,
(b) said frame elements define openings therein cooperating with said orifices to define a continuous gas passage through said triplex panels.
8. An insulated wall structure in accordance with claim 7, in which (a) a gas detecting means is operatively associated with said passage and is adapted to detect leakage of gas through said sheet members.
References Cited UNITED STATES PATENTS 2,708,774 5/ 1955 Seelen 22o- 2.1 2,728,702 12/1955 Simon et al 220-9 2,772,860 12/ 1956 Nelson 220-63 2,983,401 5/ 1961 Murphy 220-10 3,020,669 4/ 1962 Dosker 220-10 3,031,856 5/ 1962 Wiedemann et al 220-9 3,150,793 9/ 1964 Messer 220-9 3,158,383 11/1964 Anderson et al 220-9 3,158,459 11/1964 Guilhem 220-15 3,189,211 6/ 1965 Podlaseck 220-9 3,273,740 9/ 1966 Herrenschmidt 220--9 THERON E. CONDON, Primary Examiner.
JAMES R. GARRETT, Examiner.

Claims (1)

1. AN INSULATED CONTAINER STRUCTURE FOR MATERIALS MAINTAINED AT CRYOGENIC TEMPERATURES AND ATMOSPHERIC PRESSURES COMPRISING: (A) A RIGID OUTER SUPPORTING STRUCTURE, (B) A PLURALITY OF EFFECTIVELY DIMENSIONALLY STABLE INSULATING PANELS ARRAYED IN A GENERAL END-TO-END AND SIDE-BY-SIDE RELATION, (C) MEANS MAINTAINING SAID PANELS IN SAID ARRAY AND AGAINST SAID OUTER RIGID CONSTRUCTURED, STEPPED EDGE PLUG MEANS INTERPOSED BETWEEN SAID PANELS, (D) ADHESIVE SEALING MEANS JOINING SAID STEPPED EDGE PLUG MEANS TO ADJACENT ONES OF SAID INSULATING PANELS IN A MANNER WHEREBY SAID PANELS COOPERATIVELY DEFINE A CONTINUOUS LIQUID-TIGHT SECONDARY BARRIER, (E) A PLURALITY OF TRIPLEX PRIMARY BARRIER PANELS HAVING PERIPHERAL FRAME MEMBERS SUPPORTING SPACED LAYERS OF CARGO-RESISTANT SHEET MATERIAL SANDWICHING HONEYCOMB STRUCTURES THEREBETWEEN, (F) SAID FRAME MEMBERS HAVING INNER AND OUTER-FLANGES, (G) FLEXIBLE BELLOWS-LIKE ELEMENTS INTERCONNECTING THE INNER FLANGES OF ADJACENT TRIPLEX PANELS, (H) MOUNTING MEANS SLIDABLY ENGAGING SAID PLUG MEANS TO HOLD SAID TRIPLEX PANELS AGAINST SAID INSULATING PANELS WHILE ACCOMMODATING RELATIVE MOVEMENT THEREBETWEEN, (I) WHEREBY SAID TRIPLEX PANELS DEFINE A CONTINOUS PRIMARY BARRIER WHICH IS FREELY MOVABLE RELATIVE TO AND INDEPENDENTLY OF SAID SECOND BARRIER.
US411397A 1964-11-16 1964-11-16 Cryogenic insulation system Expired - Lifetime US3341049A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US411397A US3341049A (en) 1964-11-16 1964-11-16 Cryogenic insulation system
GB40430/65A GB1103907A (en) 1964-11-16 1965-09-22 Cryogenic insulation system
JP40061404A JPS5130293B1 (en) 1964-11-16 1965-10-08
FR35799A FR1459379A (en) 1964-11-16 1965-10-21 New improved structure of insulated tank for storage and maritime transport of liquefied natural gas and at very low temperature
DEE30331A DE1254657B (en) 1964-11-16 1965-10-22 Heat-insulated container for storing low-boiling liquefied gases at atmospheric pressure
NL6514811A NL6514811A (en) 1964-11-16 1965-11-15
SE14711/65A SE318897B (en) 1964-11-16 1965-11-15
ES0319644A ES319644A1 (en) 1964-11-16 1965-11-16 Improvements in the construction of isolated deposit structures. (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US411397A US3341049A (en) 1964-11-16 1964-11-16 Cryogenic insulation system

Publications (1)

Publication Number Publication Date
US3341049A true US3341049A (en) 1967-09-12

Family

ID=23628747

Family Applications (1)

Application Number Title Priority Date Filing Date
US411397A Expired - Lifetime US3341049A (en) 1964-11-16 1964-11-16 Cryogenic insulation system

