US3329149A - Supporting arm for electrotherapeutic treatment head - Google Patents

Supporting arm for electrotherapeutic treatment head Download PDF

Info

Publication number
US3329149A
US3329149A US407044A US40704464A US3329149A US 3329149 A US3329149 A US 3329149A US 407044 A US407044 A US 407044A US 40704464 A US40704464 A US 40704464A US 3329149 A US3329149 A US 3329149A
Authority
US
United States
Prior art keywords
joint
arm
arm structure
head
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US407044A
Inventor
Kendall William Denis
Frank A Yarger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynapower Systems Corp
Original Assignee
Dynapower Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynapower Systems Corp filed Critical Dynapower Systems Corp
Priority to US407044A priority Critical patent/US3329149A/en
Application granted granted Critical
Publication of US3329149A publication Critical patent/US3329149A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy

Definitions

  • ABSTRACT OF THE DISCLOSURE Arm structure for supporting a pulsed high frequency electrotherapeutic treatment head is constructed and dimensioned in such manner as to overcome interference with communications equipment.
  • This invention relates generally to electrotherapeutic equipment and more particularly concerns the construction of arm structure for a treatment head in such manner as to preclude radiation by arm of objectionable high frequency energy.
  • the present invention has as its major object to overcome the above problem in order to preclude objectionable radiation by the arm. Further the invention seeks to simplify the arm construction, eliminatng any need for passing the coaxial cable through the arm, which requirement formerly required undesirable arm complexity.
  • the particular environment with which the invention is concerned comprises electrotherapeutic apparatus providing a source of pulses having frequencies typically over one megacycle, a treatment head containing primary and secondary coils, a coaxial cable electrically connected to supply pulse energy from the pulse source to the head primary coil, the secondary coil being coupled to the primary coil to radiate energy supplied thereto, and support arm structure for the head and including joint means rendering the arm structure capable of selective articulation, the arm length being in the range /2 to 3 /2 meters.
  • the arm structure includes at least one segment consisting of dielectric material and connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 to 6 meter range, the latter range containing certain television broadcast band s.
  • the coaxial cable is carried to extend along the arm and at the exterior thereof, enabling more simplified construction of the arm members;
  • the dielectric segment may be in the form of a shaft exice tending intermediate lockable primary and secondary joints,
  • the arm structure may also include a second dielectric segment in the form of a shaft extending intermediate the second lockable joint and a swivel joint for the head,
  • the coaxial cable may extend from the cabinet upwardly through hollow post member of the arm structure carried by the cabinet, and then to the exterior of the arm via the first joint.
  • FIG. 1 is an overall view of the arm and head carried by the control cabinet
  • FIG. 2 is an enlarged view of a portion of the arm structure
  • FIG. 3 is an enlarged view of the outer portion of the arm structure
  • FIG. 4 is an enlarged section taken on line 44 of FIG. 2 to show the post and primary joint construction
  • FIG. 5 is a section taken on line :5-5 of FIG. 3 to show the swivel joint construction
  • FIG. 6 is a section taken on line 6-6 of FIG. 3;
  • FIG. 7 is a schematic showing of the overall circuit.
  • FIG. 1 the arm assembly 10 is shown in combination with the cabinet top 11 and an electrotherapeutic treatment head 12, the latter being supported by the assembly 10.
  • the controls 13 on the cabinet top maybe manipulated for controlling the electrical signal supplied to the head 12, it being seen that a high voltage electrical cable 35 runs between the electrical apparatus contained in the cabinet and to the head while carried by the arm assembly.
  • the arm assembly is shown to include a post 14, typically tubular, which is located at the cabinet top and is pivotable about a vertical axis 15.
  • the post extends above and below the cabinet top plate 16, and is supported to swing between limiting positions carrying the head 12 from the front of the cabinet as shown in FIG. 1 to either side of the cabinet. Since the arm assembly facilitates upward and downward positioning and also swinging of the head 12 as will be more fully brought out, it is clear that the head has a wide range of adjustment positions all with respect to the cabinet from which electrical energy is fed to the head. Accordingly, the patient may be seated at either side of the cabinet or to the front thereof for treatment application of the head.
  • a typical stop means for limiting pivoting from the post is shown in FIG. 4 to include a lug 17 projecting forwardly from the post through an opening 18 in a journaling sleeve 19 which extends vertically above and below the cabinet plate 16.
  • the opening 18 extends throughout approximately 270, stop shoulders defining the annular limits of the opening 18, and being engageable by the lug 17 when the head 12 has been swung to either side of the cabinet.
  • the sleeve 19 is shown as supporting the post 14 as a result of interen gagement of a flange 121 on the post and the upper terminal of the sleeve lower section 23, the sleeve including a tubular cap 22 to retain the flange thereon illustrated.
  • the cap is below a flange 21 of joint member 37.
  • Rotating a handle 124 turns the cap relative to the sleeve lower section 23, to which the cap has threaded connection, thereby clamping the flange 121 between the cap 22 and lower section 23.
  • Suitable structure is shown at 24 mounting the sleeve section 23 at the cabinet top plate 16.
  • the arm also includes a secondary joint generally indicated at 32, and a second arm section 33 terminally attached to the first section 31 through the joint 32 and swingable about a second axis 34 generally parallel to the first axis 27.
