US3322515A - Flame spraying exothermically reacting intermetallic compound forming composites - Google Patents

Flame spraying exothermically reacting intermetallic compound forming composites Download PDF

Info

Publication number
US3322515A
US3322515A US442727A US44272765A US3322515A US 3322515 A US3322515 A US 3322515A US 442727 A US442727 A US 442727A US 44272765 A US44272765 A US 44272765A US 3322515 A US3322515 A US 3322515A
Authority
US
United States
Prior art keywords
powder
coating
flame
nickel
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US442727A
Inventor
Ferdinand J Dittrich
Arthur P Shepard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metco Inc
Original Assignee
Metco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23757915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3322515(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metco Inc filed Critical Metco Inc
Priority to US442727A priority Critical patent/US3322515A/en
Priority to DE1796342A priority patent/DE1796342C2/en
Priority to DE1521387A priority patent/DE1521387B2/en
Priority to CH230766A priority patent/CH503123A/en
Priority to BE678178D priority patent/BE678178A/fr
Priority to NL666603745A priority patent/NL151922B/en
Priority to SE03868/66A priority patent/SE331404B/xx
Priority to FR54773A priority patent/FR90386E/en
Priority to US592238A priority patent/US3436248A/en
Publication of US3322515A publication Critical patent/US3322515A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12104Particles discontinuous
    • Y10T428/12111Separated by nonmetal matrix or binder [e.g., welding electrode, etc.]
    • Y10T428/12118Nonparticulate component has Ni-, Cu-, or Zn-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories

Definitions

  • This invention relates to the flame spraying of exothermically reacting intermetallic compound forming composites.
  • the invention more particularly relates to the flame spraying of flame spray materials in the form of composites containing two or more components which will exothermically react with each other during the spraying, forming one or more intermetallic compounds, and to a novel group of such composites including powders and wires.
  • Flame spraying involves the feeding of a heat-fusible material into a heating zone, wherein the same is melted or at least heat-softened, and then propelled from the heating zone in a finely divided form, generally onto a surface to be coated.
  • the material being sprayed is generally fed into the heating zone in the form of either a powder or a wire (the latter term designating both rods and wires).
  • the spraying is eflected in a device known as a heat-fusible mate rial spray gun or a flame spray gun.
  • the rod or wire of the material to be sprayed is fed into the heating zone formed by a flame of some type, where it is melted or at least heat-softened and atomized, usually by blast gas, and thence propelled in finely divided form onto the surface to be coated.
  • the rod or wire may be a conventionally formed rod or wire of a metal, or may be formed by sintering together finely divided material, or by bonding together finely divided material by means of a plastic binder or other suitable binder which disintegrates in the heat of the heating zone, thereby releasing the material to be sprayed in finely divided form.
  • a powder type flame spray gun For spraying finely divided, i.e., powdered material, a powder type flame spray gun is used in which the powder, usually entrained in a carrier gas, is fed into the heating zone of the gun formed by a flame of some type. The powder is either melted or at least the surface of the grains heat-softened in this zone, and the thus thermally conditioned particles propelled onto a surface to provide a coating.
  • a separate blast gas is often dispensed with, though the same may be supplied in order to aid in accelerating the particles and propelling them toward the surface to be coated.
  • the blast gas may be provided for both the wire type and powder type guns to perform the additional function of cooling the workpiece and the coating being formed thereon.
  • the heat for the heating zone is most commonly produced from a flame caused by the combustion of a fuel, such as acetylene, propane, natural gas, or the like, using oxygen or air as the oxidizing agent.
  • a fuel such as acetylene, propane, natural gas, or the like
  • the heat may, however, also be produced by an electrical arc flame or, in the newer type of guns, by a plasma flame.
  • the plasma flame may in itself constitute part of an electric are, or, in accordance with a newer development, may be in the form of a free plasma stream, i.e., a stream of plasma which may be considered independent of the are as it does not contribute to the electric flow between electrodes.
  • Heat-fusible material spray guns utilizing electric resistance heating or induction heating as the heat source have also been proposed but have not proven commercially successful except in connection with the spraying of low melting point metals, such as solders, lead and zinc.
  • Flame spraying in the initial stages of its commercial development was used mostly for the spraying of various metals and was often referred to as metallizing.
  • the art of flame spraying extends to the spraying of a much wider group of materials, including higher melting point or refractory metals, ceramics, cermets, and the like, and such materials are of increasing commercial interest.
  • the rod or wire In the case of spraying heat-fusible materials in the initial form of a rod or wire, the rod or wire is generally of a single composition, i.e., in the form of a specific metal, alloy, ceramic, or the like. While it is true that rods or wires formed from finely divided material bound together with a binder of plastic or the like, as mentioned above, were known, the binder generally did not take part in the spraying or contribute to the coating, and merely served the purpose of maintaining the rod or wire in shape until fed into the heating zone.
  • One object of this invention is the spraying of the heat fusible material in a novel form which allows the obtaining of superior results.
  • a further object of this invention is a novel group of flame spray materials.
  • FIG. 1 diagrammatically shows a cross-section of a grain of novel powder in accordance with the invention
  • FIG. 2 is a cross-section of a further embodiment of an aggregate grain of novel flame spray powder in accordance with the invention.
  • FIG. 3 is a diagrammatic cross-section of an embodiment of a novel flame spray wire in accordance with the invention.
  • FIG. 4 shows a cross-section of a further embodiment of a novel flame spray wire in accordance with the invention.
  • FIG. 5 shows a still further embodiment of a novel flame spray wire in accordance with the invention.
  • the flame spraying is effected with the heat-fusible material in the form of a composite containing at least two components which will exothermically react with each other at the temperatures developed during the spraying, forming an intermetallic compound.
  • composite as used herein is intended to designate a structurally integral unit and does not include a mere mixture of components which may be physically separated without any destruction of the structure.
  • the term composite does not include a simple mixture of individual granules of the separate components, but requires that each of the individual granules contain the separate components which will exothermically react, forming intermetallic compounds.
  • wire the individual components must be incorporated in a single wire. In the composite the components must be in intimate contact with each other.
  • each grain may consist of an aggregate containing the two components which will exothermically react, forming the intermetallic compound, but preferably the individual grains of the powder are in the form of a clad composite consisting of a nucleus of one of the components and at least one coating layer of the other component.
  • the composite may consist of separate, concentric coating layers of the two components and a nucleus of still a third material.
  • the composites may be in the form of a wire having a coating sheath of one material and a core of the other, alternate coating sheaths of the components and a core of a third material, a wire formed by twisting or rolling separate wire strands of the components, a wire consisting of a sheath of one component and a core containing the other component in powder or compacted form, a wire consisting of a sheath of one component and a core containing a compacted powder mixture of this same component material and one or more other components, a wire consisting of a plastic sheath and a core containing a compacted powder mixture of components, etc.
  • the wires In order for the wires to be satisfactory for spraying, the same must not cavitate at the tip when heated, and should preferably be capable of forming a pointed or slightly tapered tip when being melted and sprayed. Thus, if the wires have an outer layer or sheath of one component and an inner core of another component, the inner core cannot have a lower melting point than the outer sheath, as otherwise the inner core will initially melt, causing cavitation at the tip.
  • the wire is composed of nickel and aluminum as the exothermically reacting components and is in the form of a core with a coating sheath
  • the core must be nickel and the coating sheath aluminum, as otherwise during the spraying the core will initially melt out, causing the cavitation which will interfere with a satisfactory spraying operation.
  • the wire having the melting-point characteristics so as to allow the melting off of the tip without this cavitation, is referred to herein and in the claims as non-cavitating wire.