Country Status (7)

Country Link
US (1) US3341049A (en)
JP (1) JPS5130293B1 (en)
DE (1) DE1254657B (en)
ES (1) ES319644A1 (en)
GB (1) GB1103907A (en)
NL (1) NL6514811A (en)
SE (1) SE318897B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489311A (en) * 1967-05-25 1970-01-13 Aerojet General Co Tanks for storage of liquefied gas
US3782581A (en) * 1971-12-27 1974-01-01 Phillips Petroleum Co Fluid containment system
US3800970A (en) * 1970-03-19 1974-04-02 Conch Int Methane Ltd Integrated tank containers for the bulk storage of liquids
US3811593A (en) * 1971-01-27 1974-05-21 Mc Millen J Ass Inc Double wall cargo tank having insulating secondary barrier
US3882591A (en) * 1972-03-27 1975-05-13 Bridgestone Liquefied Gas Co Method of constructing a low temperature liquefied gas tank of a membrane type
JPS5120151A (en) * 1974-08-12 1976-02-18 Inoe Reinetsu Kk KOONSHITSUKUMITATEKOZO
US3968764A (en) * 1974-10-31 1976-07-13 Moss Rosenberg Verft A/S Ships for transport of liquefied gases
US3972166A (en) * 1974-08-23 1976-08-03 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Heat insulation structure for liquefied gas storage tank
US5449542A (en) * 1993-03-11 1995-09-12 Sumitomo Light Metal Industries, Ltd. Honeycomb curtain wall and a honeycomb panel for a honeycomb curtain wall
WO1999030075A1 (en) * 1997-12-11 1999-06-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryostat with composite panel structure
FR2780942A1 (en) * 1998-07-10 2000-01-14 Gaz Transport & Technigaz Sealed and thermally insulated tank especially for storing liquefied gas on ship has inner panels and partitions joined by rings with prefabricated beams
FR2780941A1 (en) * 1998-07-10 2000-01-14 Gaz Transport & Technigaz Sealed and thermally insulated tank integrated into ships structure for storing liquified gas comprises two sealed barriers alternated with insulating barriers that are formed from honeycomb structure.
FR2781557A1 (en) * 1998-07-24 2000-01-28 Gaz Transport & Technigaz IMPROVEMENT FOR A WATERPROOF AND THERMALLY INSULATING TANK WITH PREFABRICATED PANELS
US6374761B1 (en) * 1999-09-29 2002-04-23 Gaz Transport Et Technigaz Watertight and thermally insulating tank built into the bearing structure of a ship
US20060118018A1 (en) * 2004-12-08 2006-06-08 Yang Young M Modular walls for use in building liquid tank
FR2887010A1 (en) * 2005-06-10 2006-12-15 Gaz Transp Et Technigaz Soc Pa Sealed and thermally insulated tank, especially for liquefied natural gas tanker ship, has separate primary and secondary retaining elements for different layers
US7204195B2 (en) 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
US20070246473A1 (en) * 2006-04-20 2007-10-25 Korea Gas Corporation Lng tank and vehicle with the same
KR20140108725A (en) * 2012-01-09 2014-09-12 가즈트랑스포르 에 떼끄니가즈 Sealed insulating vessel provided with a primary retaining means
US20160137272A1 (en) * 2013-06-19 2016-05-19 Kawasaki Jukogyo Kabushiki Kaisha Double-shell tank and liquefied gas carrier ship
US20170101163A1 (en) * 2014-02-28 2017-04-13 Mgi Thermo Pte Ltd Insulation apparatus and method
US20180050765A1 (en) * 2015-03-31 2018-02-22 Lnt Marine Pte, Ltd. Hull insulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112059A1 (en) * 2008-03-10 2009-09-17 Aker Mtw Werft Gmbh Device for reducing thermal tensions by flexible compensators

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708774A (en) * 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
US2772860A (en) * 1953-07-28 1956-12-04 Shell Dev Vessel with continuous helical liner
US2983401A (en) * 1958-06-25 1961-05-09 Conch Int Methane Ltd Insulation space and panels for use in same
US3020669A (en) * 1957-12-10 1962-02-13 Beyer-Olsen Knut Inflatable buoyant body having conical fastening member thereon
US3031856A (en) * 1960-08-17 1962-05-01 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3150793A (en) * 1961-01-23 1964-09-29 Conch Int Methane Ltd Membrane-type insulated tanks
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3158459A (en) * 1960-03-22 1964-11-24 & Chantiers De La Seine Mariti Self-discharging container for conveying and storing low temperature fluids or othermaterials
US3189211A (en) * 1963-01-15 1965-06-15 Martin Marietta Corp Ultrahigh vacuum chamber
US3273740A (en) * 1963-05-07 1966-09-20 Tank for liquefied natural gas and other products stored at low temperatures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1162473A (en) * 1955-12-22 1958-09-15 British Oxygen Co Ltd Liquefied gas container
NL271878A (en) * 1961-02-07

