US3336645A - Method and apparatus for preparing warp by dividing sheet material longitudinally - Google Patents

Method and apparatus for preparing warp by dividing sheet material longitudinally Download PDF

Info

Publication number
US3336645A
US3336645A US433402A US43340265A US3336645A US 3336645 A US3336645 A US 3336645A US 433402 A US433402 A US 433402A US 43340265 A US43340265 A US 43340265A US 3336645 A US3336645 A US 3336645A
Authority
US
United States
Prior art keywords
filaments
warp
sheet material
fabric
slitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433402A
Inventor
Mirsky Alexander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3336645A publication Critical patent/US3336645A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • B26D1/24Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with another disc cutter
    • B26D1/245Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with another disc cutter for thin material, e.g. for sheets, strips or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02HWARPING, BEAMING OR LEASING
    • D02H3/00Warping machines
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H7/00Apparatus or processes for cutting, or otherwise severing, specially adapted for the cutting, or otherwise severing, of textile materials
    • D06H7/04Apparatus or processes for cutting, or otherwise severing, specially adapted for the cutting, or otherwise severing, of textile materials longitudinally
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/16Making paper strips for spinning or twisting

Definitions

  • This invention relates to a method of preparing the warp for weaving or warp-knitting by dividing sheet material longitudinally.
  • This invention consists in a method of weaving, knitting or preparing a warp beam, including dividing a sheet material into a plurality of longitudinally-extending filaments, and either feeding these filaments continuously into a weaving loom or warp-knitting machine, or Winding the filaments continuously oh. onto a warp beam.
  • the filaments can subsequently be wound off the warp beam into a weavingloom or warp-knitting machine.
  • the dividing operation is referred to as slitting herein, although some dividing operations may not be strictly slitting operations.
  • the filaments need not be individually wound off onto for instance separate cones, but can be kept generally in their planar sheetlike relationship, excluding costly warp preparation; the filaments however can be given a lease (i.e. separated into at least two layers) if desired for ease in manipulation or handling, to reduce mechanical friction or chafing and the propensity for the generation of or the effect of static electricity, a lease may be provided by using interengaging shear discs for slitting.
  • the sheet may be rolled on the warp beam, and slit after being unrolled from the warp beam, the filaments being passed through the eyes in the healds.
  • the filaments can in a similar manner be led through eyes in the knitting head, so that Warped yarn as such is not required. This obviates any need for warping as such, and for providing warp yarn before weaving or warp knitting.
  • the warp beam may be prepared away from the weaving loom or warp-knitting machine, i.e. in a separate unit comprising slitting means and a beaming-off stand containing the warp beam onto which the slit filaments may be directly wound to any length that may be required. Subsequently, the warp beam can be inserted into the weaving loom or warp-knitting machine as appropriate.
  • slitting may be carried out at high speed from a larger roll than could be accommodated on an individual loom or warp-knitting machine, and each individual loom or Warp-knitting machine may be given the length of warp required for its scheduled production run.
  • sheets e.g. of paper
  • the filaments can be interleaved with the filaments, continuously or spasmodically.
  • the end of another roll can be attached to the end of the first roll, such as for instance by welding if the material is a thermoplastic resin, with the use of a heated transverse clamp. If suitable, chemical means or adhesives can be used for attaching the ends together and an adhesive tape could be stuck transversely to join the rolls. When the ends of the rolls are attached together, there is no need for any re-threading and thus continuity of operation can be provided. Naturally, the attachment must be such that when the sheets are slit, the individual filaments so formed do not come apart at the joint.
  • the slitting may be effected by for instance stationary,
  • rotary or oscillatory blades, shearing the application of electrical energy (e.g. using sparks to slit plastics material), chemical energy, heat or light energy, hot wires, nibbling action, pneumatic means, or hydraulic means.
  • electrical energy e.g. using sparks to slit plastics material
  • chemical energy heat or light energy
  • hot wires e.g., a cordless power
  • nibbling action e.g., pneumatic means, or hydraulic means.
  • Some slitting methods are already known. Hence the slitting may be eifected by a plurality of parallel cutters, for instance thin blades, spaced apart to a suitable distance, and preferably arranged and mounted such that they can be rotated during the slitting. Wherever the slitting is elfected using blades or by shearing action, sharpening means may be provided.
  • the rotary cutters can be aranged to be self-sharpening or sharpening means may be mounted adjacent to the cutters so as to contact each portion of the cutting edge once in every revolution, or periodically, as required.
  • the cutters may in addition or alternatively be arranged to be quickly replaceable. It is found desirable to be able to replace the cutters either singly, or in groups, and change the density of the cutters by simple replacement.
  • One simple arrangement for accomplishing this comprises a rotary mounting bar having a non-circular profile in cross-section, on which cutters and spacers are mounted, each cutter and spacer having a radial slot so that it can be fitted over the bar, with the cutters and spacers being clamped in position by axial pressure.
  • the cutters or shearers or other slitting means may be mounted in sections, say of 6-10 inches (about 15-25 ems.) in length, to enable any width of sheet material to be slit.
  • the bands between the sections of cutters or shearers or other slitting means can be reeled ofl to waste together material. More particularly, wide filaments which have been divided at the edges of the sheet material and which have been divided on each side by dividing means of adjacent groups are discarded.
  • the cutter blades need not be equidistantly spaced, and if found desirable, certain threads may be cast out, say by being rolled off. Milling cutters or a nibbling action may be employed to provide more space between individual filaments.