  • the arm sections 31 and 33 comprise dielectric shafts such as phenolic resin rods
  • the joint 25 as well as the post 14 are hollow in order that the high tension carrying coaxial electrical cable 35 may be run therethrough to the ex terior and then to the head 12, from the electrical apparatus within the cabinet.
  • the two joints 25 and 32 are typically similar in construction, FIG. 4 showing the details thereof as respects joint 25.
  • a pair of coaxial relatively rotatable cup-shaped joint members 36 and 37 are provided, the former being integral with the arm section 31 and the latter being integral with the post 14.
  • the arrangement is such that frictionally interengaged and relatively rotatable shoulders provide frictional resistance to joint member articular or pivoting about the axis 27.
  • the interengaged shoulders are provided by the rims 38 and 39 of the cup-shaped members which are urged into mutual interfitting proximity with friction ring 80 as illustrated, by adjustable structure provided with a handle 40.
  • such adjustable structure includes a coaxial pin 41 attached to the handle 40 through a cup 42, and threaded at 43 into the member 37.
  • This feature is made possible by providing side openings 46 and 47 through the respective cup-shaped joint members 36 and 37 to communicate between the tubular post 14 and the interior of the joint member 25. Also, the cable 35 is carried through eyelet 82 on joint 32 to flex with arm articulation.
  • FIGS. 3 showing terminal joint means having the functions previously referred to.
  • the end of the arm section 33 is received in and attached via set screw 83 to tubular part 84, the latter "being threaded at 49 to a tubular plug 50 having a bore 51 receiving a coaxial tubular insert 52.
  • the latter projects into the end of the arm part 84 and has an annular stop 53 located between the terminal 100 of the part 84 and internal flange 102 on sleeve 50.
  • Insert 52 has a press fit on tubular member 103 to which U-shaped bracket 56 is connected.
  • annular flange stop 53 When sleeve 50 is rotated and tightened on arm part 84, annular flange stop 53 is frictionally gripped between elements 100 and 102 to hold the head in any selected position of rotation about the axis 30, which position is determined by forcible swinging of the head about that axis. Full circular rotation of the head is, however, blocked by engagement of a pin 104 on member 103 with a stop 105 which is formed on a ring 106 attached at 107 to part 84. A slot 108 in the ring accommodates the pin 104.
  • the bracket 56 carries another U-shaped bracket 58 in such manner that the latter, to which the head is attached, swings about the axis 29.
  • the head portion or plate attached to the bracket 58 is indicated at 59.
  • Rotary attachment of the U-shaped brackets 56 and 58 is facilitated by the plugs 60 and 61 which are coaxial with respect to the axis 29 normal to axis 30.
  • a fastener 62 is threaded into the plug 60 to create a frictional clamping effect between the nylon washer 63 and the legs 64 and 65 of the respective brackets 58 and 56.
  • a fastener 66 is threaded into the plug 61 to create when tightened a desired degree of frictional interengagement between the nylon washer 67 and the legs 68 and 69 of the respective brackets 58 and 56.
  • the fastener 66 is integral with a cap 70 mounting a handle 71 which, when turned, tightens the cup against a spacer 72 which presses against the bracket leg 68.
  • a compression spring contained within the cap 70 presses against the spacer 72 to create a basic degree of frictional interengagement as between the washer 67 and the bracket legs 68 and 69 characterized as holding the head in a selected position of rotation about the axis 29 at the same time such frictional interengagement permits forcible swinging of the head about the axis 29 to selected position.
  • the cabinet has front and side panels 74 and 75 respectively.
  • the head 12 has a front plate 76 through which therapeutic electromagnetic wave travel is directed.
  • FIG. 7 illustrates the single turn primary and multiple turn secondary coils 86 and 87, which have a common axis and are inductively coupled within the shell 16 of the head 12.
  • An adjustable capacitor 88 within the head shell has plates respectively connected to opposite ends of the secondary coil turns, to provide a tank circuit, and a source of pulsation of frequency 27.12 megacycles is indicated in block form at 89.
  • the coaxial cable is seen at 35.
  • the segments 31 and 33 are dielectric and break up the overall length of the arm structure from a radiation standpoint; i.e., they are connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 to 6 meter band.
  • the arm is typically of an overall length proximate the three meter band, and the joints 25 and 32, sleeve 19 and post 14 are typically constructed of light weight metal such as aluminum or an alloy thereof.
  • the overall height of the post 14, sleeve 19 and joint 25 is less than /2 meter.
  • the spacing between the closest exposed portions of the segments 31 and 33 is always less than /2 meter, i.e. between points 90 and 91 in FIG. 2.
  • an electrotherapeutic treatment head containing primary and secondary coils, a coaxial cable electrically connected to supply pulse energy from said source to said primary coil, the secondary coil being located for inductive coupling to the primary coil to radiate energy inductively supplied thereto, and support arm structure for said head including joint means rendering the arm structure capable of selective articulation, the overall arm length being in the range /2 to 3 /2 meters, the arm structure including at least one segment consisting of dielectric material and connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 t0 6 meter range, a cabinet supporting the arm structure, the arm structure also including a lockable metallic primary joint carried above the cabinet top, a lockable metallic secondary joint spaced from said primary joint, saidsegment being in the form of a shaft extending intermediate said joints, the arm structure also including a metallic swivel joint beyond and spaced from said second joint to carry said head, and a

