US3339275A - Method of making low frequency horn antenna - Google Patents

Method of making low frequency horn antenna Download PDF

Info

Publication number
US3339275A
US3339275A US359864A US35986464A US3339275A US 3339275 A US3339275 A US 3339275A US 359864 A US359864 A US 359864A US 35986464 A US35986464 A US 35986464A US 3339275 A US3339275 A US 3339275A
Authority
US
United States
Prior art keywords
horn
mold
fibrous sheets
conductive
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US359864A
Inventor
Donald L Anderson
Kenneth L Walton
Richard F Huelskamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Priority to US359864A priority Critical patent/US3339275A/en
Application granted granted Critical
Publication of US3339275A publication Critical patent/US3339275A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0275Ridged horns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Definitions

  • This invention relates to an improved technique for making and assembling a broadband ridged horn antenna,
  • the broadband automatic tracking system described in the copending application Ser. No. 406,106, filed Oct. 23, 1964, and assigned to the assignee of this application includes a plurality of ridged waveguide horns capable of operating over a frequency range of 50 me. to 500 me.
  • the horns are relatively large, having an overall length of 18 feet and an aperture diameter of 12 feet.
  • the fabrication and assembly of such horns by the conventional process of electroforming each on a die is impracticably complex and prohibitively costly.
  • an all-metal horn of this size is diificult to handle and transport, and the weight of an array of such horns, even when formed from lightweight metal such as aluminum, would impose severe loads on the bearings and drive mechanism of the tracking system and would limit the speed of response of the system.
  • An object of our invention is the provision of a method of making a broadband low frequency ridged horn antenna using lightweight non-metal materials in such a manner as to provide a structure having a greater strength to weight ratio than a corresponding metal structure.
  • Another object is the provision of a technique of assembling a low frequency horn of large dimensions that is compatible with the space limitations of modern transport vehicles and roadways.
  • a further object is the provision of the method of making a low frequency horn antenna of minimum weight and high strength for use in an automatic tracking system.
  • horn antennas with two substantially identical half sections, and securing these sections together at the site of erection of the antenna system in which the horns are used.
  • Each half horn is formedon a permanent mold using synthetic fibrous sheet materials such as reinforced glass cloth.
  • the sheet or cloth is impregnated with a resin, is vacuum sealed against the mold and is allowed to cure.
  • the hardened half shell is then removed from the mold and the interior is coated with metal by flame spraying to provide the reflective or conductive surface for the horn.
  • the pair of half sections are secured together along their edges to complete a horn antenna.
  • FIGURE 1 is a side elevation, partly in section, of a ridged horn antenna made in accordance with our invention
  • FIGURE 2 is a front view, partly in section, of the horn as viewed in line 22 of FIGURE 1;
  • FIGURE 3 is a rear perspective view of a permanent mold on which one-half of the horn antenna is formed;
  • FIGURE 4 is a flow diagram of the method of fabricating each half of the horn antenna
  • FIGURE 5 is a greatly enlarged section of the horn wall on the mold
  • FIGURES 6 and 7 are schematic outline drawings of the horn halves illustrating the manner in which they are connected together to form the complete antenna hornpand
  • FIGURE 8 is a greatly enlarged transverse section of the connection of finished half horns to each other at their mating edges.
  • FIGURE 1 A ridged horn antenna made in accordance with this invention is shown in FIGURE 1 and comprises substantially identical half sections 10 and 11 secured together by flanges 12 which form the mating edges of the half sections. Since the horn half sections are identical except possibly for the lengths of inserted feed element tubes 22a and 22b, like reference characters indicate like parts on the drawings.