  • any two metallics which may be melted together to form an intermetallic compound in an exothermic reaction may be used.
  • the components should release about 3000 calories per gram atom, and preferably at least 7500 calories per gram atom in the exothermic reaction forming the intermetallic compounds.
  • calories per gram atom denotes the number of gram calories which the average atomic weight in the grams of the intermetallic compound formed will generate in so being formed. While the components are preferably present in the stoichiometric proportions required for the formation of the intermetallic compound, it is, however, possible to also have an excess of one or the other provided the relative amounts are sufficient to release the quantities of heat indicated above in the formation of the intermetallic compounds.
  • iron itself is not a satisfactory component, the same may be present in addition to another component, which in itself is satisfactory, such as in the form of an alloy therewith.
  • This other component must be present in amount sufficient to form the intermetallic compound with the other component of the composite, with the generation of sufficient heat to aid the spraying operation.
  • iron which just contains enough alloyed nickel to render the same rustresistant does not contain enough nickel for an effective exothermic reaction with aluminum.
  • an alloy if nickel and iron must contain at least about 12% nickel for this purpose.
  • FIG. 1 shows a composite powder consisting of a nucleus of aluminum and a coating layer of nickel.
  • FIG. 2 shows an aggregate of these components; and FIGS. 3, 4, and 5 show various forms of wire containing these components, FIG. 3 showing a wire having an aluminum core with a nickel sheath, FIG. 4 showing a wire made of alternate strands of nickel and aluminum wire, as for example 18 strands of 25 gauge (.019" diameter) nickel wire, and 19 strands of 25 gauge aluminum wire; and FIG. 5 shows a sheath of aluminum filled with granules of nickel and aluminum.
  • one of the component metals is available as a metal hydride
  • the same may be used in this form rather than as a metal per se.
  • the hydrogen gas evolved from the hydride produces a reducing atmosphere, which in turn suppresses oxidation of the intermetallic compounds during and immediately after their formation.
  • titanium hydride may be used as one of the components.
  • a metal hydride such as titanium hydride
  • a metal hydride such as titanium hydride
  • the powder granules and the wire may contain other conventional flame spray components, or be sprayed in admixture or in conjunction therewith.
  • the coated powders may additionally contain other coating layers of other flame spray components or may contain a nucleus of another flame spray material with alternate coating layers of the components which will exothermically react, forming the intermetallic.
  • the aggregates or the wires may contain further flame spray components, and in the case of powders, the same may additionally be admixed with any other desired flame spray powder.
  • the clad powders may be formed in any known or desired manner, and preferably by the known chemical plating processes, in which coating material is deposited on a seed or nucleus of another material, or in which multiple layers of various materials are built up on the seed material, or in which various materials are co-deposited in a single layer on the seed material.
  • a mode of forming the clad powders involves the depositing of a metal from a solution by reduction on a seed or nucleus, such as by the hydrogen reduction of ammoniacal solutions of nickel and ammonium sulfate on a seed powder catalyzed by the addition of anthraquinone. It is also possible to form the coating by the use of other known coating processes, such as coating by vapor deposition, by the thermal decomposition of metal carbonyls, by hydrogen reduction of metal halide vapors, by thermal deposition of halides, hydrides, carbonyls, organometals, or other volatile compounds, or by displacement gas plating and the like.
  • a preferred and greatly simplified mode of forming the clad powders in accordance with the invention is the depositing of one component as a coating in the form of a paint on the other component.
  • one of the components which is to form the coating or cladding may be dispersed in finely divided form in a binder or lacquer so as, in effect, to form a paint in which this component corresponds to the pigment.
  • the paint is then used to coat core particles of the other component and the binder or lacquer allowed to set or dry.
  • the binder material is preferably a resin which does not depend on solvent evaporation in order to form a dried or set film, and which film will decompose or break down in the heat of the spraying process.
  • the binder for example, may be a phenolic varnish or any other known or conventional varnish, preferably containing a resin as the varnish solids.
  • the component which is initially mixed with the binder or varnish should preferably be as finely divided as possible, as for example 325 mesh.
  • the other component which constitutes the core should be approximately or only slightly below the particle size ultimately desired for the spray powder.
  • the coating of the core component with the paint may be effected in any known or desired manner, and it is simply necessary to mix the two materials together and allow the binder to dry or set, which will result in a fairly free-flowing powder consisting of the core component coated with a cladding of the other component bound in the binder.
  • the aggregates may be formed by compacting or briquetting the various components into the individual granules, or into larger aggregates and then breaking these aggregates into the granules.
  • the wires may be formed in the known conventional manner for forming wires with various components as, for example, by shrinking a sheath on a core, by forming the core with powder, by twisting the component wires, followed by rolling, drawing, swaging, or the like if desired.
  • one of the components may be formed into a tube or sheath and filled with a powder of the other component or a powder comprising a mixture of the two components, or containing additional components.
  • the tube ends are then sealed and the wire reduced to the desired wire diameter by swaging, rolling or drawing.
  • the powder or powder mixture is first compressed into cylindrical briquettes before being placed in the sheath or core.
  • the sealing of the tube ends after loading with the powder or powder mixture can be effected, for instance, by insertion of a plug, for example of the metal of the sheath, by welding, twisting, crimping, or the like.
  • Powders in accordance with the invention should have the general over-all shape and size of conventional, flamespray powders, and thus for example should have a size between 60 mesh and +3 microns and preferably 140 mesh and microns (U.S. Standard screen mesh size). Most preferably the powder should be as uniform as possible in grain size, with the individual grains not varying by more than 250 microns and preferably 75 microns.
  • the composite powders may be sprayed per se or in combination with other different composite powders, or in combination with other conventional flame spray powders or powder components.
  • the powders are preferably sprayed, as such, in a powder-type of flame spray gun, it is also possible to combine the same in the form of a wire or rod, using a plastic or similar binder, which decomposes in the heating zone of the gun, or in certain cases the powders may be compacted and/or sintered together in the form of a rod or wire.
  • the wires must have the conventional sizes and accuracy tolerances for flame spray wires, and thus for example may vary in size between A" and gauge,
  • wires are sprayed in the conventional manner, using conventional wire-type flame spray guns.
  • the components In combining, in the exothermic reaction, forming the intermetallic compound, the components generate heat in situ in the actual material which is to form at least a part of the coating. This is to be distinguished from flamespray processes and materials in which heat is generated by a reaction, such as an oxidation reaction, in which a foreign and non-metallic element is introduced and in which undesirable components may be produced. Aside from greatly contributing to the thermal efficiency of the process, the heat generated in situ in the formation of the intcrmetallic compound produces novel results, in many instances forming a denser, more adhering coating, having characteristics of at least a partially fused coating. In many instances the coating has self-bonding characteristics, so that special surface preparation, other than a good cleaning, is not required.
  • the spraying in all other respects is effected in the conventional, well-known manner, using conventional flame spray equipment, and the conventional surface preparation may be utilized, if desired.
  • the composites in accordance with the invention may be sprayed in conjunction with, or in addition to, other fiame spray materials conventionally used in the art, or may be sprayed in combination or conjunction with the others.
  • the use of the composites as, for example, the nickelaluminum composites will generally improve the bond of the total sprayed material, and thus of the other component or components to the substrate, sometimes making the mixture self-bonding.
  • the particle bond will be improved and the coating will be denser, so that its porosity may be decreased.
  • as little as 10% by weight of the composites in accordance with the invention will be sufficient to substantially improve the bonding characteristics and decrease the porosity of other flame spray materials, such as conventional flame spray metals, alloys or ceramics.