  • F or pneumatic or hydraulic slitting, high velocity needle jets of gas or liquid may be directed against the sheet material and to improve the slitting effect, the gas may be a used with solid particles, e.g. sand. If individual nozzles are required, these may be staggered (e.g. in three or more rows) in relation to the direction of travel of the sheet material to give a fine transverse spacing between the jets. Such staggering is more generally applicable to the slitting means, and for instance heated wires or electric spark points may be staggered.
  • Means may be provided to reduce the generation of, or to discharge, static electricity. If the known anti-static oils are not efficient enough for high speed production, conductors, e.g. contact brushes, may be provided touching the filaments, or the slitting may be performed in a conducting liquid. This liquid may be used to cool the cutter or shearer or other slitting means, or alternatively an air blast could be used for cooling.
  • conductors e.g. contact brushes
  • a twisting and/or tying in frame may be used with the slitting means mounted on the frame itself. This can enable the thread density and/ or wrap character to be changed conveniently.
  • the minimum width of the filaments will depend on the material itself, its thickness and the slitting means, employed.
  • a polyester film of A thou (about 0.006 mm.) thickness can be split by rotary cutters to a width of 2 mm. or less.
  • the density of the filaments may be readily alterable by mounting a line of suitable slitting means (e.g. hot wires or elastic sparking means) on a support which can be pivoted about an axis at right angles to the plane of the sheet material and thus the maximum filament width (and minimum density) is given when the line of slitting means is at right angles to the longitudinal axis of the sheet material.
  • suitable slitting means e.g. hot wires or elastic sparking means
  • Such an arrangement may be used with or without guide pins (referred to below).
  • the number of filaments can be increased by using two or more layers of the sheet material, preferably slitting all the layers simultaneously.
  • the filaments from the various sheets can be led through the eyes in the healds or guides in the knitting head, or the warp beam, in an appropriate manner.
  • the filaments can be fanned out or condensed, such as by using guide pins.
  • these guide pins may be mounted on a pivoted bar so that the efiective spacing can be altered.
  • a triple (about cms.) sheet could thus provide three times as many filaments which in turn with the help of guide pins, could provide any suitable width of warp section required, either less or more than 10 (about 25 cms.) in width.
  • the resultant filaments may either be used as monofilament or multi-filament thread.
  • each single filament may be used as one thread, or alternatively, two or more filaments may be used together to form one thread.
  • three layers may be slit together at a density of say 30 filaments per inch (about 12 filaments per cm.) in each layer, thus cutting 90 filaments per inch (about 36 filaments per cm.) simultaneously, and which 90 filaments could likewise be used in a variety of thread densities.
  • a fine reed or comb may be used to align the flat filaments before they reach the knitting head, and this may also be of assistance when weaving. It will be appreciated that if say, a sheet of /2 thou. (about 0.013 mm.) thickness is being slit at say 30 filaments to the inch (about 36- filaments per cm.) the filaments are still relatively flat.
  • One advantage of this arrangement is that any rubbing and chafing between the individual filaments can be liminated or reduced, thus reducing the generation and effects of static electricity, and mechanical interference.
  • the actual sheet material used depends upon the woven or knitted fabric required, as does the nature of additional materials used, for instance for the weft.
  • the sheet material may be transversely pre-corrugated.
  • sheet material paper, plastics materials, for instance acrylic polymers, polyesters, polyamide resins such as nylon or polyolefins; felts or other bonded fibers, such as fiberglass; bonded slivers; rubber; elastomers; composite materials; and metal.
  • plastics materials for instance acrylic polymers, polyesters, polyamide resins such as nylon or polyolefins
  • felts or other bonded fibers such as fiberglass; bonded slivers; rubber; elastomers; composite materials; and metal.
  • the fabrics that may be produced include: Backing cloth for woven or tufted carpets; rugs; furnishing fabrics; curtains; industrial cloths such as filter cloths; blankets; apparel cloths; woven or warp-knitted ribbons; webbing and bunting.
  • the properties of the filaments may be modified by drawing the filaments. This can not only alter the crosssectional shape, for instance by roundingoff the rectangular cross-section, but change the denier of the filaments and alter the crystalline or molecular structure.
  • the filaments may be heated prior to drawing them, though this may not be necessary with say other plastic filaments or with fine metal filaments.
  • the filaments may be heated after drawing, according to the degree of stability required. The drawing can be effected by passing the fiat plane or planes of filaments through two pairs of rolls rotating at difierential speeds, or by using the roll of sheet material itself in place of one of these pairs of rolls.
  • the fineness of the filaments may be altered by changing the gauge of the sheet, prior to slitting, by stretching the sheet.
  • the filaments may be formed with a crimp by passing the sheet or the filaments through the nip of a pair of serrated rolls so that the serrations cause a deformation of the thread.
  • the shape of the serrations can be chosen to suit the type of crimped thread required.
  • the invention also comprehends apparatus for carrying out the method described above, and wound warp beams or fabric produced by the method.
  • FIGURE 1 is a schematic diagram of apparatus for carrying out a method in accordance with this invention
  • FIGURE 2 is a schematic top view of a part of the apparatus of FIGURE 1;
  • FIGURE 3 is a schematic diagram of modified apparatus for carrying out a method in accordance with this invention.
  • FIGURE 4 is a diagrammatic view of a rotary cutter used in the apparatus of FIGURE 1;
  • FIGURE 5 is a view of a cutter blade
  • FIGURE 6 is a view of a distance piece
  • FIGURE 7 is a perspective view of a portion of the mounting bar
  • FIGURE 8 is a diagrammatic view, similar to FIG- URE 4, but showing a modified cutter
  • FIGURE 9 is a diagrammatic side view of the part of the apparatus of FIGURE 1, modified to show the cutter of FIGURE 8, and on a slightly larger scale;
  • FIGURE 10 is a diagrammatic view of a shearer
  • FIGURE 11 is a diagrammatic side view of the shearer of FIGURE 10, showing the shearer in operation;
  • FIGURE 12 is a schematic horizontal section through a hot wire slitter and a roll of sheet material
  • FIGURE 13 is a schematic top view of a pneumatic or hydraulic slitting means.