  • the horn has a rectangular waveguide section 14 to which feed element 15 is connected on the horn center plane for transferring energy between the horn and external circuits. Waveguide section 14 is closed by a rear end Wall 16 and opens into a flared forward section 17 which preferably has a circular aperture 18 at its front end.
  • Horn half sections 10 and 11 have longitudinally extending inwardly projecting preferably hollow ridges 20 which have a minimum inter-ridge spacing d (see FIGURE 2) toward the rear of the horn and which are forwardly longitudinally curved outwardly near the front end to a tapered junction with the wall of the horn at aperture 18.
  • Microwave feed element 15 is supported on the ridged waveguide section 14 and comprises a pair of conductive tubes 22a and 22b permanently integrated into the section at the rear of horn ridges 20, a center conductor 23 extending through tube 22a, and a cone 24 traversing the space between the ridges and nonconductively supported on tube 22b.
  • Tube 22a and center conductor 23 connect to an external coupler 15a which projects from the waveguide for connection to appropriate transmitting or receiving circuits.
  • the sprayed metal film 45 forming the conductive boundary wall on the interior of the horn makes electrical contact with tube 22a.
  • Mold 25 comprises a hardened smooth-surfaced shell made of readily formable material such as plastic, or may be made of more durable material such as metal if needed for production of horns in large quantities.
  • the mold has a shape conforming to that of the interior of each half horn and has a longitudinally extending ridge-defining recess 26 extending from the front of the mold to a step 27 at the rear thereof.
  • a semi-cylindrical transverse recess 28 formed in the middle of the forward face of step 27 symmetrically of the central 1ongitudinal plane of the pattern serves to physically locate feed tube 22a or 22b in the proper position.
  • a rim 30 extends outwardly from all sides of the bottom of the mold and provides a working surface for locating horn flange 12 and for the vacuum sealing steps as will be explained below.
  • each half section of the horn with a composite wall shown in FIGURE 5.
  • the outer surface of mold 25, including recess 26, initially is sealed if necessary, and is coated wtih a suitable release agent such as wax or polyvinyl chloride which lubricates the surface and facilitates separation of the half horn from the mold.
  • a peel cloth 32 (see FIGURE 5) is laid against the entire working surface of the pattern and is impregnated with a thermosetting polyester resin.
  • the peel cloth is a Fiberglas cloth designed to be stripped or peeled from the horn wall to provide a roughened or textured surface to which the sprayed metal film 45 more readilyadheres; the metal film is applied after the horn half section is lifted from the pattern.
  • a facing sheet 33 made of glass cloth is next applied over the entire mold exterior against the peel cloth.
  • Conductive tube 22a or 22b is placed in recess 28 of rear step 27 so as to extend transversely of the pattern recess 26 from the bottom of the latter to the plane of the outer wall of the waveguide pattern part, and is supported in this position by a jig which extends over the side of the pattern.
  • Tubes 22a and 22b may be identical in length or tube 22a may be longer so as to project outwardly from the waveguide for convenience in making external connections.
  • Polyurethane foam 29 directed on step 27 around the tube serves to support the latter in position when the jig is later removed.
  • Aluminum angle strips comprising the edge flange 12 are then placed on rim 30 tightly against the side and rear surfaces of the covered mold and the assembly is ready for the forming of the main body of the horn wall.
  • the strength and rigidity of the horn antenna is derived primarily from the horn wall itself in conjunction with the longitudinal ridges 20 which not only enhance electrical performance of the antenna but also serve to reinforce and strengthen the structure.
  • the mating flanges 12 also reinforce the horn.
  • the form of horn wall we have found to provide the maximum strength to weight ratio for this antenna includes a unitary reinforced double-layer synthetic fibrous sheet 34 (see FIGURES and 8) as the main body of the wall.
  • One type of such sheet material suitable for use in the horn wall is Raypan made by Raymond Manufacturing Company and consisting of two layers of interwoven Fiberglas cloth spaced by triangular-sectioned rigid foamed-plastic rods.
  • Sheet 34 is first applied to the mold recess 26 to form the body of ridge 20, and thereafter is applied to the outer mold surfaces to form the flared section 17 and waveguide section 14.