  • Example 1 An aluminum powder having a particle size between -l40 mesh and +325 mesh (US. Standard screen size) is coated with nickel in the known manner by the hydrogen reduction of an ammoniacal solution of nickel and ammonium sulphate, using anthraquinone as the coating catalyst. The reduction is effected at a temperature between about 300 and 350 F. in a mechanically agitated autoclave using solutions containing 40-50 grams per liter of nickel and l0400 grams per liter of (NHQ SO and 2030 grams per liter of NH About .2 gram per liter of anthraquinone is used as the catalyst and the autoclave is pressurized with hydrogen at a pressure of about 300 lbs. p.s.i.g.
  • the solution is discharged from the autoclave and replenished with a fresh solution which need not contain further amounts of the anthraquinone coating catalyst, as the initially formed nickel coating in itself acts as a catalyst.
  • the cycle is continuously repeated until a composite powder is formed containing about 16 to 18% by weight aluminum and 84 to 82% by weight of nickel, and a size of to +270 mesh.
  • the powder thus formed is flame-sprayed on a mild steel plate which has been surface-cleaned with emery cloth.
  • the spraying is effected at about 9 inches from the plate, using a powder-type flame-spray gun as described in US. Patent 2,961,335, issued Nov. 22, 1960, and sold by Metco Inc. of Westbury, Long Island, under the trade name of Thermospray powder gun.
  • the spraying is effected at a rate of 6 to 9 lbs. of powder per hour, using acetylene gas as the fuel as a pressure of 10 p.s.i. and a flow rate of 17 to 25 cu. ft./hr. and oxygen as the oxidizing gas at a pressure of 12 p.s.i. and a flow rate of 29 to 35 cu. ft./hr.
  • the nickel coating and the aluminum base combine in the heat of the flame with a strong exothermic action, forming a mixture of nickel aluminum intermetallic compounds which deposite on the base as a dense, high quality coating which exhibits self-bonding characteristics.
  • a coating layer of .002.0()4" thickness is built up in this manner.
  • the coating may be used as a base material for spraying of further layers of different metals or the like, and serves as an excellent intermediate bonding layer.
  • the coating layer may also be built up to a greater thickness as, for example, .010"-.020", for use as an oxygen barrier undercoat, or to even greater thickness as, for example, .020"-.040" or thicker as a wear-resistant-oxidation-resistant surface. Due to its self-bonding characteristics the sprayed coatmg will adhere to a base without the conventional surface preparation or roughening, and due to the natural characteristics of a sprayed material, will allow further materials to be sprayed thereon with good bonding.
  • the coating formed from the powder has excellent oxidationresistant characteristics even at high temperatures and in oxidizing atmospheres, and will for example prevent the oxidation of base materials, such as molybdenum or the like.
  • the sprayed coatings may be used as a lining in metal-melting crucibles or molten metal-handling equipment, and will not be wetted or penetrated by many molten metals, including self-fluxing alloys. Coatings formed of the sprayed material also show good potential as high temperature, wear-resistant coatings.
  • the coated rod When the example is repeated on a molybdenum rod of diameter, with a coating between .0]0"-.012" thick, the coated rod may be repeatedly heated to approximately 2000 F. in air, in an electric furnace and cooled to room temperature with no visible oxidation occurring.
  • the composite powder contains -45% by weight of aluminum and 55- 90% by Weight of nickel.
  • Example 1(a) is repeated, using, however, cobalt in place of the nickel. Comparable results are obtained.
  • Example 1(a) is repeated, Using titanium hydride (Til-I powder in place of the aluminum and in an amount of -85 weight percent, and preferably 6085 weight percent of the total.
  • the coating formed upon spraying is hard and dense, and when sprayed on a smooth, pressed and sintered A1 0 substrate, an excellent bond is formed.
  • the spraying may be effected with an oxygenhydrogen or oxygen-acetylene flame.
  • Example 2 Example 1 is repeated with the spraying being effected in turn on the following bases and prepared in the following manner:
  • Low alloy steels and stainless steels smooth-ground to remove surface contamination; copper and copper base alloys, rough-ground or light-grit-blasted; aluminum and aluminum base alloys, rough-ground or light-grit-blasted; magnesium, rough-ground or light-grit-blasted; and titanium, rough-ground or light-grit-blasted.
  • Example 3 The nickel-clad powder of Example 1 is mixed with an A1 0 powder having a particle size between 62 microns and 10 microns, in the ratio of about 40% of the nickelclad powder with 60% by weight of the ceramic.
  • the powder is sprayed, using the gun described in Example 1, on a mild steel plate which has been surface-cleaned by smooth grinding. Spraying is effected at a distance of about 9" from the plate at a rate of about 4 to 8 lbs. of powder per hr., using acetylene at a pressure of 10 lbs. p.s.i. and a flow rate of 17-25 cu. ft./hr., and oxygen at a pressure of 12 p.s.i. and a flow rate of 29-35 cu. ft./hr.
  • a self bonding cermet coating is formed which showed excellent thermal shock-resistance, hardness, abrasion-resistance, and which strongly inhibited oxidation of the base.
  • Example 4 Example 3 is repeated, using the following materials in place of the aluminum oxide:
  • Zirconia calcium zirconate, magnesium zirconate, spinel, ceric oxide, hafnium oxide, rare earth oxides, molybdenum disilicide, tungsten silicide, chromium silicide, titanium silicide, tungsten carbide, titanium carbide and chromium carbide.
  • Example 5 A nucleus of silicon powder is coated with nickel to form a nickel-clad flame spray powder having a particle size between and 325 mesh and containing 75-85% nickel based on the silicon-nickel total.
  • the composite powder is sprayed with the flame spray gun described in Example 1 on a steel base prepared by lightly grit-blasting, using the spraying conditions as described in Example 1.
  • During the spraying silicon combines with the nickel in an exothermic reaction, greatly enhancing the thermal efficiency of the spraying and producing an excellent coating.
  • Example 6 Titanium is coated with nickel as described in Example 1 to produce a powder having a particle size between 100 and 325 mesh and containing 10 to 50% nickel based on the titanium-nickel total.
  • the nickel protects the titanium from oxidation during storage and when spraying.
  • Example 2 Upon spraying in the manner described in Example 1, on a base material prepared by grit-blasting, the nickel and titanium combine exothermically in the flame to form a corrosion-resistant coating comprising a nickel-titanium intermetallic compound.
  • Example 7 Tellurium powder was coated with copper so as to form a composite having a particle size between 100 and 325 mesh and containing 50 to 80% copper based on the tellurium-copper total.
  • Example 2 Upon spraying in the manner described in Example 1, on a base material prepared by grit-blasting, the copper and tellurium combine to form a new material.
  • Example 8 The nickel-clad flame spray power of Example 1 is mixed with about 20% by weight of low pressure polyethylene powder and molded at a temperature of about 212 F. into the form of a rod of /a" diameter.
  • the rod is sprayer, using a conventional wire-type flame spray gun sold by Metco Inc. of Westbury, N.Y., as the Metco type 4E gun.
  • the spraying is eflected with acetylene at a pressure of 15 p.s.i. and a flow rate of 37 cu. ft./hr. with oxygen as oxidizing gas at a pressure of 38 p.s.i. and a flow rate of 75 cu. ft./hr.; with air as a blast gas at a pressure of 40 p.s.i. and a flow rate of 25 cu. ft./min.
  • the end coating produced is similar to the coating produced in Example 1.
  • Example 9 A wire is formed by encasing a core of nickel in a tube of aluminum and drawing to a size of .125" in diameter plus or minus .002". The wire contains 82 to 84% by weight of nickel based on the aluminum-nickel total.