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708774A (en) * 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
US2772860A (en) * 1953-07-28 1956-12-04 Shell Dev Vessel with continuous helical liner
US3020669A (en) * 1957-12-10 1962-02-13 Beyer-Olsen Knut Inflatable buoyant body having conical fastening member thereon
US2983401A (en) * 1958-06-25 1961-05-09 Conch Int Methane Ltd Insulation space and panels for use in same
US3158459A (en) * 1960-03-22 1964-11-24 & Chantiers De La Seine Mariti Self-discharging container for conveying and storing low temperature fluids or othermaterials
US3031856A (en) * 1960-08-17 1962-05-01 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3150793A (en) * 1961-01-23 1964-09-29 Conch Int Methane Ltd Membrane-type insulated tanks
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3189211A (en) * 1963-01-15 1965-06-15 Martin Marietta Corp Ultrahigh vacuum chamber
US3273740A (en) * 1963-05-07 1966-09-20 Tank for liquefied natural gas and other products stored at low temperatures

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489311A (en) * 1967-05-25 1970-01-13 Aerojet General Co Tanks for storage of liquefied gas
US3800970A (en) * 1970-03-19 1974-04-02 Conch Int Methane Ltd Integrated tank containers for the bulk storage of liquids
US3811593A (en) * 1971-01-27 1974-05-21 Mc Millen J Ass Inc Double wall cargo tank having insulating secondary barrier
US3782581A (en) * 1971-12-27 1974-01-01 Phillips Petroleum Co Fluid containment system
US3882591A (en) * 1972-03-27 1975-05-13 Bridgestone Liquefied Gas Co Method of constructing a low temperature liquefied gas tank of a membrane type
JPS5120151A (en) * 1974-08-12 1976-02-18 Inoe Reinetsu Kk KOONSHITSUKUMITATEKOZO
US3972166A (en) * 1974-08-23 1976-08-03 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Heat insulation structure for liquefied gas storage tank
US3968764A (en) * 1974-10-31 1976-07-13 Moss Rosenberg Verft A/S Ships for transport of liquefied gases
US5449542A (en) * 1993-03-11 1995-09-12 Sumitomo Light Metal Industries, Ltd. Honeycomb curtain wall and a honeycomb panel for a honeycomb curtain wall
WO1999030075A1 (en) * 1997-12-11 1999-06-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryostat with composite panel structure
FR2780942A1 (en) * 1998-07-10 2000-01-14 Gaz Transport & Technigaz Sealed and thermally insulated tank especially for storing liquefied gas on ship has inner panels and partitions joined by rings with prefabricated beams
FR2780941A1 (en) * 1998-07-10 2000-01-14 Gaz Transport & Technigaz Sealed and thermally insulated tank integrated into ships structure for storing liquified gas comprises two sealed barriers alternated with insulating barriers that are formed from honeycomb structure.
CN1098768C (en) * 1998-07-10 2003-01-15 气体运输技术公司 Anti-penetrating and thermal insulating tank with improved corner structure and installed in supporting structure of ship
KR20000011365A (en) * 1998-07-10 2000-02-25 쟝 삐에르 Watertight and thermally insulating tank with an improved insulating barrier, built into the bearing structure of a ship
US6145690A (en) * 1998-07-10 2000-11-14 Gaz Transport Et Technigaz Watertight and thermally insulating tank with an improved corner structure, built into the bearing structure of a ship
ES2162558A1 (en) * 1998-07-10 2001-12-16 Gaz Transport & Technigaz Watertight and thermally insulating tank with an improved corner structure, built into the bearing structure of a ship
ES2166666A1 (en) * 1998-07-10 2002-04-16 Gaz Transp Et Tecnigaz Waterproof and heat-insulated tank incorporated in ship supporting structure and improved in heat insulating barrier
ES2176053A1 (en) * 1998-07-24 2002-11-16 Gaz Transport & Technigaz Impermeable and thermally insulating tank comprising prefabricated panels
FR2781557A1 (en) * 1998-07-24 2000-01-28 Gaz Transport & Technigaz IMPROVEMENT FOR A WATERPROOF AND THERMALLY INSULATING TANK WITH PREFABRICATED PANELS
US6374761B1 (en) * 1999-09-29 2002-04-23 Gaz Transport Et Technigaz Watertight and thermally insulating tank built into the bearing structure of a ship
US7325288B2 (en) * 2004-12-08 2008-02-05 Korea Gas Corporation Method for manufacturing liquid tank and ship with liquid tank
US7597212B2 (en) 2004-12-08 2009-10-06 Korea Gas Corporation Modular walls for use in building liquid tank
US20060118019A1 (en) * 2004-12-08 2006-06-08 Yang Young M Ship with liquid tank
US20060131304A1 (en) * 2004-12-08 2006-06-22 Yang Young M Liquid tank system
US7717288B2 (en) 2004-12-08 2010-05-18 Korea Gas Corporation Liquid tank system
US7171916B2 (en) 2004-12-08 2007-02-06 Korea Gas Corporation Ship with liquid tank
US7204195B2 (en) 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
US20060117566A1 (en) * 2004-12-08 2006-06-08 Yang Young M Method for manufacturing liquid tank and ship with liquid tank
US20060118018A1 (en) * 2004-12-08 2006-06-08 Yang Young M Modular walls for use in building liquid tank
FR2887010A1 (en) * 2005-06-10 2006-12-15 Gaz Transp Et Technigaz Soc Pa Sealed and thermally insulated tank, especially for liquefied natural gas tanker ship, has separate primary and secondary retaining elements for different layers
US20070246473A1 (en) * 2006-04-20 2007-10-25 Korea Gas Corporation Lng tank and vehicle with the same
US7819273B2 (en) 2006-04-20 2010-10-26 Korea Gas Corporation Liquid natural gas tank with wrinkled portion and spaced layers and vehicle with the same
KR20140108725A (en) * 2012-01-09 2014-09-12 가즈트랑스포르 에 떼끄니가즈 Sealed insulating vessel provided with a primary retaining means
KR102026789B1 (en) 2012-01-09 2019-09-30 가즈트랑스포르 에 떼끄니가즈 Sealed insulating vessel provided with a primary retaining means
US20160137272A1 (en) * 2013-06-19 2016-05-19 Kawasaki Jukogyo Kabushiki Kaisha Double-shell tank and liquefied gas carrier ship
US10207775B2 (en) * 2013-06-19 2019-02-19 Kawasaki Jukogyo Kabushiki Kaisha Double-shell tank and liquefied gas carrier ship
US20170101163A1 (en) * 2014-02-28 2017-04-13 Mgi Thermo Pte Ltd Insulation apparatus and method
US9963207B2 (en) * 2014-02-28 2018-05-08 Lnt Marine Pte. Ltd. Insulation apparatus and method
US20180050765A1 (en) * 2015-03-31 2018-02-22 Lnt Marine Pte, Ltd. Hull insulation