  • the ridge wall is constructed with a strip 36 of sheet material 34, preferably one-half inch thick, placed along the bottom wall 26a of recess 26 from the front of the mold to step 27 and around conductive tube 22a or 22b. Strips 37a and 37b of the same one-half inch material are then cut to the shape and dimensions of sides 26b of recess 26 and are cemented to those sides for the entire length of the recess.
  • Strips 36, 37a and 37b are impregnated with a polyester resin either before or after placement on the mold and are then pressed tightly against the walls 26a and 26b by the vacuum bag technique; i.e., a polyvinyl chloride film or sheet is spread over the materials on the mold and within recess 26, is sealed against rim 30 and is connected to a vacuum pump.
  • lift plates 38 shown in broken line in FIGURES 1 and 2, are bonded to the side strips 37a and 37b and project out of the recess as shown. These plates provide strategically located anchor points within the horn shell for lifting it from the mold.
  • a cap or cover plate 40 (see FIGURE 2) of sandwich construction comprising facing sheet 33 (FIGURE 5), a reinforced body sheet 34, preferably one inch thick, and an outside facing sheet 41, is precut to overlay the open outer edges of the recess 26.
  • Lift plates 38 extend up through suitable openings in plate 40 and an opening at the rear receives the upper end of tube 22a.
  • the remainder of the mold is covered with a sheet 43 having the same sandwich-type construction to form the end wall 16 and the side wall of the Waveguide 14 and flared part 17, and is cemented to edge flange 12, see FIGURE 8. Resin is applied to the wall material before its placement on the pattern so that it is thoroughly impregnated. If a roughened texture on the outer surface of cap 40 and sheet 43 is desired to facilitate finishing, a peel cloth may be added.
  • the entire pattern is then covered with a vacuum bag which is sealed to rim 30 with an appropriate sealing compound and is connected to a vacuum pump.
  • the wet Wall material is pressed tightly against the mold and the resin permeates the layers of the wall to insure adherence between these layers.
  • the entire assembly is allowed to cure for 72 hours at a temperature of approximately 70 degrees Fahrenheit.
  • the shell constituting the half horn is separated from the mold by a hoist connected to lift' plates 38 and is inverted during the final steps of the process.
  • the half horn is temporarily braced by transverse rods across its aperture 18, lift plates 38 are cut off at cap plate 40, the openings in the latter are sealed and all peel cloth is removed.
  • the entire inside surface of the shell is then covered with a metal film 45, such as aluminum, which may be applied by flame spraying.
  • This metal film is bonded to the inner end of tube 22a so as to make good electrical contact with the feed system.
  • the metallized surface- is then painted with a suitable compound to seal and toughen the surface and to make it additionally weatherproof and resistant to chipping and cracking.
  • Cone 24 of feed element 15 is mounted on an insulator on the inner end of tube 22b.
  • a method of making a horn antenna having opposed inwardly projecting spaced ridges extending longitudinally of the horn consisting of the steps of applying a release agent to the surfaces of a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim,
  • a method of making a horn antenna having opposed inwardly projecting spaced ridges extending longitudinally of the horn consisting of the steps of applying a release agent to the surfaces of a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim,
  • a method of making a double-ridged horn antenna comprising two substantially identical half horns and utilizing a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim, consisting of the steps of placing an edge flange against the mold on the bottom nm, placing multilayer resin-impregnated fibrous sheets against the mold and cementing same to the edge flange, pressing said sheets against the mold and allowing same to cure whereby to form a half horn, separating the half horn from the mold, applying a conductive film over the entire interior of the half horn, repeating the aforementioned steps to form a second horn half, joining the two opposed horn halves at the edge flanges to form the complete horn, and connecting a microwave feed element to the rear of the 5 horn.