Description

July 4, 1967 w. D. KENDALL ETAL' SUPPORTING ARM FOR ELECTROTHERAPEUTIC TREATMENT HEAD 2 Sheets-Sheet 1 Filed Oct. 28, 1964 July 4, 1967 Filed Oct. 28, 1964 w. D. KENDALL ETAL 3,329,149
SUPPORTING ARM FOR ELECTROTHERAPEUTIC TREATMENT HEAD 2 Sheets-Sheet 2 71 741. mM DEN/S Kat/001.2.
Pan/K 49. 127265 JA/vEA/TOEJ United States Patent 3 329,149 SUPPORTING ARM FGR ELECTROTHERAPEUTIC TREATMENT HEAD William Denis Kendall, Los Angeles, and Frank A.
Yarger, Sylmar, Calif., assignors to Dynapower Systems Corporation of California, Los Angeles, Calif., a corporation of California Filed Oct. 28, 1964, Ser. No. 407,044 3 Claims. (Cl. 128405) ABSTRACT OF THE DISCLOSURE Arm structure for supporting a pulsed high frequency electrotherapeutic treatment head is constructed and dimensioned in such manner as to overcome interference with communications equipment.
This invention relates generally to electrotherapeutic equipment and more particularly concerns the construction of arm structure for a treatment head in such manner as to preclude radiation by arm of objectionable high frequency energy.
In US. Patent 3,127,895 to Kendall, issued April 7, 1964, there is described a therapeutic pulse generation and control circuit for supplying an energy radiating treatment head with a train of pulses, each of which contains a high frequency signal burst, typically-27.12 megacycles. The treatment head is carried by an articulated arm structure supported by a cabinet. One problem that has been found to exist is the tendency of metallic arm structure to pick up and radiate energy from the head, the cable supporting the head, and the ground, and particularly at frequencies in harmonic relation to the 27.12 megacycle operating frequency, to the extent that objectionable interference with communication equipment such as television receivers results. In an effort to overcome this problem the metallic ar-m structure has been made hollow, and the coaxial cable run through the arm; however, this effort has not been found entirely satisfactory.
The present invention has as its major object to overcome the above problem in order to preclude objectionable radiation by the arm. Further the invention seeks to simplify the arm construction, eliminatng any need for passing the coaxial cable through the arm, which requirement formerly required undesirable arm complexity.
Basically, the particular environment with which the invention is concerned comprises electrotherapeutic apparatus providing a source of pulses having frequencies typically over one megacycle, a treatment head containing primary and secondary coils, a coaxial cable electrically connected to supply pulse energy from the pulse source to the head primary coil, the secondary coil being coupled to the primary coil to radiate energy supplied thereto, and support arm structure for the head and including joint means rendering the arm structure capable of selective articulation, the arm length being in the range /2 to 3 /2 meters. In accordance with the invention, the arm structure includes at least one segment consisting of dielectric material and connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 to 6 meter range, the latter range containing certain television broadcast band s.
More specifically, the coaxial cable is carried to extend along the arm and at the exterior thereof, enabling more simplified construction of the arm members; the dielectric segment may be in the form of a shaft exice tending intermediate lockable primary and secondary joints, the arm structure may also include a second dielectric segment in the form of a shaft extending intermediate the second lockable joint and a swivel joint for the head, the coaxial cable may extend from the cabinet upwardly through hollow post member of the arm structure carried by the cabinet, and then to the exterior of the arm via the first joint.
These and other objects and advantages of the invention, as well as the details of illustrative embodiments, will be more fully understood from the following detailed description of the drawings in which:
FIG. 1 is an overall view of the arm and head carried by the control cabinet;
FIG. 2 is an enlarged view of a portion of the arm structure;
FIG. 3 is an enlarged view of the outer portion of the arm structure;
FIG. 4 is an enlarged section taken on line 44 of FIG. 2 to show the post and primary joint construction;
FIG. 5 is a section taken on line :5-5 of FIG. 3 to show the swivel joint construction;
FIG. 6 is a section taken on line 6-6 of FIG. 3; and
FIG. 7 is a schematic showing of the overall circuit.
In FIG. 1 the arm assembly 10 is shown in combination with the cabinet top 11 and an electrotherapeutic treatment head 12, the latter being supported by the assembly 10. As is clear from FIG. 1, the controls 13 on the cabinet top maybe manipulated for controlling the electrical signal supplied to the head 12, it being seen that a high voltage electrical cable 35 runs between the electrical apparatus contained in the cabinet and to the head while carried by the arm assembly.