  • the wire is sprayed, using a conventional wire type flame spray gun sold by Metco Inc. of Westbury, N.Y., as the Metco type 4E gun.
  • Spraying is efiected with acetylene at a pressure of 15 p.s.i. and a flow rate of 37 cu. ft./hr. with oxygen as the oxidizing gas at a pressure of 38 p.s.i. and a flow rate of 75 cu. ft./hr.
  • Air is used as a blast gas at a pressure of 55 p.s.i. and a flow rate of 30 cu. ft./min.
  • the end coating produced is similar to the coating produced in Example 1.
  • Example 10 A composite wire is formed by winding individual wires of nickel and aluminum to form a stranded wire with a diameter of .125 plus or minus .002".
  • the wire contains 55 to 90% by weight of nickel based on the total Al-Ni.
  • the wire is sprayed in the manner described in Example 9, with identical conditions and coating resulting.
  • Example 11 A silicon powder having a particle size between 140 and 325 mesh is coated with molybdenum in the known manner and a composite powder is formed containing about 35 to 39% by weight of silicon and about 61 to 65% by weight of molybdenum, and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
  • the molybdenum coating and the silicon base combine in the heat of the flame, forming a molybdenum silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at elevated temperatures and will protect the base material from oxidation.
  • Example 12 A molybdenum powder having a particle size range between 140 and 325 mesh is coated with silicon in the known manner and a composite powder is formed containing about 35 to 39% by weight of silicon and about 61 to 65% by weight of molybdenum, and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting.
  • the spraying is effected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, N.Y., under the trade name of type 2MB Plasma Flame gun.
  • the spraying is effected at a rate of six to nine lbs. of powder per hour, using a mixture of argon and hydrogen gas as the plasma gas, with argon at a pressure of 100 p.s.i. and a flow rate of 110 cu. ft./hr., and hydrogen at 50 p.s.i. and a flow rate of 25 cu.
  • the molybdenum base and silicon coating combine in the heat of the flame, forming a molybdenum silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
  • Example 13 A silicon powder having a particle size between 140 and 325 mesh is coated with chromium in the known manner, and a composite powder is formed containing about 48 to chromium and 15 to 52% silicon by weight and a size of to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
  • the chromium coating and the silicon base combine in the heat of the flame, forming a chromium-silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at elevated temperatures and will protect the base material from oxidation.
  • Example 14 A chromium powder having a particle size between 140 and 325 mesh is coated with silicon in the known manner, and a composite powder is formed containing about 48 to 85% chromium and 15 to 52% silicon by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting.
  • the spraying is effected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, Long Island, New York, under the trade name of type 2MB Plasma Flame gun.
  • the spraying is effected at a rate of six to nine lbs, of powder per hour, using argon gas as the plasma gas at a pressure of 100 p.s.i. and a flow rate of cu. ft./hr., using argon as the powder carrier gas at 100 p.s.i. and a flow rate of 15 cu. ft./hr., using a standard electrode and D Argon nozzle, and using arc current of 400-500 amperes at 57-62 volts.
  • the chromium base and silicon coating combine in the heat of the flame, forming a chromium silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
  • Example 15 A zirconium powder having a particle size between and 325 mesh is coated with chromium in the known manner and a composite powder is formed containing about 45% zirconium and 60% chromium by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material in the manner described in Example 1.
  • the chromium coating and the zirconium base combine in the heat of the flame, forming a chromium zirconium intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures.
  • Example I 6 A titanium powder having a particle size range between 140 and 325 mesh is coated with silicon in the known manner and a composite powder is formed containing about 35 to 65% titanium and 35 to 65% silicon by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting.
  • the spraying is eflected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, N.Y., under the trade name of type 2MB Plasma Flame gun.
  • the spraying is effected at a rate of six to nine lbs of powder per hour, using argon gas as the plasma gas at a pressure of 100 p.s.i. and a flow rate of 110 cu. ft./hr., using argon as the powder carrier gas at 100 psi. and a flow rate of 15 cu. ft./hr., using a standard electrode and D Argon nozzle, and using arc current of 4005OO amperes at 5762 volts.
  • the titanium base and silicon coating combine exothermically in the heat of the flame, forming a titanium silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
  • Example 17 A dysprosium powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed containing 60 to 75% dysprosium and to 40% aluminum by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
  • the aluminum coating and the dysprosium base combine in the heat of the flame with a strong exothermic action, forming a dysprosium aluminum intermetallic compound which deposits on the base as a dense, high quality coating which exhibits excellent properties at high temperatures.
  • Example 1 8 A lanthanum powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed containing 70 to 75% lanthanum and 25 to aluminum by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flamesprayed on a base material which has been prepared by grit-blasting in the manner described in Example 1.
  • the aluminum coating and the lanthanum base combine exothermically in the heat of the flame with a strong exothermic action, forming a lanthanum aluminum intermetallic compound which deposits on the base as a dense, high quality coating which exhibits excellent properties at high temperatures.
  • Example 19 A chromium powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed consisting of 60 to 62% chromium and 38 to aluminum by weight and a size of 100 to 270 mesh.
  • the powder thus formed is flame-sprayed on a base material which has been prepared by grit-blasting in the manner described in Example 1.
  • the aluminum coating and the chromium base combine in the heat of the flame with a strong exotherimic action, forming a chromium aluminum intermetallic compound which deposits on the base as a dense, high quality coating of very high melting point and excellent oxidadon-resistance.
  • Example 20 Example 19 is repeated except that the composite powder is formed with an aluminum core and chromium coating. Identical results are obtained.
  • Example 21 The nickel-clad aluminum composite powder of Example 1 is mixed with cobalt bonded tungsten carbide particle powder having a particle size range of -l4-0 mesh +10 microns, and preferably l4O +325 mesh in proportions of:
  • (c) preferably 50 weight percent each of the tungsten carbide and composite.
  • the powder mixtures are each flame-sprayed on a mild steel plate which has been surfacecleaned by grinding or very light sand-blast cleaning.
  • the spraying is effected at about 89 inches from the plate, using a powder-type flame-spray gun as described in US. Patent 2,961,335, issued Nov. 22, 1960, and sold by Metco Inc. of Westbury, N.Y., under the trade name of Thermo-Spray powder gun.
  • the spraying is effected at a rate of 6 to 10 lbs. per hour using acetylene gas as the fuel at a pressure of 12 psi. and a flow rate of 20 to 30 cu. ft./hr. and oxygen as the oxidizing gas at a pressure of 14 p.s.i. and a flow rate of 30 to 40 cu. ft./hr.
  • the nickel-aluminum composite powder in the mixture reacts exothermically in the flame to provide the selfbonding properties of the mixture and, being fully molten on impact with the substrate, becomes the matrix which securely binds the tungsten carbide particles together in the coating.
  • the resultant coating is of a highly wear-resistant coating material, applicable to virtually any base material and not subject to the limitations of the previously used self-fluxing alloy matrix materials which must be fused at approximately 1900" F.
  • Example 22 Example 21 is repeated except that in place of the grade of tungsten carbide cobalt powder grains used, cobalt-bonded tungsten carbide grains with lower cobalt content and sharp, angular shape are used.
  • Example 21 The powder was sprayed in the manner described in Example 21. The sharp, angular edges of the initial tungsten carbide particles were retained in the coating.
  • the deposited coating may be suitably finished by grinding for use as a wear-resistant coating or used as deposited where the coated article is to be used as a hone or lap, the sharp edges of the carbide inclusions constituting the abrading or cutting edges.