Also Published As

Publication number Publication date
DE1254657B (en) 1967-11-23
SE318897B (en) 1969-12-22
JPS5130293B1 (en) 1976-08-31
NL6514811A (en) 1966-05-17
GB1103907A (en) 1968-02-21
ES319644A1 (en) 1966-08-01

Similar Documents

Publication Publication Date Title
US3341049A (en) Cryogenic insulation system
US4116150A (en) Cryogenic insulation system
US3341050A (en) Cryogenic insulation system
US4170952A (en) Cryogenic insulation system
US4378403A (en) Laminated composite material usable in heat-insulating composite walls
KR100325441B1 (en) Improvement on an impermeable and thermally insulating tank comprising prefabricated panels
US5586513A (en) Watertight and thermally insulating tank built into a bearing structure
US3682346A (en) Liquid cryogen storage tank for shore, ship or barge
KR890000444B1 (en) Insulating tank from shich leakage is not generated
US3403651A (en) Integral tank for transporting liquefied gas
US3931424A (en) Prefabricated thermal insulation structure and method
US3400849A (en) Tanks for the storage and transport of cryogenic fluids
KR102561638B1 (en) Sealed and insulated vessel with anti-convection filler plate
CN112639351B (en) Heat-insulating sealed storage tank
KR102558940B1 (en) Sealed and insulated tank with anti-convection filler elements
US3367492A (en) Insulation system
KR950008298A (en) Water-tight insulation tank embedded in the ship's support structure
KR20150141977A (en) Sealed and thermally insulating tank for storing a fluid
US3341051A (en) Cryogenic insulation system
US3862700A (en) Low temperature liquified gas storage tank
US3337079A (en) Stressed membrane liquified gas container
US3339780A (en) Duplex insulating panel
US3922987A (en) Liquefied gas tanker construction using stiffener members
KR20180061945A (en) Insulation system of membraine type storage tank and membrain type storage tank
KR101434146B1 (en) Connecting structure of insulating barrier