Extending the description to FIGS. 2.-4, the arm assembly is shown to include a post 14, typically tubular, which is located at the cabinet top and is pivotable about a vertical axis 15. In particular, the post extends above and below the cabinet top plate 16, and is supported to swing between limiting positions carrying the head 12 from the front of the cabinet as shown in FIG. 1 to either side of the cabinet. Since the arm assembly facilitates upward and downward positioning and also swinging of the head 12 as will be more fully brought out, it is clear that the head has a wide range of adjustment positions all with respect to the cabinet from which electrical energy is fed to the head. Accordingly, the patient may be seated at either side of the cabinet or to the front thereof for treatment application of the head.
A typical stop means for limiting pivoting from the post is shown in FIG. 4 to include a lug 17 projecting forwardly from the post through an opening 18 in a journaling sleeve 19 which extends vertically above and below the cabinet plate 16. The opening 18 extends throughout approximately 270, stop shoulders defining the annular limits of the opening 18, and being engageable by the lug 17 when the head 12 has been swung to either side of the cabinet. The sleeve 19 is shown as supporting the post 14 as a result of interen gagement of a flange 121 on the post and the upper terminal of the sleeve lower section 23, the sleeve including a tubular cap 22 to retain the flange thereon illustrated. The cap is below a flange 21 of joint member 37. Rotating a handle 124 turns the cap relative to the sleeve lower section 23, to which the cap has threaded connection, thereby clamping the flange 121 between the cap 22 and lower section 23. Suitable structure is shown at 24 mounting the sleeve section 23 at the cabinet top plate 16.
What may be generally referred to as primary joint means is carried by the post above the top plate 16, one such joint means being indicated at 25. Attached to the post through the primary joint is what may be referred to as arm section 31, the latter being swingable about a generally horizontal axis 27 at the joint 25.
The arm also includes a secondary joint generally indicated at 32, and a second arm section 33 terminally attached to the first section 31 through the joint 32 and swingable about a second axis 34 generally parallel to the first axis 27. As will further appear, while the arm sections 31 and 33 comprise dielectric shafts such as phenolic resin rods, the joint 25 as well as the post 14 are hollow in order that the high tension carrying coaxial electrical cable 35 may be run therethrough to the ex terior and then to the head 12, from the electrical apparatus within the cabinet.
The two joints 25 and 32 are typically similar in construction, FIG. 4 showing the details thereof as respects joint 25. A pair of coaxial relatively rotatable cup-shaped joint members 36 and 37 are provided, the former being integral with the arm section 31 and the latter being integral with the post 14. The arrangement is such that frictionally interengaged and relatively rotatable shoulders provide frictional resistance to joint member articular or pivoting about the axis 27. Typically, the interengaged shoulders are provided by the rims 38 and 39 of the cup-shaped members which are urged into mutual interfitting proximity with friction ring 80 as illustrated, by adjustable structure provided with a handle 40. T ypically, such adjustable structure includes a coaxial pin 41 attached to the handle 40 through a cup 42, and threaded at 43 into the member 37. Since the pin extends freely through an opening 44 in the member 36, it is clear that tightening of the handle 40 effects tightening of the shoulders 38 and 39 against ring 80 for positively locking the joint members against relative swinging about the axis 27. The same construction and functioning thereof is found in the joint 32, excepting that in that case one joint member is integral with the arm section 33, whereas the other joint member is integral with the arm section 31. It will be particularly noted that the aforesaid desirable functions are present together with the additional advantage that the electrical cable 35 will extend through the joint 25 and then to the exterior via outlet 81 in cup 37, to preclude binding upon joint member relative rotation. This feature is made possible by providing side openings 46 and 47 through the respective cup-shaped joint members 36 and 37 to communicate between the tubular post 14 and the interior of the joint member 25. Also, the cable 35 is carried through eyelet 82 on joint 32 to flex with arm articulation.
Reference is now made to FIGS. 3 and showing terminal joint means having the functions previously referred to. As illustrated, the end of the arm section 33 is received in and attached via set screw 83 to tubular part 84, the latter "being threaded at 49 to a tubular plug 50 having a bore 51 receiving a coaxial tubular insert 52. The latter projects into the end of the arm part 84 and has an annular stop 53 located between the terminal 100 of the part 84 and internal flange 102 on sleeve 50. Insert 52 has a press fit on tubular member 103 to which U-shaped bracket 56 is connected. When sleeve 50 is rotated and tightened on arm part 84, annular flange stop 53 is frictionally gripped between elements 100 and 102 to hold the head in any selected position of rotation about the axis 30, which position is determined by forcible swinging of the head about that axis. Full circular rotation of the head is, however, blocked by engagement of a pin 104 on member 103 with a stop 105 which is formed on a ring 106 attached at 107 to part 84. A slot 108 in the ring accommodates the pin 104.