  • Example 23 Example 22 is repeated except that in place of the tungsten carbide grains described, cobalt-bonded tungsten carbide particles of sharp, angular shape were used which were first coated with nickel in the manner described in Example 1, so as to produce nickel-clad particles having a size between and 325 mesh and containing from 2050% nickel based on the tungsten carbide-nickel total.
  • Example 24 The nickel-clad aluminum composite described in Example 1 is mixed with a columbium (niobium) powder of size between mesh and 10 microns and preferably +325 mesh in the proportions of 60 Weight percent of the nickel-aluminum composite.
  • the powder mixture is sprayed in the manner described in Example 21.
  • the resultant coating is self-bonding to a wide variety of substrate materials and when properly finished, by grinding or other means, is a highly wearresistant, hard coating.
  • Example 25 The nickel-clad aluminum composite described in Example 1 is mixed with a molybdenum powder of a size between 120 mesh and +10 microns and preferably --140 +325 mesh in the proportions of 65 weight percc. 1 molybdenum to 35 weight percent of the nickelaluminum composite.
  • Example 21 The powder mixture is sprayed in the manner described in Example 21.
  • the resultant coating is self-bonding to a wide variety of substrate materials and when properly finished, by grinding or other means, presents a highly wear-resistant, hard surface.
  • Example 26 Example 21 is repeated except in place of the tungsten carbide, other carbides such as titanium carbide, tantalum carbide, columbium carbide, chromium carbide and mixtures of the various carbides are used.
  • other carbides such as titanium carbide, tantalum carbide, columbium carbide, chromium carbide and mixtures of the various carbides are used.
  • Example 27 The nickel-clad aluminum core composite from Example 21 is mixed with aluminum powder in the mesh size range 100 +325 mesh, and preferably in the -l70 +325 mesh size range in the proportions of 80 weight percent nickel aluminum composite to 20 weight percent aluminum.
  • the mixture was sprayed in the manner described in Example 21.
  • the coating as deposited consists of an intimate mixture of the flame-reacted nickel aluminide and aluminum securely bonded to the base and particle to particle within the coating.
  • the nickel aluminide and aluminum combine to form a dense, homogenous coating fused to the base material which can be used for cathodic protection of iron and steel subject to water and salt-water corrosion.
  • Example 28 The nickel-clad aluminum composite powder of Example 21 is mixed with Monel powder of a size between -100 mesh and microns, and preferably between 140 and +325 mesh in the proportions 35 weight percent composite to 65 weight percent Monel.
  • the powder mixture was sprayed in the manner described in Example 21.
  • the resultant coating is selfbonding to a wide variety of substrate materials and the inclusion of the nickel-aluminum composite, the components of which combine exothermically in the flame to provide the self-bonding ability of the mixture, considerably increase the particle to particle bonds within the coating and decrease the permeability of the coating.
  • Example 29 Example 28 is repeated except that nickel and stainless steel powders are substituted for the Monel.
  • Example 30 is repeated except that chromium is substituted for the Monel.
  • the resultant coating when properly finished, by grinding or other means shows high resistance to abrasion, wear, and galling by other metals, and is an excellent hearing surface.
  • Example 31 Finely divided aluminum powder (-325 mesh) was blended with a phenolic varnish having approximately 50% solid contents so as to form a mixture having the consistency of a heavy syrup and containing 60% by weight of the metallic aluminum.
  • Example 32 (a) A mixture of 6 weight percent aluminum and 94 weight percent nickel powder are thoroughly blended and pressed together in the form of cylindrical briquettes which are loaded into an aluminum tube of .375" outside diameter, after which the tube ends are welded closed. The diameter feed stock is then swaged to 4" diameter, then to a dig" diameter then to a /s finished wire diameter. The wire is then annealed and coiled. The wire is then sprayed, using the conventional wire type flame spray gun sold by Metco Inc. as the Metco type 4-E gun. Spraying is effected, using acetylene at a pressure of about 15 lbs. psi. and a flow rate of 37 cu. ft./hr.
  • the wire is sprayed at a rate of 5 ft. per minute.
  • the spray material is deposited on a surface of ground and machine-finished, cold rolled steel with a tensile bond strength of 3820 lbs. psi.
  • the sprayed coating is hard and dense; it is wear and oxidation-resistant and it also could serve as a base for further spraying.
  • Example 32(a) is repeated except that chromium is used in place of the nickel powder in amounts of from 2495 weight percent, based on the total of the aluminum and chromium. Spraying results in a high quality coating which has self-bonding properties and is resistant to oxidation at high temperatures.
  • Example 32(a) is repeated, using columbium powder in place of the nickel powder in amounts of from 40- and preferably 5055 weight percent, based on the total of the columbium and aluminum.
  • the sprayed coating formed is a high quality coating which is resistant to oxidation at high temperatures and may be used to protect tantalum and molybdenum bases from oxidation.
  • Example 32(a) is repeated, using tantalum powder in place of the nickel powder in amounts of 4090 weight percent and preferably 65-75 weight percent of tantalum, based on the total of tantalum and aluminum.
  • the sprayed coating is a dense, high quality coating which is selfbonding and is resistant to oxidation at high temperatures.
  • Example 32(a) is repeated, using boron powder in place of the nickel powder in amounts of 40 90 weight percent, based on the total of boron and aluminum.
  • the resulting sprayed coating is self-bonding and is resistant to oxidation at high temperatures.
  • Example 32(c) is repeated except that the powder additionally contains 0.5 to 5 weight percent of boron, and/or 0.5 to 5 weight percent of silicon, based on the total of the components.
  • the coating formed is similar to that obtained in Example 32(0) except that on heating to high temperature in air, a very thin, dense, adherent, protective oxide film forms on the surface of the intermetallic compound formed, which is resistant to spelling due to thermal shock, and which is believed self-healing.
  • Example 32(a) is repeated except that tungsten carbide containing 12% binder and having a particle size below 140 mesh is added in amount of 570 weight percent, based on the total of the components.
  • the resulting coating is a dense, extremely wear-resistant coating, which has self-bonding properties.
  • This example may be further repeated, using in place of the tungsten carbide specified, crystalline tungsten carbide, aluminum oxide, diamonds or any other abrasive material.
  • Example 32(a) is repeated. However, l-l0% by weight and preferably 15% by weight of titanium hydride of a size below mesh and preferably below 325 mesh, based on the total of the components, is added to the core material. The results are the same as indicated in Example 32(a) except that the coating formed is of improved physical strength, containing considerably less oxide inclusions. In place of the titanium hydride other metal hydrides may be used.
  • Example 32(a) is repeated except that the nickel powder is replaced with a nichrome powder consisting of a chrome alloy containing 80% nickel and 20% chromium. When sprayed the wire gives a dense, self-bonding coating which is extremely oxidation-resistant.
  • Example 32(a) is repeated except that the nickel powder is replaced with a powder mixture consisting of 80% by weight nickel and 20% by weight chrome. When sprayed the wire gives a dense, self-bonding coating which is highly oxidation-resistant.
  • Example 33 Table I below gives examples of further component pairs which may be used to form the powders and/or wires in accordance with the invention.
  • each of the component pairs as listed in Table I below may be formed into a composite powder or wire as described above, and when flame-sprayed will exothermically react, forming an intermetallic compound and high grade coating.
  • the component pairs may be formed into clad powders as described in Example 31 and sprayed as described therein, or formed into a composite wire as described in Example 32 and sprayed as described therein.
  • a flame spray material comprising a composite in a form suitable for flame spraying, formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound with the release of at least 3,000 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray material comprising a composite in a form suitable for flame spraying formed of aluminum and nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • Composite according to claim 4 in which said aluminum is present in amount of about 10-45%, based on the total of nickel and aluminum.