Description

S pt, 5, 1967 E D. L. ANDERSON ETAL 3 39 275 METHOD OF MAKING LOW FREQUENCY HORN ANTENNA Filed April 15, 1964 2- Sheets-Sheet 1 INVENTORS DONALD L. ANDERSON KENNETH L. WALTON RICHARD E HUELSKAMP ATTORNEY SePt- 1.957 D. L. ANDERSON AL METHOD OF MAKING LOWF'REQUENCY HORN ANTENNA F i'led April 15, 1964 2 Sheets-Sheet 2.
PLACE AND IMPREG NATE LAMINAR SHEET ON PATTERN VACUUM BAG AND CU RE L ocATE FEED ELEMENT TUBE AND E DGE FLANGE REMOVE HALF HORN FROM PATTERN APPLY RELEASE AGENT, PEEL CLOTH AND FACING'SHEET REMOVE PEEL CLOTH AND APPLY METAL FILM SECURE HORN HALVES TOGETHER I. I. I. I I I.
w v v. N E O N M 080 TRT NEL EDA VI V N W H E W #N L R H DT A N H N N C v EI D K R. OJ Y B Q United States Patent Filed Apr. 15, 1964, Ser. No. 359,864 3 Claims. (Cl. 29-601) This invention relates to an improved technique for making and assembling a broadband ridged horn antenna,
The broadband automatic tracking system described in the copending application Ser. No. 406,106, filed Oct. 23, 1964, and assigned to the assignee of this application, includes a plurality of ridged waveguide horns capable of operating over a frequency range of 50 me. to 500 me. For operation in this frequency range, the horns are relatively large, having an overall length of 18 feet and an aperture diameter of 12 feet. The fabrication and assembly of such horns by the conventional process of electroforming each on a die is impracticably complex and prohibitively costly. Furthermore, an all-metal horn of this size is diificult to handle and transport, and the weight of an array of such horns, even when formed from lightweight metal such as aluminum, would impose severe loads on the bearings and drive mechanism of the tracking system and would limit the speed of response of the system.
An object of our invention is the provision of a method of making a broadband low frequency ridged horn antenna using lightweight non-metal materials in such a manner as to provide a structure having a greater strength to weight ratio than a corresponding metal structure.
Another object is the provision of a technique of assembling a low frequency horn of large dimensions that is compatible with the space limitations of modern transport vehicles and roadways.
A further object is the provision of the method of making a low frequency horn antenna of minimum weight and high strength for use in an automatic tracking system.
These objects are achieved in accordance with our invention by fabricating horn antennas with two substantially identical half sections, and securing these sections together at the site of erection of the antenna system in which the horns are used. Each half horn is formedon a permanent mold using synthetic fibrous sheet materials such as reinforced glass cloth. The sheet or cloth is impregnated with a resin, is vacuum sealed against the mold and is allowed to cure. The hardened half shell is then removed from the mold and the interior is coated with metal by flame spraying to provide the reflective or conductive surface for the horn. After shipment to the site, the pair of half sections are secured together along their edges to complete a horn antenna.
These and other objects of our invention will become apparent from the following description of a preferred embodiment thereof reference being had to the accompanying drawings in which:
FIGURE 1 is a side elevation, partly in section, of a ridged horn antenna made in accordance with our invention;
FIGURE 2 is a front view, partly in section, of the horn as viewed in line 22 of FIGURE 1;
FIGURE 3 is a rear perspective view of a permanent mold on which one-half of the horn antenna is formed;
FIGURE 4 is a flow diagram of the method of fabricating each half of the horn antenna;
FIGURE 5 is a greatly enlarged section of the horn wall on the mold;
FIGURES 6 and 7 are schematic outline drawings of the horn halves illustrating the manner in which they are connected together to form the complete antenna hornpand FIGURE 8 is a greatly enlarged transverse section of the connection of finished half horns to each other at their mating edges.
A ridged horn antenna made in accordance with this invention is shown in FIGURE 1 and comprises substantially identical half sections 10 and 11 secured together by flanges 12 which form the mating edges of the half sections. Since the horn half sections are identical except possibly for the lengths of inserted feed element tubes 22a and 22b, like reference characters indicate like parts on the drawings. The horn has a rectangular waveguide section 14 to which feed element 15 is connected on the horn center plane for transferring energy between the horn and external circuits. Waveguide section 14 is closed by a rear end Wall 16 and opens into a flared forward section 17 which preferably has a circular aperture 18 at its front end. Horn half sections 10 and 11 have longitudinally extending inwardly projecting preferably hollow ridges 20 which have a minimum inter-ridge spacing d (see FIGURE 2) toward the rear of the horn and which are forwardly longitudinally curved outwardly near the front end to a tapered junction with the wall of the horn at aperture 18.
Microwave feed element 15 is supported on the ridged waveguide section 14 and comprises a pair of conductive tubes 22a and 22b permanently integrated into the section at the rear of horn ridges 20, a center conductor 23 extending through tube 22a, and a cone 24 traversing the space between the ridges and nonconductively supported on tube 22b. Tube 22a and center conductor 23 connect to an external coupler 15a which projects from the waveguide for connection to appropriate transmitting or receiving circuits. The sprayed metal film 45 forming the conductive boundary wall on the interior of the horn makes electrical contact with tube 22a.