The bracket 56 carries another U-shaped bracket 58 in such manner that the latter, to which the head is attached, swings about the axis 29. The head portion or plate attached to the bracket 58 is indicated at 59. Rotary attachment of the U-shaped brackets 56 and 58 is facilitated by the plugs 60 and 61 which are coaxial with respect to the axis 29 normal to axis 30. A fastener 62 is threaded into the plug 60 to create a frictional clamping effect between the nylon washer 63 and the legs 64 and 65 of the respective brackets 58 and 56.
Similarly a fastener 66 is threaded into the plug 61 to create when tightened a desired degree of frictional interengagement between the nylon washer 67 and the legs 68 and 69 of the respective brackets 58 and 56. For this purpose, the fastener 66 is integral with a cap 70 mounting a handle 71 which, when turned, tightens the cup against a spacer 72 which presses against the bracket leg 68. When the handle 71 is loosened, a compression spring contained within the cap 70 presses against the spacer 72 to create a basic degree of frictional interengagement as between the washer 67 and the bracket legs 68 and 69 characterized as holding the head in a selected position of rotation about the axis 29 at the same time such frictional interengagement permits forcible swinging of the head about the axis 29 to selected position.
Referring back to FIG. 1, for orientation purposes it will be understood that the cabinet has front and side panels 74 and 75 respectively. Also the head 12 has a front plate 76 through which therapeutic electromagnetic wave travel is directed.
FIG. 7 illustrates the single turn primary and multiple turn secondary coils 86 and 87, which have a common axis and are inductively coupled within the shell 16 of the head 12. An adjustable capacitor 88 within the head shell has plates respectively connected to opposite ends of the secondary coil turns, to provide a tank circuit, and a source of pulsation of frequency 27.12 megacycles is indicated in block form at 89. The coaxial cable is seen at 35.
As previously mentioned, the segments 31 and 33 are dielectric and break up the overall length of the arm structure from a radiation standpoint; i.e., they are connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 to 6 meter band. In this regard, the arm is typically of an overall length proximate the three meter band, and the joints 25 and 32, sleeve 19 and post 14 are typically constructed of light weight metal such as aluminum or an alloy thereof. Further, the overall height of the post 14, sleeve 19 and joint 25 is less than /2 meter. Also, the spacing between the closest exposed portions of the segments 31 and 33 is always less than /2 meter, i.e. between points 90 and 91 in FIG. 2.
We claim:
1. In electrotherapeutic apparatus, a source of pulses having frequencies over one megacycle, an electrotherapeutic treatment head containing primary and secondary coils, a coaxial cable electrically connected to supply pulse energy from said source to said primary coil, the secondary coil being located for inductive coupling to the primary coil to radiate energy inductively supplied thereto, and support arm structure for said head including joint means rendering the arm structure capable of selective articulation, the overall arm length being in the range /2 to 3 /2 meters, the arm structure including at least one segment consisting of dielectric material and connected in load bearing series relation with the arm structure so as to preclude radiation by the arm of high frequency energy in the /2 t0 6 meter range, a cabinet supporting the arm structure, the arm structure also including a lockable metallic primary joint carried above the cabinet top, a lockable metallic secondary joint spaced from said primary joint, saidsegment being in the form of a shaft extending intermediate said joints, the arm structure also including a metallic swivel joint beyond and spaced from said second joint to carry said head, and a second dielectric segment in the form of a shaft extending intermediate said second joint and swivel joint, the spacing between said dielectric segments being less than /2 meter, a metallic post extending vertically to carry said first joint, and a metallic sleeve supporting said post to turn about a vertical axis, the sleeve being carried by the cabinet top, the overall height of said post, sleeve and first joint being less than /2 meter.
2. The combination of claim 1, in which said coaxial cable is carried to extend along the arm and at the exterior thereof.
3. The combination of claim 1 in which the post and first joint are hollow, and said cable extends upwardly Within said post and first joint, the first joint having an outlet through which the cable projects to the exterior, the cable having an insulative covering.
References Cited UNITED STATES PATENTS 2,109,726 3/ 193 8 Huppert 128-405 2,276,996 3 1942 Milinowski 128-422 3,043,310 7/ 1962 Milinowski 128--422 FOREIGN PATENTS 6'27, 103 10/ 1961 Italy.
RICHARD A. GAUDET, Primary Examiner. W. E. KAMM, Assistant Examiner.