  • a flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermctallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermetallic compound, with the release of at least 3,000 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray powder in the form of individual clad particles comprising a nucleus of aluminum and a coating layer of nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray powder in the form of individual clad particles comprising a nucleus of nickel and a coating layer of finely divided aluminum particles bound to the nucleus with a binder and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reactiing with each other when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the sur face being sprayed.
  • a non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, one of said components being aluminum and the other nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound, with the release of 7,500 gram calories per gram atom, said components being component pairs selected from the group listed in Table I above and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray Wire comprising a sheath of a first metal component and a powder core of at least one second metal component, said first and second components being capable of exothermically reacting with each other when melted together, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray wire comprising individual strands of two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • Flame spray material according to claim 1 additionally containing a metal hydride.
  • Flame spray material according to claim 1 in which one of the said components is at least partially in the form of a hydride.
  • Flame spray material according to claim 1 additionally containing a, member selected from the group consisting of boron, silicon and mixtures thereof.
  • a flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, said components being component pairs selected from the group consisting of A1 Co, Al Cr, Al Mo, Al W, Al Ta, Al Nb, Al Ti, Al Ni, Si Nb, Si Cr, Si W, Si Co, Si Mo, Si Ni, and Si Ta and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
  • a flame spray material according to claim 25 in the form of a powder in the form of a powder.
  • a flame spray material according to claim 25 in the form of a wire in the form of a wire.

Description

J. DITTRICH ETAL 3,322,515 FLAME SPRAYING EXOTHERMICALLY REACTING INTERMETALLIC TBS May 30. 1967 F.
COMPOUND FORMING composx Filed March 25, 1965 M U W W m ALUMINUM COMPACTED NICKEL AND ALUMINUM POWER.
INVENTORS FERDINAND J. D/TTR/CH ARTHUR F? SHEPARD ATTORNEYS United States Patent Ofi 3,322,515 Patented May 30, 1967 ice 3,322,515 FLAME SPRAYING EXOTHERMICALLY REACT- ING INT ERMETALLIC COMPOUND FORMING COMPOSITES Ferdinand J. Dittrich, Bellmore, and Arthur P. Shepard, Flushing, N.Y., assignors to Metco, Inc., a corporation of New Jersey Filed Mar. 25, 1965, Ser, No. 442,727 28 Claims. (Cl. 29-1911) This is a continuation-in-part of copending applications, Ser. No. 72,543, filed Nov. 22, 1960, now abandoned; Ser. No. 134,544, filed Aug. 16, 1961, now Patent No. 3,254,970; Ser. No. 237,786, filed Oct. 26, 1962, now abandoned; and Ser. No. 343,705, filed Feb. 10, 1964.
This invention relates to the flame spraying of exothermically reacting intermetallic compound forming composites. The invention more particularly relates to the flame spraying of flame spray materials in the form of composites containing two or more components which will exothermically react with each other during the spraying, forming one or more intermetallic compounds, and to a novel group of such composites including powders and wires.
Flame spraying involves the feeding of a heat-fusible material into a heating zone, wherein the same is melted or at least heat-softened, and then propelled from the heating zone in a finely divided form, generally onto a surface to be coated.
The material being sprayed is generally fed into the heating zone in the form of either a powder or a wire (the latter term designating both rods and wires). The spraying is eflected in a device known as a heat-fusible mate rial spray gun or a flame spray gun.
In the wire type flame spray gun the rod or wire of the material to be sprayed is fed into the heating zone formed by a flame of some type, where it is melted or at least heat-softened and atomized, usually by blast gas, and thence propelled in finely divided form onto the surface to be coated. The rod or wire may be a conventionally formed rod or wire of a metal, or may be formed by sintering together finely divided material, or by bonding together finely divided material by means of a plastic binder or other suitable binder which disintegrates in the heat of the heating zone, thereby releasing the material to be sprayed in finely divided form.
For spraying finely divided, i.e., powdered material, a powder type flame spray gun is used in which the powder, usually entrained in a carrier gas, is fed into the heating zone of the gun formed by a flame of some type. The powder is either melted or at least the surface of the grains heat-softened in this zone, and the thus thermally conditioned particles propelled onto a surface to provide a coating. In the powder type spray mm as no atomizing energy is required, a separate blast gas is often dispensed with, though the same may be supplied in order to aid in accelerating the particles and propelling them toward the surface to be coated.
The blast gas may be provided for both the wire type and powder type guns to perform the additional function of cooling the workpiece and the coating being formed thereon.
The heat for the heating zone is most commonly produced from a flame caused by the combustion of a fuel, such as acetylene, propane, natural gas, or the like, using oxygen or air as the oxidizing agent. The heat may, however, also be produced by an electrical arc flame or, in the newer type of guns, by a plasma flame. The plasma flame may in itself constitute part of an electric are, or, in accordance with a newer development, may be in the form of a free plasma stream, i.e., a stream of plasma which may be considered independent of the are as it does not contribute to the electric flow between electrodes.
Heat-fusible material spray guns utilizing electric resistance heating or induction heating as the heat source have also been proposed but have not proven commercially successful except in connection with the spraying of low melting point metals, such as solders, lead and zinc.
Flame spraying in the initial stages of its commercial development was used mostly for the spraying of various metals and was often referred to as metallizing. However, the art of flame spraying extends to the spraying of a much wider group of materials, including higher melting point or refractory metals, ceramics, cermets, and the like, and such materials are of increasing commercial interest.
In the case of spraying heat-fusible materials in the initial form of a rod or wire, the rod or wire is generally of a single composition, i.e., in the form of a specific metal, alloy, ceramic, or the like. While it is true that rods or wires formed from finely divided material bound together with a binder of plastic or the like, as mentioned above, were known, the binder generally did not take part in the spraying or contribute to the coating, and merely served the purpose of maintaining the rod or wire in shape until fed into the heating zone.
In the case of flame spray powders, while powders formed of several constituents were known, the same were generally in the form of a powder mixture of the individual constituents or, at best, a particle aggregate.
One object of this invention is the spraying of the heat fusible material in a novel form which allows the obtaining of superior results.
A further object of this invention is a novel group of flame spray materials.
These and still further objects will become apparent from the following description read in conjunction with the drawing in which:
FIG. 1 diagrammatically shows a cross-section of a grain of novel powder in accordance with the invention;
FIG. 2 is a cross-section of a further embodiment of an aggregate grain of novel flame spray powder in accordance with the invention;
FIG. 3 is a diagrammatic cross-section of an embodiment of a novel flame spray wire in accordance with the invention;
FIG. 4 shows a cross-section of a further embodiment of a novel flame spray wire in accordance with the invention; and
FIG. 5 shows a still further embodiment of a novel flame spray wire in accordance with the invention.
In accordance with the invention, the flame spraying is effected with the heat-fusible material in the form of a composite containing at least two components which will exothermically react with each other at the temperatures developed during the spraying, forming an intermetallic compound.
The term composite" as used herein is intended to designate a structurally integral unit and does not include a mere mixture of components which may be physically separated without any destruction of the structure. Thus, in the case of powder, the term composite does not include a simple mixture of individual granules of the separate components, but requires that each of the individual granules contain the separate components which will exothermically react, forming intermetallic compounds. In the case of wire, the individual components must be incorporated in a single wire. In the composite the components must be in intimate contact with each other.
In connection with powders, each grain may consist of an aggregate containing the two components which will exothermically react, forming the intermetallic compound, but preferably the individual grains of the powder are in the form of a clad composite consisting of a nucleus of one of the components and at least one coating layer of the other component. Alternatively, the composite may consist of separate, concentric coating layers of the two components and a nucleus of still a third material.