  • FIGURE 14 is a diagrammatic view showing the use of sparks for slitting the sheet material.
  • a roll 1 of sheet material is mounted on the warp beam, and the sheet material is led to a rotary cutter 2 operating in conjunction with support rolls 3.
  • the cutter 2 slits the sheet material longitudinally into a plurality of filaments, and these filaments are passed through a heating unit 4 and on to draw rolls 5 rotating at such a speed as to stretch the heated filaments.
  • position of the heating unit may be varied to heat the
  • the heating unit may not be necessary. Also for certain other applications, oriented film may not be necessary and so for many applications the heating unit may be superfluous.
  • the filaments pass through guides 6 and are subsequently woven or warp-knitted in a machine 7.
  • the machine 7 is not illustrated in detail, but suitable weaving or warp-knitting machines are well-known in the art. If the machine 7 is a weaving machine, the guides 6 can be the eyes in the healds. The machin 7 could alternatively be replaced by a beam-off stand.
  • a backing roll may be provided mounted on the other side of the sheet material to the cutter 2 to provide an anvil for cutting, and cooling means and anti-static electricity means may be provided.
  • the roll 1 provides sheet material which is led into the cutter 2 and thence through the heating unit 4 and rolls 5 in a manner similar to that illustrated in FIGURE 1. From the rolls 5, the filaments pass into the nip of a pair of heated serrated rolls 10, and the emergent serrated filaments are set in this configuration when they cool.
  • FIGURE 4 generally circular cutter blades 11 and generally circular distance pieces 12, of smaller radius than the cutter blades 11, are mounted on a mounting bar 13.
  • the end portions of the mounting bar 13 are not shown in FIGURE 4; however, the left-hand end (with reference tov the drawing) of the mounting bar 13 is provided with a stop, and the cutter blades 11 and distance pieces 12 are clamped against this stop by means of a compression spring 14 which is compressed by means of a threaded nut 15 being screwed along a screw thread 16 provided on the mounting bar 13.
  • the cutter blades 11 and distance pieces 12 each have a radial slot of a width d, which corresponds to the side of the square cross-section of the mounting bar 13.
  • the bar 13 may be of circular cross-section and have a key, with the distance pieces 12 being shaped appropriately.
  • the nut 15 is merely slackened off, the operation carried out, and the nut 15 is then screwed up again.
  • wires 22 frame are mounted on a support 23 to form one section of a slitting means
  • the frame 23 is pivoted at 24 on an axis at right angles to the plane of the sheet material coming from a roll 1.
  • the maximum effective width of the frame 23 is b, and the frame 23 may be pivoted in order to give a smaller effective width at, thereby increasing the density of the filaments. Only one section of the slitting means is shown, and the other sections may be transversely adjustable in order to allow for the angular adjustment of the individual frames 23.
  • the wires 22 are heated and a suitable sheet material is chosen so that the sheet material is slit by the wires.
  • FIGURE 13 shows a pneumatic or hydraulic slitting means in which nozzles 26 are mounted on a support 27 for slitting sheet material travelling in the direction of the arrow 28.
  • the nozzles have a radius which is considerably larger than the width of each individual filament, and are staggered in five rows in order to give the desired filament width.
  • sparking points arranged to be close to and on either side of the sheet material for providing a continuous stream of sparks for slitting the sheet material may be employed.
  • FIGURE 14 such an embodiment is illustrated and includes holding bars 30 arranged in spaced relationship provided with sparking points 31 and which points cooperate with the sheet material 1.
  • a process for manufacturing a fabric including warp filaments comprising the steps of providing for a material having substantially uniform composition across the width dimension thereof, dividing the sheet material into a substantially large multiplicity of longitudinally extending filaments, winding directly a large number of said filaments onto a single rotary member, transferring the thus wound filaments from the rotary member to fabric producing means, and producing the fabric in the fabric producing means employing the filaments as warp filaments.
  • the process of manufacturing a fabric including warp filaments comprising the steps of dividing at least two superimposed layers of sheet material of substantially uniform composition across the width thereof, dividing said layers simultaneously into a large multiplicity of longitudinally extending filaments, winding directly a large number of said filaments onto a single rotary member, transferring the filaments continuously to fabric producing means, and producing the fabric in the fabric producing means employing the filaments as warp filaments.
  • An apparatus for manufacturing a fabric including warp filaments comprising means for dividing sheet material of substantially uniform composition across the width dimension thereof into a large multiplicity of longitudinally extending filaments, a rotary member, means' for mounting said rotary member for rotational movement, means for rotating the rotary member to wind a large number of the longitudinally extending filaments thereon, a plurality of fabric producing means separate from said means for mounting the rotary member for rotational movement, and means for conveying the large number of filaments to respective fabric producing means.
  • rotary cutter blades include a rotary mounting bar having a non-circular over said mounting bar, and means for effecting axial pressure for clamping the cutters and spacers in position on the mounting bar.
  • said dividing means includes a support, a line of dividing components mounted on said support, guide means for guiding the sheet material in a predetermined plane past the dividing means, and means pivotally mounting said support for movement about an axis at right angles to the predetermined plane for altering the density of the filaments.
  • a process for manufacturing a fabric including warp filaments comprising the steps of providing for a drawable plastic film having a substantially uniform composition across the Width dimension thereof, dividing the film into a substantially large multiplicity of longitudinally extending filaments, drawing the material to deform plastically the film and decrease the widths of the individual filaments, winding directly a large number of said drawn filaments onto a single rotary member, transferring the thus wound filaments from the rotary member to a fabric producing means, and producing the fabric in the fabric producing means employing the drawn filaments as warp filaments.