Claims (1)

1. IN ELECTROTHERAPEUTIC APPARATUS, A SOURCE OF PULSES HAVING FREQUENCIES OVER ONE MEGACYCLE, AN ELECTROTHERAPEUTIC TREATMENT HEAD CONTAINING PRIMARY AND SECONDARY COILS, A COAXIAL CABLE ELECTRICALLY CONNECTED TO SUPPLY PULSE ENERGY FROM SAID SOURCE TO SAID PRIMARY COIL, THE SECONDARY COIL BEING LOCATED FOR INDUCTIVE COUPLING TO THE PRIMARY COIL TO RADIATE ENERGY INDUCTIVELY SUPPLIED THERETO, AND SUPPORT ARM STRUCTURE FOR SAID HEAD INCLUDING JOINT MEANS RENDERING THE ARM STRUCTURE CAPABLE OF SELECTIVE ARTICULATION, THE OVERALL ARM LENGTH BEING IN THE RANGE 1/2 TO 31/2 METERS, THE ARM STRUCTURE INCLUDING AT LEAST ONE SEGMENT CONSISTING OF DIELECTRIC MATERIAL AND CONNECTED IN LOAD BEARING SERIES RELATION WITH THE ARM STRUCTURE SO AS TO PRECLUDE RADIATION BY THE ARM OF HIGH FREQUENCY ENERGY IN THE 1/2 TO 6 METER RANGE, A CABINET SUPPORTING THE ARM STRUCTURE, THE ARM STRUCTURE ALSO INCLUDING A LOCKABLE METALLIC PRIMARY JOINT CARRIED ABOVE THE CABINET TOP, A LOCKABLE METALLIC SECONDARY JOINT SPACED FROM SAID PRIMARY JOINT, SAID SEGMENT BEING IN THE FORM OF A SHAFT EXTENDING INTERMEDIATE SAID JOINTS, THE ARM STRUCTURE ALSO INCLUDING A METALLIC SWIVEL JOINT BEYOND AND SPACED FROM SAID SECOND JOINT TO CARRY SAID HEAD, AND A SECOND DIELECTRIC SEGMENT IN THE FORM OF A SHAFT EXTENDING INTERMEDIATE SAID SECOND JOINT AND SWIVEL JOINT, THE SPACING BETWEEN SAID DIELECTRIC SEGMENTS BEING LESS THAN 1/2 METER, A METALLIC POST EXTENDING VERTICALLY TO CARRY SAID FIRST JOINT, AND A METALLIC SLEEVE SUPPORTING SAID POST TO TURN ABOUT A VERTICAL AXIS, THE SLEEVE BEING CARRIED BY THE CABINET TOP, THE OVERALL HEIGHT OF SAID POST, SLEEVE AND FIRST JOINT BEING LESS THAN 1/2 METER.
US407044A 1964-10-28 1964-10-28 Supporting arm for electrotherapeutic treatment head Expired - Lifetime US3329149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US407044A US3329149A (en) 1964-10-28 1964-10-28 Supporting arm for electrotherapeutic treatment head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US407044A US3329149A (en) 1964-10-28 1964-10-28 Supporting arm for electrotherapeutic treatment head

Publications (1)

Publication Number Publication Date
US3329149A true US3329149A (en) 1967-07-04

Family

ID=23610378

Family Applications (1)

Application Number Title Priority Date Filing Date
US407044A Expired - Lifetime US3329149A (en) 1964-10-28 1964-10-28 Supporting arm for electrotherapeutic treatment head

Country Status (1)

Country Link
US (1) US3329149A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971538A (en) * 1975-09-16 1976-07-27 Marvich Jack M Surgical instrument support
US4590695A (en) * 1985-07-19 1986-05-27 Mcgillivray Dean D Adjustable quilting frame
US5513827A (en) * 1993-07-26 1996-05-07 Karlin Technology, Inc. Gooseneck surgical instrument holder
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7320682B2 (en) 1999-11-18 2008-01-22 Tyco Healthcare Group Lp Safety device
US20080140155A1 (en) * 2005-03-07 2008-06-12 Pilla Arthur A Excessive fibrous capsule formation and capsular contracture apparatus and method for using same
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20100210893A1 (en) * 2003-12-05 2010-08-19 Pilla Arthur A Apparatus and method for electromagnetic treatment of plant, animal, and human tissue, organs, cells, and molecules
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20110112352A1 (en) * 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20110152598A1 (en) * 2007-04-12 2011-06-23 Pilla Arthur A Electromagnetic field treatment apparatus and method for using same
US20110207989A1 (en) * 2003-12-05 2011-08-25 Pilla Arthur A Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8343027B1 (en) 2012-01-30 2013-01-01 Ivivi Health Sciences, Llc Methods and devices for providing electromagnetic treatment in the presence of a metal-containing implant
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8415123B2 (en) 2004-04-19 2013-04-09 Ivivi Health Sciences, Llc Electromagnetic treatment apparatus and method for angiogenesis modulation of living tissues and cells
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9320913B2 (en) 2014-04-16 2016-04-26 Rio Grande Neurosciences, Inc. Two-part pulsed electromagnetic field applicator for application of therapeutic energy
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9415233B2 (en) 2003-12-05 2016-08-16 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological pain
US9427598B2 (en) 2010-10-01 2016-08-30 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic treatment of head, cerebral and neural injury in animals and humans
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
US9656096B2 (en) 2003-12-05 2017-05-23 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10350428B2 (en) 2014-11-04 2019-07-16 Endonovo Therapetics, Inc. Method and apparatus for electromagnetic treatment of living systems
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US10806942B2 (en) 2016-11-10 2020-10-20 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2109726A (en) * 1934-08-20 1938-03-01 American Electric Company Artificial fever apparatus
US2276996A (en) * 1940-11-30 1942-03-17 A J Ginsberg Non-radio-interfering therapeutic apparatus
US3043310A (en) * 1959-04-24 1962-07-10 Diapulse Mfg Corp Of America Treatment head for athermapeutic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2109726A (en) * 1934-08-20 1938-03-01 American Electric Company Artificial fever apparatus
US2276996A (en) * 1940-11-30 1942-03-17 A J Ginsberg Non-radio-interfering therapeutic apparatus
US3043310A (en) * 1959-04-24 1962-07-10 Diapulse Mfg Corp Of America Treatment head for athermapeutic apparatus