In the case of wires, the composites may be in the form of a wire having a coating sheath of one material and a core of the other, alternate coating sheaths of the components and a core of a third material, a wire formed by twisting or rolling separate wire strands of the components, a wire consisting of a sheath of one component and a core containing the other component in powder or compacted form, a wire consisting of a sheath of one component and a core containing a compacted powder mixture of this same component material and one or more other components, a wire consisting of a plastic sheath and a core containing a compacted powder mixture of components, etc.
In order for the wires to be satisfactory for spraying, the same must not cavitate at the tip when heated, and should preferably be capable of forming a pointed or slightly tapered tip when being melted and sprayed. Thus, if the wires have an outer layer or sheath of one component and an inner core of another component, the inner core cannot have a lower melting point than the outer sheath, as otherwise the inner core will initially melt, causing cavitation at the tip. For example, if the wire is composed of nickel and aluminum as the exothermically reacting components and is in the form of a core with a coating sheath, the core must be nickel and the coating sheath aluminum, as otherwise during the spraying the core will initially melt out, causing the cavitation which will interfere with a satisfactory spraying operation. The wire having the melting-point characteristics so as to allow the melting off of the tip without this cavitation, is referred to herein and in the claims as non-cavitating wire.
As the components, any two metallics which may be melted together to form an intermetallic compound in an exothermic reaction may be used. The components should release about 3000 calories per gram atom, and preferably at least 7500 calories per gram atom in the exothermic reaction forming the intermetallic compounds. The term calories per gram atom as used herein denotes the number of gram calories which the average atomic weight in the grams of the intermetallic compound formed will generate in so being formed. While the components are preferably present in the stoichiometric proportions required for the formation of the intermetallic compound, it is, however, possible to also have an excess of one or the other provided the relative amounts are sufficient to release the quantities of heat indicated above in the formation of the intermetallic compounds.
An extremely large number of metal components are known which can be melted together in an exothermic reaction, forming an intermetallic compound with the generation of heat. Any of these component pairs may be utilized in accordance with the invention, it only being required that the same be capable of being initially formed into the composite suitable for spraying and that the intermetallic compounds formed therefrom liberate the required amount of heat in the intermetallic compounds-formation and are suitable as components of a sprayed coating. As a general rule, components which will form intermetallic compounds having a higher melting point will liberate sufiicient heat to be useful in accordance with the invention. In certain instances, however, components which will form intermetallic compounds which do not have as high a melting point, will also liberate sufficient heat in the exothermic reaction 4 and thus be useful. Preferred componets are aluminum with at least one of Co, Cr, Mo, W, Ta, Nb, Ti, or most preferably Ni; or silicon with at least one of Ti, Nb, Cr, W, Co, Mo, Ni or Ta.
While iron itself is not a satisfactory component, the same may be present in addition to another component, which in itself is satisfactory, such as in the form of an alloy therewith. This other component, however, must be present in amount sufficient to form the intermetallic compound with the other component of the composite, with the generation of sufficient heat to aid the spraying operation. Thus, for example, iron which just contains enough alloyed nickel to render the same rustresistant, does not contain enough nickel for an effective exothermic reaction with aluminum. Generally an alloy if nickel and iron must contain at least about 12% nickel for this purpose.
FIG. 1 shows a composite powder consisting of a nucleus of aluminum and a coating layer of nickel. FIG. 2 shows an aggregate of these components; and FIGS. 3, 4, and 5 show various forms of wire containing these components, FIG. 3 showing a wire having an aluminum core with a nickel sheath, FIG. 4 showing a wire made of alternate strands of nickel and aluminum wire, as for example 18 strands of 25 gauge (.019" diameter) nickel wire, and 19 strands of 25 gauge aluminum wire; and FIG. 5 shows a sheath of aluminum filled with granules of nickel and aluminum.
Where one of the component metals is available as a metal hydride, the same may be used in this form rather than as a metal per se. When flame sprayed the hydrogen gas evolved from the hydride produces a reducing atmosphere, which in turn suppresses oxidation of the intermetallic compounds during and immediately after their formation. Thus, for example, in place of titanium, titanium hydride may be used as one of the components.
Also for the purpose of reducing oxidation a metal hydride, such as titanium hydride, may be added in a minor amount to the other components. Thus, for example, l-10% by weight, and preferably 15% by weight, based on the total of the hydride and other components, may be used.
In addition, the powder granules and the wire may contain other conventional flame spray components, or be sprayed in admixture or in conjunction therewith. Thus, for example, the coated powders may additionally contain other coating layers of other flame spray components or may contain a nucleus of another flame spray material with alternate coating layers of the components which will exothermically react, forming the intermetallic. In a similar manner, the aggregates or the wires may contain further flame spray components, and in the case of powders, the same may additionally be admixed with any other desired flame spray powder.
The clad powders, in accordance with the invention, may be formed in any known or desired manner, and preferably by the known chemical plating processes, in which coating material is deposited on a seed or nucleus of another material, or in which multiple layers of various materials are built up on the seed material, or in which various materials are co-deposited in a single layer on the seed material.
A mode of forming the clad powders involves the depositing of a metal from a solution by reduction on a seed or nucleus, such as by the hydrogen reduction of ammoniacal solutions of nickel and ammonium sulfate on a seed powder catalyzed by the addition of anthraquinone. It is also possible to form the coating by the use of other known coating processes, such as coating by vapor deposition, by the thermal decomposition of metal carbonyls, by hydrogen reduction of metal halide vapors, by thermal deposition of halides, hydrides, carbonyls, organometals, or other volatile compounds, or by displacement gas plating and the like.
A preferred and greatly simplified mode of forming the clad powders in accordance with the invention is the depositing of one component as a coating in the form of a paint on the other component. Thus, one of the components which is to form the coating or cladding, may be dispersed in finely divided form in a binder or lacquer so as, in effect, to form a paint in which this component corresponds to the pigment. The paint is then used to coat core particles of the other component and the binder or lacquer allowed to set or dry. The binder material is preferably a resin which does not depend on solvent evaporation in order to form a dried or set film, and which film will decompose or break down in the heat of the spraying process. The binder, for example, may be a phenolic varnish or any other known or conventional varnish, preferably containing a resin as the varnish solids. The component which is initially mixed with the binder or varnish should preferably be as finely divided as possible, as for example 325 mesh. The other component which constitutes the core should be approximately or only slightly below the particle size ultimately desired for the spray powder. The coating of the core component with the paint may be effected in any known or desired manner, and it is simply necessary to mix the two materials together and allow the binder to dry or set, which will result in a fairly free-flowing powder consisting of the core component coated with a cladding of the other component bound in the binder.
The aggregates may be formed by compacting or briquetting the various components into the individual granules, or into larger aggregates and then breaking these aggregates into the granules.
The wires may be formed in the known conventional manner for forming wires with various components as, for example, by shrinking a sheath on a core, by forming the core with powder, by twisting the component wires, followed by rolling, drawing, swaging, or the like if desired.
In accordance with one mode of manufacture, one of the components may be formed into a tube or sheath and filled with a powder of the other component or a powder comprising a mixture of the two components, or containing additional components. The tube ends are then sealed and the wire reduced to the desired wire diameter by swaging, rolling or drawing. Preferably the powder or powder mixture is first compressed into cylindrical briquettes before being placed in the sheath or core. The sealing of the tube ends after loading with the powder or powder mixture can be effected, for instance, by insertion of a plug, for example of the metal of the sheath, by welding, twisting, crimping, or the like.