Each of the half sections 10 are formed on a mold 25 shown in FIGURE 3. Mold 25 comprises a hardened smooth-surfaced shell made of readily formable material such as plastic, or may be made of more durable material such as metal if needed for production of horns in large quantities. The mold has a shape conforming to that of the interior of each half horn and has a longitudinally extending ridge-defining recess 26 extending from the front of the mold to a step 27 at the rear thereof. A semi-cylindrical transverse recess 28 formed in the middle of the forward face of step 27 symmetrically of the central 1ongitudinal plane of the pattern serves to physically locate feed tube 22a or 22b in the proper position. A rim 30 extends outwardly from all sides of the bottom of the mold and provides a working surface for locating horn flange 12 and for the vacuum sealing steps as will be explained below.
The steps shown in block diagram in FIGURE 4 are followed in fabricating each half section of the horn with a composite wall shown in FIGURE 5. The outer surface of mold 25, including recess 26, initially is sealed if necessary, and is coated wtih a suitable release agent such as wax or polyvinyl chloride which lubricates the surface and facilitates separation of the half horn from the mold. A peel cloth 32 (see FIGURE 5) is laid against the entire working surface of the pattern and is impregnated with a thermosetting polyester resin. The peel cloth is a Fiberglas cloth designed to be stripped or peeled from the horn wall to provide a roughened or textured surface to which the sprayed metal film 45 more readilyadheres; the metal film is applied after the horn half section is lifted from the pattern. A facing sheet 33 made of glass cloth is next applied over the entire mold exterior against the peel cloth.
Conductive tube 22a or 22b is placed in recess 28 of rear step 27 so as to extend transversely of the pattern recess 26 from the bottom of the latter to the plane of the outer wall of the waveguide pattern part, and is supported in this position by a jig which extends over the side of the pattern. Tubes 22a and 22b may be identical in length or tube 22a may be longer so as to project outwardly from the waveguide for convenience in making external connections. Polyurethane foam 29 directed on step 27 around the tube serves to support the latter in position when the jig is later removed. Aluminum angle strips comprising the edge flange 12 (see FIGURE 8) are then placed on rim 30 tightly against the side and rear surfaces of the covered mold and the assembly is ready for the forming of the main body of the horn wall.
In accordance with our invention, the strength and rigidity of the horn antenna is derived primarily from the horn wall itself in conjunction with the longitudinal ridges 20 which not only enhance electrical performance of the antenna but also serve to reinforce and strengthen the structure. The mating flanges 12 also reinforce the horn. The form of horn wall we have found to provide the maximum strength to weight ratio for this antenna includes a unitary reinforced double-layer synthetic fibrous sheet 34 (see FIGURES and 8) as the main body of the wall. One type of such sheet material suitable for use in the horn wall is Raypan made by Raymond Manufacturing Company and consisting of two layers of interwoven Fiberglas cloth spaced by triangular-sectioned rigid foamed-plastic rods.
Sheet 34 is first applied to the mold recess 26 to form the body of ridge 20, and thereafter is applied to the outer mold surfaces to form the flared section 17 and waveguide section 14. The ridge wall is constructed with a strip 36 of sheet material 34, preferably one-half inch thick, placed along the bottom wall 26a of recess 26 from the front of the mold to step 27 and around conductive tube 22a or 22b. Strips 37a and 37b of the same one-half inch material are then cut to the shape and dimensions of sides 26b of recess 26 and are cemented to those sides for the entire length of the recess. Strips 36, 37a and 37b are impregnated with a polyester resin either before or after placement on the mold and are then pressed tightly against the walls 26a and 26b by the vacuum bag technique; i.e., a polyvinyl chloride film or sheet is spread over the materials on the mold and within recess 26, is sealed against rim 30 and is connected to a vacuum pump. After the bag is removed, lift plates 38, shown in broken line in FIGURES 1 and 2, are bonded to the side strips 37a and 37b and project out of the recess as shown. These plates provide strategically located anchor points within the horn shell for lifting it from the mold.
The remaining parts of the horn fall are constructed next. A cap or cover plate 40 (see FIGURE 2) of sandwich construction comprising facing sheet 33 (FIGURE 5), a reinforced body sheet 34, preferably one inch thick, and an outside facing sheet 41, is precut to overlay the open outer edges of the recess 26. Lift plates 38 extend up through suitable openings in plate 40 and an opening at the rear receives the upper end of tube 22a. The remainder of the mold is covered with a sheet 43 having the same sandwich-type construction to form the end wall 16 and the side wall of the Waveguide 14 and flared part 17, and is cemented to edge flange 12, see FIGURE 8. Resin is applied to the wall material before its placement on the pattern so that it is thoroughly impregnated. If a roughened texture on the outer surface of cap 40 and sheet 43 is desired to facilitate finishing, a peel cloth may be added.
The entire pattern is then covered with a vacuum bag which is sealed to rim 30 with an appropriate sealing compound and is connected to a vacuum pump. The wet Wall material is pressed tightly against the mold and the resin permeates the layers of the wall to insure adherence between these layers. The entire assembly is allowed to cure for 72 hours at a temperature of approximately 70 degrees Fahrenheit.