Description

g- 22, 1967 A. MIRSKY 3,336,645
. METHOD AND APPARATUS FOR PREPARING WARP BY DIVIDING SHEET MATERIAL LONGITUDINALLY Filed Feb. 17, 1965 3 Sheets-Sheet 1 A. MIRSKY 3,336,645 0D AND APPARATUS FOR P AIilNG WARP BY VIDING SHEET MATERIAL GITUDINALLY 3 Sheets-Sheet 13 Aug. 22, 1967 METH DI Filed Feb. 17, 1965 H. H H 5 H g- 22, 1967 A. MIRSKY I 3,33 45 METHOD AND APPARATUS FOR PRE I WARP BY DIVIDING SHEET MATERIAL LO T NALLY Filed Feb. 17, 1965 3 Sheets-Sheet 5 United States Patent 3,336,645 METHOD AND APPARATUS FOR PREPARING WARP BY DIVIDIN G SHEET MATERIAL LONGITUDINALLY Alexander Mirsky, 12 Montagu Mansions, York St.,
London W1, England Filed Feb. 17, 1965, Ser. No. 433,402 Claims priority,
10,148/ 64 18 Claims. (Cl. 28-1) This invention relates to a method of preparing the warp for weaving or warp-knitting by dividing sheet material longitudinally.
It is known to divide sheet material longitudinally into a plurality of longitudinally-extending filaments, and then to wind these filaments off onto bobbins, cops or cones. For weaving or warp-knitting, these bobbins, cops or cones must then be set up and the filaments reeled off the bobbins, cops or cones onto a warp beam. The warp beam is then positioned adjacent to a loom or warp-knitting machine, and a fabric incorporating warp filaments is then woven or knitted.
It is an object of this invention to reduce the time and cost of preparing the warp filaments before weaving or warp-knitting.
This invention consists in a method of weaving, knitting or preparing a warp beam, including dividing a sheet material into a plurality of longitudinally-extending filaments, and either feeding these filaments continuously into a weaving loom or warp-knitting machine, or Winding the filaments continuously oh. onto a warp beam. The filaments can subsequently be wound off the warp beam into a weavingloom or warp-knitting machine. For convenience, the dividing operation is referred to as slitting herein, although some dividing operations may not be strictly slitting operations.
The great advantage of this method is that the filaments need not be individually wound off onto for instance separate cones, but can be kept generally in their planar sheetlike relationship, excluding costly warp preparation; the filaments however can be given a lease (i.e. separated into at least two layers) if desired for ease in manipulation or handling, to reduce mechanical friction or chafing and the propensity for the generation of or the effect of static electricity, a lease may be provided by using interengaging shear discs for slitting.
In addition to obviating the need to spin, wind and warp the warp. yarn, factory space can be saved and fast continuous production of warps can be achieved.
Thus in Weaving, the sheet may be rolled on the warp beam, and slit after being unrolled from the warp beam, the filaments being passed through the eyes in the healds. In warp knitting, the filaments can in a similar manner be led through eyes in the knitting head, so that Warped yarn as such is not required. This obviates any need for warping as such, and for providing warp yarn before weaving or warp knitting.
If the filaments are wound off onto the warp beam, the warp beam may be prepared away from the weaving loom or warp-knitting machine, i.e. in a separate unit comprising slitting means and a beaming-off stand containing the warp beam onto which the slit filaments may be directly wound to any length that may be required. Subsequently, the warp beam can be inserted into the weaving loom or warp-knitting machine as appropriate.
In this manner, slitting may be carried out at high speed from a larger roll than could be accommodated on an individual loom or warp-knitting machine, and each individual loom or Warp-knitting machine may be given the length of warp required for its scheduled production run.
application Great Britain, Mar. 10, 1964,
3 with the side bands of the sheet 3,336,645 Patented Aug. 22, 1967 Furthermore, using a separate unit for preparingithe warp beam, more even filaments may be produced than is the case in a loom or warp-knitting machine which is subject to vibrations and in which the linear speed of the warp filaments is low. The eveness of the filaments may be critical in cases where high density warps are used, or where levelness is in itself important in the structure of the fabric or where in certain fabrics level appearance is of importance.
To facilitate winding on and oil? the warp beam, sheets, e.g. of paper, can be interleaved with the filaments, continuously or spasmodically.
When one roll of the sheet material is nearly expended, the end of another roll can be attached to the end of the first roll, such as for instance by welding if the material is a thermoplastic resin, with the use of a heated transverse clamp. If suitable, chemical means or adhesives can be used for attaching the ends together and an adhesive tape could be stuck transversely to join the rolls. When the ends of the rolls are attached together, there is no need for any re-threading and thus continuity of operation can be provided. Naturally, the attachment must be such that when the sheets are slit, the individual filaments so formed do not come apart at the joint.
The slitting may be effected by for instance stationary,
rotary or oscillatory blades, shearing, the application of electrical energy (e.g. using sparks to slit plastics material), chemical energy, heat or light energy, hot wires, nibbling action, pneumatic means, or hydraulic means. Some slitting methods are already known. Hence the slitting may be eifected by a plurality of parallel cutters, for instance thin blades, spaced apart to a suitable distance, and preferably arranged and mounted such that they can be rotated during the slitting. Wherever the slitting is elfected using blades or by shearing action, sharpening means may be provided. As an example, the rotary cutters can be aranged to be self-sharpening or sharpening means may be mounted adjacent to the cutters so as to contact each portion of the cutting edge once in every revolution, or periodically, as required. The cutters may in addition or alternatively be arranged to be quickly replaceable. It is found desirable to be able to replace the cutters either singly, or in groups, and change the density of the cutters by simple replacement.
One simple arrangement for accomplishing this comprises a rotary mounting bar having a non-circular profile in cross-section, on which cutters and spacers are mounted, each cutter and spacer having a radial slot so that it can be fitted over the bar, with the cutters and spacers being clamped in position by axial pressure.
To avoid ill-effects due to distortion of the cutter or shearer shafts or supports for other slitting means, the cutters or shearers or other slitting means may be mounted in sections, say of 6-10 inches (about 15-25 ems.) in length, to enable any width of sheet material to be slit. The bands between the sections of cutters or shearers or other slitting means can be reeled ofl to waste together material. More particularly, wide filaments which have been divided at the edges of the sheet material and which have been divided on each side by dividing means of adjacent groups are discarded.
Various means may be employed to provide high density warps without jamming and other difiiculties in cutting. For example, the cutter blades need not be equidistantly spaced, and if found desirable, certain threads may be cast out, say by being rolled off. Milling cutters or a nibbling action may be employed to provide more space between individual filaments.
F or pneumatic or hydraulic slitting, high velocity needle jets of gas or liquid may be directed against the sheet material and to improve the slitting effect, the gas may be a used with solid particles, e.g. sand. If individual nozzles are required, these may be staggered (e.g. in three or more rows) in relation to the direction of travel of the sheet material to give a fine transverse spacing between the jets. Such staggering is more generally applicable to the slitting means, and for instance heated wires or electric spark points may be staggered.
Means may be provided to reduce the generation of, or to discharge, static electricity. If the known anti-static oils are not efficient enough for high speed production, conductors, e.g. contact brushes, may be provided touching the filaments, or the slitting may be performed in a conducting liquid. This liquid may be used to cool the cutter or shearer or other slitting means, or alternatively an air blast could be used for cooling.
In preparing for weaving, in order to simplify threading the filaments through the eyes in the healds, a twisting and/or tying in frame may be used with the slitting means mounted on the frame itself. This can enable the thread density and/ or wrap character to be changed conveniently.