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971538A (en) * 1975-09-16 1976-07-27 Marvich Jack M Surgical instrument support
US4590695A (en) * 1985-07-19 1986-05-27 Mcgillivray Dean D Adjustable quilting frame
US5513827A (en) * 1993-07-26 1996-05-07 Karlin Technology, Inc. Gooseneck surgical instrument holder
US5662300A (en) * 1993-07-26 1997-09-02 Michelson; Gary Karlin Gooseneck surgical instrument holder
US7320682B2 (en) 1999-11-18 2008-01-22 Tyco Healthcare Group Lp Safety device
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9968611B2 (en) 2002-04-08 2018-05-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US7647115B2 (en) 2002-04-08 2010-01-12 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7717948B2 (en) 2002-04-08 2010-05-18 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US11033328B2 (en) 2002-04-08 2021-06-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US10850091B2 (en) 2002-04-08 2020-12-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10441356B2 (en) 2002-04-08 2019-10-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via neuromodulatory agents
US10420606B2 (en) 2002-04-08 2019-09-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US10376311B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US10376312B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for monopolar renal neuromodulation
US10376516B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10272246B2 (en) 2002-04-08 2019-04-30 Medtronic Adrian Luxembourg S.a.r.l Methods for extravascular renal neuromodulation
US8131372B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Renal nerve stimulation method for treatment of patients
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8150518B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US10245429B2 (en) 2002-04-08 2019-04-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US9314630B2 (en) 2002-04-08 2016-04-19 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8444640B2 (en) 2002-04-08 2013-05-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8454594B2 (en) 2002-04-08 2013-06-04 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US8548600B2 (en) 2002-04-08 2013-10-01 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses for renal neuromodulation and associated systems and methods
US8551069B2 (en) 2002-04-08 2013-10-08 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for treating contrast nephropathy
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8684998B2 (en) 2002-04-08 2014-04-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for inhibiting renal nerve activity
US8721637B2 (en) 2002-04-08 2014-05-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8728138B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8728137B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8740896B2 (en) 2002-04-08 2014-06-03 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8768470B2 (en) 2002-04-08 2014-07-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for monitoring renal neuromodulation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8784463B2 (en) 2002-04-08 2014-07-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10179235B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US8845629B2 (en) 2002-04-08 2014-09-30 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation
US8852163B2 (en) 2002-04-08 2014-10-07 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods
US8880186B2 (en) 2002-04-08 2014-11-04 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US8934978B2 (en) 2002-04-08 2015-01-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8948865B2 (en) 2002-04-08 2015-02-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US8958871B2 (en) 2002-04-08 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US10179028B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating patients via renal neuromodulation
US8983595B2 (en) 2002-04-08 2015-03-17 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US8986294B2 (en) 2002-04-08 2015-03-24 Medtronic Ardian Luxembourg S.a.rl. Apparatuses for thermally-induced renal neuromodulation
US9023037B2 (en) 2002-04-08 2015-05-05 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US10130792B2 (en) 2002-04-08 2018-11-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs
US9125661B2 (en) 2002-04-08 2015-09-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9138281B2 (en) 2002-04-08 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets
US9186198B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US9186213B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9265558B2 (en) 2002-04-08 2016-02-23 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US10179027B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable baskets for renal neuromodulation and associated systems and methods
US10124195B2 (en) 2002-04-08 2018-11-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10111707B2 (en) 2002-04-08 2018-10-30 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of human patients
US10105180B2 (en) 2002-04-08 2018-10-23 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9326817B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US9364280B2 (en) 2002-04-08 2016-06-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US10039596B2 (en) 2002-04-08 2018-08-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for renal neuromodulation via an intra-to-extravascular approach
US10034708B2 (en) 2002-04-08 2018-07-31 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US9320561B2 (en) 2002-04-08 2016-04-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9956410B2 (en) 2002-04-08 2018-05-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9445867B1 (en) 2002-04-08 2016-09-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via catheters having expandable treatment members
US9456869B2 (en) 2002-04-08 2016-10-04 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9463066B2 (en) 2002-04-08 2016-10-11 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9468497B2 (en) 2002-04-08 2016-10-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9474563B2 (en) 2002-04-08 2016-10-25 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9486270B2 (en) 2002-04-08 2016-11-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9907611B2 (en) 2002-04-08 2018-03-06 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9675413B2 (en) 2002-04-08 2017-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9731132B2 (en) 2002-04-08 2017-08-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9743983B2 (en) 2002-04-08 2017-08-29 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9757192B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9814873B2 (en) 2002-04-08 2017-11-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9827041B2 (en) 2002-04-08 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatuses for renal denervation
US9895195B2 (en) 2002-04-08 2018-02-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US20110112352A1 (en) * 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US8961385B2 (en) 2003-12-05 2015-02-24 Ivivi Health Sciences, Llc Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US20100222631A1 (en) * 2003-12-05 2010-09-02 Pilla Arthur A Apparatus and method for electromagnetic treatment of plant, animal, and human tissue, organs, cells, and molecules
US20100210893A1 (en) * 2003-12-05 2010-08-19 Pilla Arthur A Apparatus and method for electromagnetic treatment of plant, animal, and human tissue, organs, cells, and molecules
US9656096B2 (en) 2003-12-05 2017-05-23 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US20110207989A1 (en) * 2003-12-05 2011-08-25 Pilla Arthur A Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US10207122B2 (en) 2003-12-05 2019-02-19 Endonovo Therapeutics, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US9415233B2 (en) 2003-12-05 2016-08-16 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological pain
US10226640B2 (en) 2003-12-05 2019-03-12 Endonovo Therapeutics, Inc. Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US8415123B2 (en) 2004-04-19 2013-04-09 Ivivi Health Sciences, Llc Electromagnetic treatment apparatus and method for angiogenesis modulation of living tissues and cells
US9108040B2 (en) 2004-10-05 2015-08-18 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US10537734B2 (en) 2004-10-05 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8433423B2 (en) 2004-10-05 2013-04-30 Ardian, Inc. Methods for multi-vessel renal neuromodulation
US9950161B2 (en) 2004-10-05 2018-04-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US9402992B2 (en) 2004-10-05 2016-08-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8805545B2 (en) 2004-10-05 2014-08-12 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20080140155A1 (en) * 2005-03-07 2008-06-12 Pilla Arthur A Excessive fibrous capsule formation and capsular contracture apparatus and method for using same
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US20110152598A1 (en) * 2007-04-12 2011-06-23 Pilla Arthur A Electromagnetic field treatment apparatus and method for using same
US10561460B2 (en) 2008-12-31 2020-02-18 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems and methods for treatment of sexual dysfunction
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US9427598B2 (en) 2010-10-01 2016-08-30 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic treatment of head, cerebral and neural injury in animals and humans
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US8343027B1 (en) 2012-01-30 2013-01-01 Ivivi Health Sciences, Llc Methods and devices for providing electromagnetic treatment in the presence of a metal-containing implant
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9320913B2 (en) 2014-04-16 2016-04-26 Rio Grande Neurosciences, Inc. Two-part pulsed electromagnetic field applicator for application of therapeutic energy
US10350428B2 (en) 2014-11-04 2019-07-16 Endonovo Therapetics, Inc. Method and apparatus for electromagnetic treatment of living systems
US11344741B2 (en) 2016-11-10 2022-05-31 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US10806942B2 (en) 2016-11-10 2020-10-20 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US11826579B2 (en) 2016-11-10 2023-11-28 Mannavibes Inc. System and method for applying a low frequency magnetic field to biological tissues