After the vacuum bag is removed, the shell constituting the half horn is separated from the mold by a hoist connected to lift' plates 38 and is inverted during the final steps of the process. The half horn is temporarily braced by transverse rods across its aperture 18, lift plates 38 are cut off at cap plate 40, the openings in the latter are sealed and all peel cloth is removed. The entire inside surface of the shell is then covered with a metal film 45, such as aluminum, which may be applied by flame spraying. This metal film is bonded to the inner end of tube 22a so as to make good electrical contact with the feed system. The metallized surface-is then painted with a suitable compound to seal and toughen the surface and to make it additionally weatherproof and resistant to chipping and cracking. Cone 24 of feed element 15 is mounted on an insulator on the inner end of tube 22b.
Two shells comprising half horns made in the manner described above are joined along the mating edges of flanges 12 (see FIGURES 6, 7 and 8) to form a complete horn, and the flanges are releasably secured together by bolts 46. The exterior of the horn may then be weatherproofed by painting. Center conductor 23 of feed element 15 is inserted through tube 22a into engagement with cone 24 and the horn is ready for operation. In practice, a ridged Waveguide horn of this type has a phase error which may be corrected by a suitable lens located in its aperture 18. A lens for this purpose is described in the copending application of Donald L. Anderson, Ser. No. 374,521, filed June 11, 1964, and assigned to the assignee of this application.
A ridged Waveguide horn fabricated in accordance with this invention and successfully tested in the tracking system described in the aforementioned patent application has the following dimensions and characteristics:
Horn length feet 18 Diameter of aperture 18 do 12 Wall thickness inches 1.06 Weight lbs 800 Approximate weight of aluminum horn having same dimensions lbs 1600 Flexural strength to weight ratio of described horn compared to corresponding aluminum horn 7.5/1.0
What is claimed is:
1. A method of making a horn antenna having opposed inwardly projecting spaced ridges extending longitudinally of the horn, consisting of the steps of applying a release agent to the surfaces of a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim,
laying a peel cloth and a facing sheet over the mold surface,
mounting a conductive feed tube transversely of and at the rear of the longitudinal ridge-defining recess of the mold,
disposing a structural edge flange against the mold on the rim,
placing multilayer resin-impregnated fibrous sheets on the bottom and sides of the longitudinal recess, pressing said fibrous sheets against the mold and allowing same to cure,
cementing lift plates to the fibrous sheets defining the sides of the ridges,
placing similar multilayer resin-impregnated fibrous sheets over the remainder of the mold and cement- .ing same to the edge flange,
pressing said sheets against the mold and allowing same to cure whereby to form a half horn,
pulling on said lift plates and separating the half horn from the mold,
removing the lift plates and peel cloth,
flame spraying a metal film over the entire interior of the half horn including the inner edge of the conductive tube,
repeating the aforementioned steps to form a second half horn,
releasably joining the two opposed half horns at the edge flanges to form the complete horn, and
electrically connecting the conductive tubes to a micro wave feed assembly.
2. A method of making a horn antenna having opposed inwardly projecting spaced ridges extending longitudinally of the horn, consisting of the steps of applying a release agent to the surfaces of a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim,
mounting a conductive feed tube transversely of and at the rear of the longitudinal ridge-defining recess of the mold,
disposing a structural edge flange against the mold on the bottom rim,
placing multilayer resin-impregnated fibrous sheets on the bottom and sides of the longitudinal recess,
pressing said fibrous sheets against the mold and allowing same to cure,
placing similar multilayer resin-impregnated fibrous sheets over the remainder of the mold and securing same to the edge flange,
pressing said sheets against the mold and allowing same to cure whereby to form a half horn,
separating the half horn from the mold,
flame spraying a metal film over the entire interior of the half horn including the inner edge of the conductive tube,
repeating the aforementioned steps to form a second half horn,
joining the two opposed half horns at the edge flanges to form the complete horn, and electrically connecting the conductive tubes to a microwave feed assembly. 3. A method of making a double-ridged horn antenna comprising two substantially identical half horns and utilizing a mold having the shape of the interior of one-half of the horn antenna and having a bottom rim, consisting of the steps of placing an edge flange against the mold on the bottom nm, placing multilayer resin-impregnated fibrous sheets against the mold and cementing same to the edge flange, pressing said sheets against the mold and allowing same to cure whereby to form a half horn, separating the half horn from the mold, applying a conductive film over the entire interior of the half horn, repeating the aforementioned steps to form a second horn half, joining the two opposed horn halves at the edge flanges to form the complete horn, and connecting a microwave feed element to the rear of the 5 horn.
References Cited UNITED STATES PATENTS 2,768,902 10/1956 Scholl 11711 XR 2,948,896 8/1960 Hart 343--91 2,998,922 9/1961 Gibson 117-105.2 XR 3,029,433 4/1962 Sokol 343-912 3,157,847 11/1964 Williams 33395 3,167,776 1/1965 Suliteanu 29- 155.5 XR
ROBERT F. WHITE, Primary Examiner.
T. J. CARVIS, Assistant Examiner,