The minimum width of the filaments will depend on the material itself, its thickness and the slitting means, employed. For example, a polyester film of A thou (about 0.006 mm.) thickness can be split by rotary cutters to a width of 2 mm. or less.
The density of the filaments may be readily alterable by mounting a line of suitable slitting means (e.g. hot wires or elastic sparking means) on a support which can be pivoted about an axis at right angles to the plane of the sheet material and thus the maximum filament width (and minimum density) is given when the line of slitting means is at right angles to the longitudinal axis of the sheet material. Such an arrangement may be used with or without guide pins (referred to below).
The number of filaments can be increased by using two or more layers of the sheet material, preferably slitting all the layers simultaneously. The filaments from the various sheets can be led through the eyes in the healds or guides in the knitting head, or the warp beam, in an appropriate manner. Whether one layer or more than one layer is used, the filaments can be fanned out or condensed, such as by using guide pins. For versatility, these guide pins may be mounted on a pivoted bar so that the efiective spacing can be altered. For instance, a triple (about cms.) sheet could thus provide three times as many filaments which in turn with the help of guide pins, could provide any suitable width of warp section required, either less or more than 10 (about 25 cms.) in width.
When slitting one or more layers of the sheet material, the resultant filaments may either be used as monofilament or multi-filament thread. For example, when slitting a single layer of sheet material to a density of say filaments per inch about 12 filaments per cm., each single filament may be used as one thread, or alternatively, two or more filaments may be used together to form one thread. As another example, three layers may be slit together at a density of say 30 filaments per inch (about 12 filaments per cm.) in each layer, thus cutting 90 filaments per inch (about 36 filaments per cm.) simultaneously, and which 90 filaments could likewise be used in a variety of thread densities.
Particularly in warp knitting, a fine reed or comb may be used to align the flat filaments before they reach the knitting head, and this may also be of assistance when weaving. It will be appreciated that if say, a sheet of /2 thou. (about 0.013 mm.) thickness is being slit at say 30 filaments to the inch (about 36- filaments per cm.) the filaments are still relatively flat. One advantage of this arrangement is that any rubbing and chafing between the individual filaments can be liminated or reduced, thus reducing the generation and effects of static electricity, and mechanical interference.
The actual sheet material used depends upon the woven or knitted fabric required, as does the nature of additional materials used, for instance for the weft. The sheet material may be transversely pre-corrugated.
The following materials are suggested as being suitable for the sheet material: paper, plastics materials, for instance acrylic polymers, polyesters, polyamide resins such as nylon or polyolefins; felts or other bonded fibers, such as fiberglass; bonded slivers; rubber; elastomers; composite materials; and metal.
The fabrics that may be produced include: Backing cloth for woven or tufted carpets; rugs; furnishing fabrics; curtains; industrial cloths such as filter cloths; blankets; apparel cloths; woven or warp-knitted ribbons; webbing and bunting.
If the material is sufiiciently plastic at ambient temperatures or on heating, the properties of the filaments may be modified by drawing the filaments. This can not only alter the crosssectional shape, for instance by roundingoff the rectangular cross-section, but change the denier of the filaments and alter the crystalline or molecular structure. By using a thermoplastic resin, for instance, the filaments may be heated prior to drawing them, though this may not be necessary with say other plastic filaments or with fine metal filaments. Alternatively or in addition the filaments may be heated after drawing, according to the degree of stability required. The drawing can be effected by passing the fiat plane or planes of filaments through two pairs of rolls rotating at difierential speeds, or by using the roll of sheet material itself in place of one of these pairs of rolls.
The fineness of the filaments may be altered by changing the gauge of the sheet, prior to slitting, by stretching the sheet.
The filaments may be formed with a crimp by passing the sheet or the filaments through the nip of a pair of serrated rolls so that the serrations cause a deformation of the thread. Often it will be necessary to subject the sheet or filaments to some form of treatment to set the sheet or filaments with the deformation present. This treatment will depend on the nature of the thread material; for instance, if the thread is formed of a thermoplastic resin, the sheet or filaments can be heated prior to, during its passage through, or after passing through, the serrated rolls, and then cooled, the sequence depending on the materials used, and the effect it is desired to achieve. The shape of the serrations can be chosen to suit the type of crimped thread required.
The invention also comprehends apparatus for carrying out the method described above, and wound warp beams or fabric produced by the method.
The invention will be further described, by way of example, with reference to the accompanying drawings, of which:
FIGURE 1 is a schematic diagram of apparatus for carrying out a method in accordance with this invention;
FIGURE 2 is a schematic top view of a part of the apparatus of FIGURE 1;
FIGURE 3 is a schematic diagram of modified apparatus for carrying out a method in accordance with this invention;
FIGURE 4 is a diagrammatic view of a rotary cutter used in the apparatus of FIGURE 1;
FIGURE 5 is a view of a cutter blade;
FIGURE 6 is a view of a distance piece;
FIGURE 7 is a perspective view of a portion of the mounting bar;
FIGURE 8 is a diagrammatic view, similar to FIG- URE 4, but showing a modified cutter;
FIGURE 9 is a diagrammatic side view of the part of the apparatus of FIGURE 1, modified to show the cutter of FIGURE 8, and on a slightly larger scale;
FIGURE 10 is a diagrammatic view of a shearer;
FIGURE 11 is a diagrammatic side view of the shearer of FIGURE 10, showing the shearer in operation;
FIGURE 12 is a schematic horizontal section through a hot wire slitter and a roll of sheet material;
FIGURE 13 is a schematic top view of a pneumatic or hydraulic slitting means; and
FIGURE 14 is a diagrammatic view showing the use of sparks for slitting the sheet material. I
In FIGURE 1, a roll 1 of sheet material is mounted on the warp beam, and the sheet material is led to a rotary cutter 2 operating in conjunction with support rolls 3. The cutter 2 slits the sheet material longitudinally into a plurality of filaments, and these filaments are passed through a heating unit 4 and on to draw rolls 5 rotating at such a speed as to stretch the heated filaments. The
position of the heating unit may be varied to heat the,
sheet material prior to passing through or :during its passage through the cutter 2. In cases where oriented film is used, the heating unit may not be necessary. Also for certain other applications, oriented film may not be necessary and so for many applications the heating unit may be superfluous. The filaments pass through guides 6 and are subsequently woven or warp-knitted in a machine 7. The machine 7 is not illustrated in detail, but suitable weaving or warp-knitting machines are well-known in the art. If the machine 7 is a weaving machine, the guides 6 can be the eyes in the healds. The machin 7 could alternatively be replaced by a beam-off stand.
A backing roll may be provided mounted on the other side of the sheet material to the cutter 2 to provide an anvil for cutting, and cooling means and anti-static electricity means may be provided.
It will be appreciated that in FIGURE 2, the spacings between the blades 9 of the cutter 2 have been greatly exaggerated.
In FIGURE 3, the roll 1 provides sheet material which is led into the cutter 2 and thence through the heating unit 4 and rolls 5 in a manner similar to that illustrated in FIGURE 1. From the rolls 5, the filaments pass into the nip of a pair of heated serrated rolls 10, and the emergent serrated filaments are set in this configuration when they cool.