Similar Documents

Publication Publication Date Title
US3329149A (en) Supporting arm for electrotherapeutic treatment head
US3043310A (en) Treatment head for athermapeutic apparatus
CN208690749U (en) Low voltage outdoor Reactive-current General Compensation device switchgear
US3543762A (en) Automatic control of electrotherapeutic apparatus
CN207539588U (en) Multifunctional TV mount
US3626135A (en) Electronic oven with ferrite rf rejection filters
CN109107054A (en) A kind of head fixing device for sitting posture radiotherapy
US3368565A (en) Electrotherapeutic treatment head with tuning means
Abe Influence of adaptation on the strength-frequency curve of human eyes, as determined with electrically produced flickering phosphenes
US2044257A (en) Apparatus for electromedical treatment
US2460707A (en) Electrotherapeutic apparatus
CN205982954U (en) Connecting frame of photography lamps
US5349144A (en) Transformer connector
US3128352A (en) Clamping means for an articlesupporting boom
CN114650865A (en) Stimulation device and use thereof
CN209284962U (en) A kind of electric cooker radiation proof board mounting structure and electric cooker
ES2225133T3 (en) CARDIAC DEFIBRILATION.
CN209725753U (en) A kind of wall single armed arbitrarily stops display bracket
CN208401261U (en) A kind of lightning rod of adjustable-angle
US2202195A (en) Adjustable joint
CN215961843U (en) Support is lifted with rotation type to tumour radiotherapy equipment
CN211911888U (en) Device convenient for acupoint selection before and after rat acupuncture experiment
US1776863A (en) Therapeutic lamp unit
CN220477954U (en) Jaundice therapeutic instrument lamp shade adjustment mechanism
DE894292C (en) Fluorescent lamp