Claims (1)

1. A METHOD OF MAKING A HORN ANTENNA OPPOSED INWARDLY PROJECTING SPACED RIDGES EXTENDING LONGITUDINALLY OF THE HORN, CONSISTING OF THE STEPS OF APPLYING A RELEASE AGENT TO THE SURFACES OF A MOLD HAVING THE SHAPE OF THE INTERIOR OF ONE-HALF OF THE HORN ANTENNA AND HAVING A BOTTOM RIM, LAYING A PEEL CLOTH AND A FACING SHEET OVER THE MOLD SUFACE, MOUNTING A CONDUCTIVE FEED TUBE TRANSVERSELY OF AND AT THE REAR OF THE LONGITUDINAL RIDGE-DEFINING RECESS OF THE MOLD, DISPOSING A STRUCTURAL EDGE FLANGE AGAINST THE MOLD ON THE RIM, PLACING MULTILAYER RESIN-IMPREGNATED FIBROUS SHEETS ON THE BOTTOM AND SIDES OF THE LONGITUDINAL RECESS, PRESSING SAID FIBROUS SHEETS AGAINST THE MOLD AND ALLOWING SAME TO CURE, CEMENTING LIFT PLATES TO THE FIBROUS SHEETS DEFINING THE SIDES OF THE RIDGES, PLACING SIMILAR MULTILAYER RESIN-IMPREGNATED FIBROUS SHEETS OVER THE REMAINER OF THE MOLD AND CEMENTING SAME TO THE EDGE FLANGE, PRESSING SAID SHEETS AGAINST THE MOLD AND ALLOWING SAME TO CURE WHEREBY TO FORM A HALF HORN, PULLING ON SAID LIFT PLATES AND SEPARATING THE HALF HORN FROM THE MOLD, REMOVING THE LIFT PLATES AND PEEL CLOTH, FLANGE SPRAYING A METAL FILM OVER THE ENTIRE INTERIOR OF THE HALF HORN INCLUDING THE INNER EDGE OF THE CONDUCTIVE TUBE, REPEATING THE AFOREMENTIONED STEPS TO FORM A SECOND HALF HORN, RELEASABLY JOINING THE TWO OPPOSED HALF HORNS AT THE EDGE FLANGES TO FORM THE COMPLETE HORN, AND ELECTRICALLY CONNECTING THE CONDUCTIVE TUBES TO A MICROWAVE FEED ASSEMBLY.
US359864A 1964-04-15 1964-04-15 Method of making low frequency horn antenna Expired - Lifetime US3339275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US359864A US3339275A (en) 1964-04-15 1964-04-15 Method of making low frequency horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US359864A US3339275A (en) 1964-04-15 1964-04-15 Method of making low frequency horn antenna

Publications (1)

Publication Number Publication Date
US3339275A true US3339275A (en) 1967-09-05

Family

ID=23415609

Family Applications (1)

Application Number Title Priority Date Filing Date
US359864A Expired - Lifetime US3339275A (en) 1964-04-15 1964-04-15 Method of making low frequency horn antenna

Country Status (1)

Country Link
US (1) US3339275A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500418A (en) * 1965-08-28 1970-03-10 Telefunken Patent Satellite antenna array with electrically adjustable beam shaping
US3510873A (en) * 1965-10-18 1970-05-05 Comelit Comp Elettro It Horn-reflector antenna
US3985851A (en) * 1974-06-24 1976-10-12 General Dynamics Corporation Method of forming a feed horn
WO1985003170A1 (en) * 1984-01-06 1985-07-18 B.E.L-Tronics Limited Antenna/mixer construction for microwave radar detectors
US4571593A (en) * 1984-05-03 1986-02-18 B.E.L.-Tronics Limited Horn antenna and mixer construction for microwave radar detectors
US5114649A (en) * 1989-03-24 1992-05-19 Prio Co. Incorporated Process for improving an adhering property of the adhering surface of an unsaturated polyester resin
US5285024A (en) * 1988-06-09 1994-02-08 Rosander Hans R Microphone
WO1998047198A2 (en) * 1997-03-25 1998-10-22 The University Of Virginia Patent Foundation A preferential crystal etching technique for the fabrication of millimeter and submillimeter wavelength horn antennas
JP2011166698A (en) * 2010-02-15 2011-08-25 Toshiba Denpa Products Kk Method of manufacturing ridge horn antenna
US20150002354A1 (en) * 2012-01-18 2015-01-01 Thales Holdings Uk Plc Horn antenna
USD972539S1 (en) * 2021-01-21 2022-12-13 Nan Hu Conical dual-polarization horn antenna
USD976880S1 (en) * 2021-02-05 2023-01-31 Nan Hu Conical dual-polarization horn antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768902A (en) * 1952-05-28 1956-10-30 Scholl Mfg Co Inc Method of making adhesive tape with non-skid backing
US2948896A (en) * 1952-09-08 1960-08-09 Gabriel Co Weatherproof antenna and reflector and method of making the same
US2998922A (en) * 1958-09-11 1961-09-05 Air Reduction Metal spraying
US3029433A (en) * 1958-06-13 1962-04-10 Republic Aviat Corp Radar reflector
US3157847A (en) * 1961-07-11 1964-11-17 Robert M Williams Multilayered waveguide circuitry formed by stacking plates having surface grooves
US3167776A (en) * 1962-05-31 1965-01-26 Sylvania Electric Prod Dielectric foam antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768902A (en) * 1952-05-28 1956-10-30 Scholl Mfg Co Inc Method of making adhesive tape with non-skid backing
US2948896A (en) * 1952-09-08 1960-08-09 Gabriel Co Weatherproof antenna and reflector and method of making the same
US3029433A (en) * 1958-06-13 1962-04-10 Republic Aviat Corp Radar reflector
US2998922A (en) * 1958-09-11 1961-09-05 Air Reduction Metal spraying
US3157847A (en) * 1961-07-11 1964-11-17 Robert M Williams Multilayered waveguide circuitry formed by stacking plates having surface grooves
US3167776A (en) * 1962-05-31 1965-01-26 Sylvania Electric Prod Dielectric foam antenna