As shown in FIGURE 4, generally circular cutter blades 11 and generally circular distance pieces 12, of smaller radius than the cutter blades 11, are mounted on a mounting bar 13. The end portions of the mounting bar 13 are not shown in FIGURE 4; however, the left-hand end (with reference tov the drawing) of the mounting bar 13 is provided with a stop, and the cutter blades 11 and distance pieces 12 are clamped against this stop by means of a compression spring 14 which is compressed by means of a threaded nut 15 being screwed along a screw thread 16 provided on the mounting bar 13.
The cutter blades 11 and distance pieces 12 each have a radial slot of a width d, which corresponds to the side of the square cross-section of the mounting bar 13. Alternatively, the bar 13 may be of circular cross-section and have a key, with the distance pieces 12 being shaped appropriately.
In order to replace a cutter blade 11, or insert distance pieces 12 of different thickness, and at the same time remove or add further cutter blades 11, if desired, the nut 15 is merely slackened off, the operation carried out, and the nut 15 is then screwed up again.
In FIGURES 8 and 9, lease is imparted to the filaments 1b by using distance pieces 12, 12a of different diameters and leading the filaments 1b away over spaced rolls 3a and 3b. The sheet material is referenced as M.
In FIGURES 10 and 11, lease is imparted to the filaments 1b using the inherent effect of the shearing discs 21 through which the sheet material In is fed. These shearing discs can be arranged to be self-sharpening :due to their mutual honing action.
In FIGURE 12, wires 22 frame are mounted on a support 23 to form one section of a slitting means, and
the frame 23 is pivoted at 24 on an axis at right angles to the plane of the sheet material coming from a roll 1. As indicated in FIGURE 12, the maximum effective width of the frame 23 is b, and the frame 23 may be pivoted in order to give a smaller effective width at, thereby increasing the density of the filaments. Only one section of the slitting means is shown, and the other sections may be transversely adjustable in order to allow for the angular adjustment of the individual frames 23.
In use, the wires 22 are heated and a suitable sheet material is chosen so that the sheet material is slit by the wires.
FIGURE 13 shows a pneumatic or hydraulic slitting means in which nozzles 26 are mounted on a support 27 for slitting sheet material travelling in the direction of the arrow 28. As shown, the nozzles have a radius which is considerably larger than the width of each individual filament, and are staggered in five rows in order to give the desired filament width.
In lieu of the wires shown in FIGURE 12, sparking points arranged to be close to and on either side of the sheet material for providing a continuous stream of sparks for slitting the sheet material may be employed. In FIGURE 14, such an embodiment is illustrated and includes holding bars 30 arranged in spaced relationship provided with sparking points 31 and which points cooperate with the sheet material 1.
It will be understood that modifications and variations may be effected without departing from the spirit and scope of the novel concepts of the present invention.
I claim:
1. A process for manufacturing a fabric including warp filaments, comprising the steps of providing for a material having substantially uniform composition across the width dimension thereof, dividing the sheet material into a substantially large multiplicity of longitudinally extending filaments, winding directly a large number of said filaments onto a single rotary member, transferring the thus wound filaments from the rotary member to fabric producing means, and producing the fabric in the fabric producing means employing the filaments as warp filaments.
2. The process of manufacturing a fabric as claimed in claim 1 in which the fabric producing means is constituted by a weaving loom and the fabric is a woven fabric.
3. The process of manufacturing a fabric as claimed in claim 1 in which the fabric producing means. is constituted by a warp knitting machine and in which the fabric is a warp knitted fabric.
4. The process of manufacturing a fabric as claimed in claim 1 in which said sheet material is divided into a large multiplicity of longitudinally extending filaments by dividing means in groups of equi-spaced means wherein the spacing between adjacent groups is greater than the spacing between adjacent individual dividing means in a group, feeding the filaments which have been divided on each side by adjacent dividing means in one group into the fabric producing means, and discarding wide filaments which have been divided on the edges of the sheet material and have been divided on each side by the dividing means of adjacent groups.
5. The process of manufacturing a fabric as claimed in claim 1 including the step of bringing at least pairs of the warp filaments into juxtaposition in the fabric producing means employing at least pairs of the warp filaments as multi-filament thread.
6. The process of manufacturing a fabric including warp filaments, comprising the steps of dividing at least two superimposed layers of sheet material of substantially uniform composition across the width thereof, dividing said layers simultaneously into a large multiplicity of longitudinally extending filaments, winding directly a large number of said filaments onto a single rotary member, transferring the filaments continuously to fabric producing means, and producing the fabric in the fabric producing means employing the filaments as warp filaments.
7. An apparatus for manufacturing a fabric including warp filaments, comprising means for dividing sheet material of substantially uniform composition across the width dimension thereof into a large multiplicity of longitudinally extending filaments, a rotary member, means' for mounting said rotary member for rotational movement, means for rotating the rotary member to wind a large number of the longitudinally extending filaments thereon, a plurality of fabric producing means separate from said means for mounting the rotary member for rotational movement, and means for conveying the large number of filaments to respective fabric producing means.
8. The apparatus for manufacturing a fabric as claimed in claim 7 in which said fabric producing means is defined by a weaving loom and the fabric is a woven fabric.
9. The apparatus for manufacturing a fabric as claimed in claim 7 in which the fabric producing mean is defined by a warp knitting machine and the fabric is a warp knitted fabric.
10. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means is defined by electrical sparking means.
11. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means is defined by heated wires.
12. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means is defined by means providing high velocity needle jets.
13. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means is defined by cutter blades.
14. The apparatus for manufacturing a fabric as claimed in claim 13 in which said cutter blades are rotary cutter blades.
15. The apparatus for manufacturing a fabric as claimed in claim 14 in which said rotary cutter blades include a rotary mounting bar having a non-circular over said mounting bar, and means for effecting axial pressure for clamping the cutters and spacers in position on the mounting bar.
16. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means are staggered relative to the direction of travel of the sheet material.
profile in cross-section, cutters and spacers mounted on 40 said bar, each cutter and spacer being provided with a radial slot permitting each cutter and spacer to be fitted 17. The apparatus for manufacturing a fabric as claimed in claim 7 in which said dividing means includes a support, a line of dividing components mounted on said support, guide means for guiding the sheet material in a predetermined plane past the dividing means, and means pivotally mounting said support for movement about an axis at right angles to the predetermined plane for altering the density of the filaments.
18. A process for manufacturing a fabric including warp filaments, comprising the steps of providing for a drawable plastic film having a substantially uniform composition across the Width dimension thereof, dividing the film into a substantially large multiplicity of longitudinally extending filaments, drawing the material to deform plastically the film and decrease the widths of the individual filaments, winding directly a large number of said drawn filaments onto a single rotary member, transferring the thus wound filaments from the rotary member to a fabric producing means, and producing the fabric in the fabric producing means employing the drawn filaments as warp filaments.
References Cited UNITED STATES PATENTS 2,169,886 8/1939 Shaw 281.2 2,593,154 4/1952 Judelson 242-563 3,214,943 11/1965 Marks 281.2 X
FOREIGN PATENTS 180,540 12/ 1954 Austria. 102,563 9/1963 Norway.
MERVIN STEIN, Primary Examiner.
L. K. RIMRODT, Assistant Examiner.

Claims (1)

  1. 7. AN APPARATUS FOR MANUFACTURING A FABRIC INCLUDING WARP FILAMENTS, COMPRISING MEANS FOR DIVIDING SHEET MATERIAL OF SUBSTANTIALLY UNIFORM COMPOSITION ACROSS THE WIDTH DIMENSION THEREOF INTO A LARGE MULTIPLICTY OF LONGITUDINALLY EXTENDING FILAMENTS, A ROTARY MEMBER, MEANS FOR MOUNTING SAID ROTARY MEMBER FOR ROTATIONAL MOVEMENT, MEANS FOR ROTATING THE ROTARY MEMBER TO WIND A LARGE NUMBER OF THE LONGITUDINALLY EXTENDING FILAMENTS THEREON, A PLURALITY OF FABRIC PRODUCING MEANS SEPARATE FROM SIAD MEANS FOR MOUNTING THE ROTARY MEMBER FOR ROTATIONAL MOVEMENT, AND MEANS FOR CONVEYING THE LARGE NUMBER OF FILAMENTS TO RESPECTIVE FABRIC PRODUCING MEANS,
US433402A 1964-03-10 1965-02-17 Method and apparatus for preparing warp by dividing sheet material longitudinally Expired - Lifetime US3336645A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB10148/64A GB1067514A (en) 1964-03-10 1964-03-10 A method of and apparatus for preparing warp for weaving or warp-knitting by dividing sheet material longitudinally
GB2478264 1964-06-15

Publications (1)

Publication Number Publication Date
US3336645A true US3336645A (en) 1967-08-22

Family

ID=26247325

Family Applications (1)

Application Number Title Priority Date Filing Date
US433402A Expired - Lifetime US3336645A (en) 1964-03-10 1965-02-17 Method and apparatus for preparing warp by dividing sheet material longitudinally

Country Status (11)

Country Link
US (1) US3336645A (en)
AT (1) AT262908B (en)
BE (1) BE660441A (en)
CH (1) CH452781A (en)
DE (1) DE1535170A1 (en)
ES (1) ES310170A1 (en)
FR (1) FR1425968A (en)
GB (1) GB1067514A (en)
IL (1) IL23012A (en)
NL (1) NL6502751A (en)
SE (1) SE311125B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446041A (en) * 1966-02-10 1969-05-27 American Can Co Fabric forming apparatus
US3453816A (en) * 1966-06-08 1969-07-08 Martin Radoff Process for forming yarns from certain woven or knit textiles
US3503106A (en) * 1968-06-27 1970-03-31 Avisun Corp Continuous techniques for making flat woven synthetic fabrics
US3639954A (en) * 1969-12-31 1972-02-08 Kirson Gmbh Apparatus for making a reinforced web
US3645299A (en) * 1966-10-25 1972-02-29 Chemiefaser Lenzing Ag Process for the production of foil ribbon fabrics and apparatus for carrying out this process
US3714687A (en) * 1969-02-11 1973-02-06 American Can Co Method of biaxially deforming sheet material
US3732708A (en) * 1971-07-21 1973-05-15 Fieldcrest Mills Inc Knit pile carpet fabric
US3769815A (en) * 1970-12-14 1973-11-06 Forsch Textiltechnologe Method of producing textiles on knitting machines
US3918135A (en) * 1973-09-17 1975-11-11 Hercules Inc Methods of making fabrics from synthetic tapes
US4060999A (en) * 1974-11-05 1977-12-06 Enterprise Incorporated Method and apparatus for forming yarn elements and producing products therefrom
US4137614A (en) * 1976-03-11 1979-02-06 Du Pont Of Canada Limited Preparation of a warp beam wound with flexible tapes
US4466163A (en) * 1981-05-11 1984-08-21 Long Barry W Wide fabric manufacturing method and apparatus
US4489760A (en) * 1981-05-11 1984-12-25 The Goodyear Tire & Rubber Company Wide fabric manufacturing apparatus
US4870839A (en) * 1987-12-22 1989-10-03 Asheboro Elastics, Corp. Apparatus for deknitting elastic yarns
FR2632290A1 (en) * 1988-06-03 1989-12-08 Thierry Michel Sa Method of producing beams of filamentary textile elements, application to the production of a fabric by knitting these elements, means implemented and products obtained
US6148871A (en) * 1998-11-02 2000-11-21 Spring Industries, Inc. Woven fabric with flat film warp yarns
WO2002055767A1 (en) * 2001-01-15 2002-07-18 Grindi S.R.L. Process for the manufacturing of a cork yarn, yarn and fabric thereby obtained
US20070116953A1 (en) * 2005-11-22 2007-05-24 English Larry L Monoxially-oriented and annealed films with high cross machine toughness and related process
RU2668207C1 (en) * 2017-10-30 2018-09-26 Общество с ограниченной ответственностью "Тянучка" Method manufacturing yarn
RU2680766C1 (en) * 2017-08-28 2019-02-26 Виктория Анатольевна Бибикова Knitting yarn for hand knitting and method for production thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738160U (en) * 1971-05-19 1972-12-27
GB2133815B (en) * 1983-01-18 1986-03-26 Scott & Fyfe Ltd Fabric material
DE3609090A1 (en) * 1986-03-18 1987-09-24 Gao Ges Automation Org SECURITY PAPER WITH SECURED THREAD STORED IN IT AND METHOD FOR THE PRODUCTION THEREOF
US6569525B2 (en) 2001-04-25 2003-05-27 W. R. Grace & Co.-Conn. Highly dispersible reinforcing polymeric fibers
SG105543A1 (en) 2001-04-25 2004-08-27 Grace W R & Co Highly dispersible reinforcing polymeric fibers
DE102004052327A1 (en) * 2004-10-27 2006-05-18 Diedrichs, Helmut W. Inexpensive, easily produced metal filament composites containing filaments in flat metal tape form, useful e.g. in sound insulating layers or mats or as filter materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169886A (en) * 1937-05-13 1939-08-15 Easthampton Rubber Thread Co Manufacture and use of rubber thread
US2593154A (en) * 1950-01-18 1952-04-15 David N Judelson Machine for cutting webs of material into strips
AT180540B (en) * 1951-04-13 1954-12-27 Josef Boros Method and device for the production of flat thread structures, such as fabrics, braids or the like, using synthetic threads made of structureless cellulose material
US3214943A (en) * 1963-08-01 1965-11-02 Ronald H Marks Method and apparatus for producing a fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169886A (en) * 1937-05-13 1939-08-15 Easthampton Rubber Thread Co Manufacture and use of rubber thread
US2593154A (en) * 1950-01-18 1952-04-15 David N Judelson Machine for cutting webs of material into strips
AT180540B (en) * 1951-04-13 1954-12-27 Josef Boros Method and device for the production of flat thread structures, such as fabrics, braids or the like, using synthetic threads made of structureless cellulose material
US3214943A (en) * 1963-08-01 1965-11-02 Ronald H Marks Method and apparatus for producing a fabric