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500418A (en) * 1965-08-28 1970-03-10 Telefunken Patent Satellite antenna array with electrically adjustable beam shaping
US3510873A (en) * 1965-10-18 1970-05-05 Comelit Comp Elettro It Horn-reflector antenna
US3985851A (en) * 1974-06-24 1976-10-12 General Dynamics Corporation Method of forming a feed horn
WO1985003170A1 (en) * 1984-01-06 1985-07-18 B.E.L-Tronics Limited Antenna/mixer construction for microwave radar detectors
US4571593A (en) * 1984-05-03 1986-02-18 B.E.L.-Tronics Limited Horn antenna and mixer construction for microwave radar detectors
US5285024A (en) * 1988-06-09 1994-02-08 Rosander Hans R Microphone
US5114649A (en) * 1989-03-24 1992-05-19 Prio Co. Incorporated Process for improving an adhering property of the adhering surface of an unsaturated polyester resin
WO1998047198A2 (en) * 1997-03-25 1998-10-22 The University Of Virginia Patent Foundation A preferential crystal etching technique for the fabrication of millimeter and submillimeter wavelength horn antennas
WO1998047198A3 (en) * 1997-03-25 1999-06-24 Univ Virginia A preferential crystal etching technique for the fabrication of millimeter and submillimeter wavelength horn antennas
US6404402B1 (en) 1997-03-25 2002-06-11 University Of Virginia Patent Foundation Preferential crystal etching technique for the fabrication of millimeter and submillimeter wavelength horn antennas
JP2011166698A (en) * 2010-02-15 2011-08-25 Toshiba Denpa Products Kk Method of manufacturing ridge horn antenna
US20150002354A1 (en) * 2012-01-18 2015-01-01 Thales Holdings Uk Plc Horn antenna
USD972539S1 (en) * 2021-01-21 2022-12-13 Nan Hu Conical dual-polarization horn antenna
USD976880S1 (en) * 2021-02-05 2023-01-31 Nan Hu Conical dual-polarization horn antenna

Similar Documents

Publication Publication Date Title
US3339275A (en) Method of making low frequency horn antenna
US2668327A (en) Method of making a curved honeycomb product
US2948896A (en) Weatherproof antenna and reflector and method of making the same
EP0823374B1 (en) One piece spacecraft frame
AU2016201021B2 (en) Conformal composite antenna assembly
US4025996A (en) Sinusoidal structural element
US4453357A (en) Wall structure, wall element for use in the wall structure and method for making the same
US6496151B1 (en) End-fire cavity slot antenna array structure and method of forming
US7817097B2 (en) Microwave antenna and method for making same
US7097731B2 (en) Method of manufacturing a hollow section, grid stiffened panel
JPH0239920A (en) Frame particularly for aircraft fugelage
US3150030A (en) Laminated plastic structure
US4251309A (en) Method of making rotor blade root end attachment
GB2032832A (en) Foam-containing structures
JPH0312232B2 (en)
US4255752A (en) Lightweight composite slotted-waveguide antenna and method of manufacture
CN104767035B (en) A kind of high-precision carbon fiber subreflector forming method
US4191604A (en) Method of constructing three-dimensionally curved, knit wire reflector
US4242686A (en) Three-dimensionally curved, knit wire electromagnetic wave reflector
GB2196922A (en) Airship gondola construction
US3640798A (en) Composite structural core assembly
GB1584732A (en) Plastics constructions
US5299397A (en) Frangible enclosure with low resistance to impact
US3395059A (en) Method of making lightweight horn antenna
US3085925A (en) Method of forming an aircraft part having a pliable deicer boot thereon