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446041A (en) * 1966-02-10 1969-05-27 American Can Co Fabric forming apparatus
US3453816A (en) * 1966-06-08 1969-07-08 Martin Radoff Process for forming yarns from certain woven or knit textiles
US3645299A (en) * 1966-10-25 1972-02-29 Chemiefaser Lenzing Ag Process for the production of foil ribbon fabrics and apparatus for carrying out this process
US3503106A (en) * 1968-06-27 1970-03-31 Avisun Corp Continuous techniques for making flat woven synthetic fabrics
US3714687A (en) * 1969-02-11 1973-02-06 American Can Co Method of biaxially deforming sheet material
US3639954A (en) * 1969-12-31 1972-02-08 Kirson Gmbh Apparatus for making a reinforced web
US3769815A (en) * 1970-12-14 1973-11-06 Forsch Textiltechnologe Method of producing textiles on knitting machines
US3732708A (en) * 1971-07-21 1973-05-15 Fieldcrest Mills Inc Knit pile carpet fabric
US3918135A (en) * 1973-09-17 1975-11-11 Hercules Inc Methods of making fabrics from synthetic tapes
US4060999A (en) * 1974-11-05 1977-12-06 Enterprise Incorporated Method and apparatus for forming yarn elements and producing products therefrom
US4137614A (en) * 1976-03-11 1979-02-06 Du Pont Of Canada Limited Preparation of a warp beam wound with flexible tapes
US4489760A (en) * 1981-05-11 1984-12-25 The Goodyear Tire & Rubber Company Wide fabric manufacturing apparatus
US4466163A (en) * 1981-05-11 1984-08-21 Long Barry W Wide fabric manufacturing method and apparatus
US4870839A (en) * 1987-12-22 1989-10-03 Asheboro Elastics, Corp. Apparatus for deknitting elastic yarns
FR2632290A1 (en) * 1988-06-03 1989-12-08 Thierry Michel Sa Method of producing beams of filamentary textile elements, application to the production of a fabric by knitting these elements, means implemented and products obtained
US6148871A (en) * 1998-11-02 2000-11-21 Spring Industries, Inc. Woven fabric with flat film warp yarns
WO2002055767A1 (en) * 2001-01-15 2002-07-18 Grindi S.R.L. Process for the manufacturing of a cork yarn, yarn and fabric thereby obtained
US20080199652A1 (en) * 2005-11-22 2008-08-21 Shaw Industries Group Inc. Monoxially-oriented and annealed films with high cross machine toughness and related process
US20070116953A1 (en) * 2005-11-22 2007-05-24 English Larry L Monoxially-oriented and annealed films with high cross machine toughness and related process
US20080199703A1 (en) * 2005-11-22 2008-08-21 Shaw Industries Group Inc. Monoxially-oriented and annealed films with high cross machine toughness and related process
US7611652B2 (en) 2005-11-22 2009-11-03 Shaw Industries Group, Inc. Monoxially-oriented and annealed films with high cross machine toughness and related process
US7951462B2 (en) 2005-11-22 2011-05-31 Shaw Industries Group, Inc. Monoxially-oriented and annealed films with high cross machine toughness and related process
US7998591B2 (en) 2005-11-22 2011-08-16 Shaw Industries Group, Inc. Monoaxially-oriented and annealed films with high cross machine toughness and related process
RU2680766C1 (en) * 2017-08-28 2019-02-26 Виктория Анатольевна Бибикова Knitting yarn for hand knitting and method for production thereof
RU2680766C9 (en) * 2017-08-28 2020-03-18 Виктория Анатольевна Бибикова Knitting yarn for hand knitting and method for production thereof
RU2668207C1 (en) * 2017-10-30 2018-09-26 Общество с ограниченной ответственностью "Тянучка" Method manufacturing yarn

Also Published As

Publication number Publication date
ES310170A1 (en) 1965-12-01
BE660441A (en) 1965-09-01
NL6502751A (en) 1965-09-13
SE311125B (en) 1969-05-27
GB1067514A (en) 1967-05-03
AT262908B (en) 1968-07-10
DE1535170A1 (en) 1970-11-05
IL23012A (en) 1968-12-26
CH452781A (en) 1968-03-15
FR1425968A (en) 1966-01-24

Similar Documents

Publication Publication Date Title
US3336645A (en) Method and apparatus for preparing warp by dividing sheet material longitudinally
US3564677A (en) Method and apparatus of treating material to change its configuration
US3715878A (en) Process for making chenille-type yarn
TW201631232A (en) Method for manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
TW201835404A (en) Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
US2110371A (en) Product and process for the manufacture thereof
US2974392A (en) Apparatus for crimping yarn
NO124605B (en)
US3645299A (en) Process for the production of foil ribbon fabrics and apparatus for carrying out this process
JP4518359B2 (en) Weaving method
SU1340594A3 (en) Method of producing warp or cut of warp from continuous synthetic completely drawn threads made of thermoplastic material from polyesters,polyamides,polyethylene and polypropylene group
CN107245812B (en) Non-woven fabric manufacturing machine
JP3427219B2 (en) Weft removal device of blind fabric for topping sheet
US3175348A (en) Process and apparatus for making bulked filament yarns
US4271570A (en) Graphite fiber alignment process and apparatus
JPS5838541B2 (en) Fabric foil manufacturing method from plastic film
US2351039A (en) Making simulated woven fabric
US3234971A (en) Heat-setting of fabrics
US2926415A (en) Textile staple fibers and production thereof
US3343569A (en) Combined carding and weaving
US3608025A (en) Slitting to form filaments
CN106988003B (en) Weft needle block group of multi-axial warp knitting machine suitable for producing unidirectional cloth
JP2630480B2 (en) Guiding device for fabric webs
JPH0214449B2 (en)
PL61491B1 (en)