Powders in accordance with the invention should have the general over-all shape and size of conventional, flamespray powders, and thus for example should have a size between 60 mesh and +3 microns and preferably 140 mesh and microns (U.S. Standard screen mesh size). Most preferably the powder should be as uniform as possible in grain size, with the individual grains not varying by more than 250 microns and preferably 75 microns.
Depending on the particular flame spray process and the desired purpose, the composite powders may be sprayed per se or in combination with other different composite powders, or in combination with other conventional flame spray powders or powder components.
While the powders are preferably sprayed, as such, in a powder-type of flame spray gun, it is also possible to combine the same in the form of a wire or rod, using a plastic or similar binder, which decomposes in the heating zone of the gun, or in certain cases the powders may be compacted and/or sintered together in the form of a rod or wire. The wires must have the conventional sizes and accuracy tolerances for flame spray wires, and thus for example may vary in size between A" and gauge,
and are preferably of the following sizes: 54 +.0005" to 6 .0025", +0005" to -.0025", 11 gauge +0005" to .O025", and 15 gauge +.00l", with a smooth, clean finish free from surface marks, blemishes, or defects. The wires are sprayed in the conventional manner, using conventional wire-type flame spray guns.
In combining, in the exothermic reaction, forming the intermetallic compound, the components generate heat in situ in the actual material which is to form at least a part of the coating. This is to be distinguished from flamespray processes and materials in which heat is generated by a reaction, such as an oxidation reaction, in which a foreign and non-metallic element is introduced and in which undesirable components may be produced. Aside from greatly contributing to the thermal efficiency of the process, the heat generated in situ in the formation of the intcrmetallic compound produces novel results, in many instances forming a denser, more adhering coating, having characteristics of at least a partially fused coating. In many instances the coating has self-bonding characteristics, so that special surface preparation, other than a good cleaning, is not required. The spraying in all other respects is effected in the conventional, well-known manner, using conventional flame spray equipment, and the conventional surface preparation may be utilized, if desired. The composites in accordance with the invention may be sprayed in conjunction with, or in addition to, other fiame spray materials conventionally used in the art, or may be sprayed in combination or conjunction with the others.
The use of the composites as, for example, the nickelaluminum composites, will generally improve the bond of the total sprayed material, and thus of the other component or components to the substrate, sometimes making the mixture self-bonding. The particle bond will be improved and the coating will be denser, so that its porosity may be decreased. In general, as little as 10% by weight of the composites in accordance with the invention will be sufficient to substantially improve the bonding characteristics and decrease the porosity of other flame spray materials, such as conventional flame spray metals, alloys or ceramics. There is, of course, no upper limit on the amount. as the composite may be sprayed per se, but generally at least about 20% by weight of the other component is required if this component is to have a pronounced effect on the characteristics of the coating.
The following examples are given by way of illustration and not limitation:
Example 1 (a) An aluminum powder having a particle size between -l40 mesh and +325 mesh (US. Standard screen size) is coated with nickel in the known manner by the hydrogen reduction of an ammoniacal solution of nickel and ammonium sulphate, using anthraquinone as the coating catalyst. The reduction is effected at a temperature between about 300 and 350 F. in a mechanically agitated autoclave using solutions containing 40-50 grams per liter of nickel and l0400 grams per liter of (NHQ SO and 2030 grams per liter of NH About .2 gram per liter of anthraquinone is used as the catalyst and the autoclave is pressurized with hydrogen at a pressure of about 300 lbs. p.s.i.g. After the nickel solution is depleted and the aluminum coated with an initial coating of nickel, the solution is discharged from the autoclave and replenished with a fresh solution which need not contain further amounts of the anthraquinone coating catalyst, as the initially formed nickel coating in itself acts as a catalyst. The cycle is continuously repeated until a composite powder is formed containing about 16 to 18% by weight aluminum and 84 to 82% by weight of nickel, and a size of to +270 mesh.
The powder thus formed is flame-sprayed on a mild steel plate which has been surface-cleaned with emery cloth. The spraying is effected at about 9 inches from the plate, using a powder-type flame-spray gun as described in US. Patent 2,961,335, issued Nov. 22, 1960, and sold by Metco Inc. of Westbury, Long Island, under the trade name of Thermospray powder gun. The spraying is effected at a rate of 6 to 9 lbs. of powder per hour, using acetylene gas as the fuel as a pressure of 10 p.s.i. and a flow rate of 17 to 25 cu. ft./hr. and oxygen as the oxidizing gas at a pressure of 12 p.s.i. and a flow rate of 29 to 35 cu. ft./hr.
The nickel coating and the aluminum base combine in the heat of the flame with a strong exothermic action, forming a mixture of nickel aluminum intermetallic compounds which deposite on the base as a dense, high quality coating which exhibits self-bonding characteristics. A coating layer of .002.0()4" thickness is built up in this manner. The coating may be used as a base material for spraying of further layers of different metals or the like, and serves as an excellent intermediate bonding layer.
The coating layer may also be built up to a greater thickness as, for example, .010"-.020", for use as an oxygen barrier undercoat, or to even greater thickness as, for example, .020"-.040" or thicker as a wear-resistant-oxidation-resistant surface. Due to its self-bonding characteristics the sprayed coatmg will adhere to a base without the conventional surface preparation or roughening, and due to the natural characteristics of a sprayed material, will allow further materials to be sprayed thereon with good bonding. The coating formed from the powder has excellent oxidationresistant characteristics even at high temperatures and in oxidizing atmospheres, and will for example prevent the oxidation of base materials, such as molybdenum or the like. The sprayed coatings may be used as a lining in metal-melting crucibles or molten metal-handling equipment, and will not be wetted or penetrated by many molten metals, including self-fluxing alloys. Coatings formed of the sprayed material also show good potential as high temperature, wear-resistant coatings.
When the example is repeated on a molybdenum rod of diameter, with a coating between .0]0"-.012" thick, the coated rod may be repeatedly heated to approximately 2000 F. in air, in an electric furnace and cooled to room temperature with no visible oxidation occurring.
Similar results may also be obtained if the composite powder contains -45% by weight of aluminum and 55- 90% by Weight of nickel.
(11) Example 1(a) is repeated, using, however, cobalt in place of the nickel. Comparable results are obtained.
(c) Example 1(a) is repeated, Using titanium hydride (Til-I powder in place of the aluminum and in an amount of -85 weight percent, and preferably 6085 weight percent of the total. The coating formed upon spraying is hard and dense, and when sprayed on a smooth, pressed and sintered A1 0 substrate, an excellent bond is formed. The spraying may be effected with an oxygenhydrogen or oxygen-acetylene flame.
Example 2 Example 1 is repeated with the spraying being effected in turn on the following bases and prepared in the following manner:
Low alloy steels and stainless steels, smooth-ground to remove surface contamination; copper and copper base alloys, rough-ground or light-grit-blasted; aluminum and aluminum base alloys, rough-ground or light-grit-blasted; magnesium, rough-ground or light-grit-blasted; and titanium, rough-ground or light-grit-blasted.
In each case when a further material, such as steel, aluminum or the like, was sprayed over the coating in the conventional and well known manner, the same was bonded with a tenacious bond, though if this material had been initially sprayed on the surface as prepared in the manner indicated above, a satisfactory bond would not be obtained.
Example 3 The nickel-clad powder of Example 1 is mixed with an A1 0 powder having a particle size between 62 microns and 10 microns, in the ratio of about 40% of the nickelclad powder with 60% by weight of the ceramic. The powder is sprayed, using the gun described in Example 1, on a mild steel plate which has been surface-cleaned by smooth grinding. Spraying is effected at a distance of about 9" from the plate at a rate of about 4 to 8 lbs. of powder per hr., using acetylene at a pressure of 10 lbs. p.s.i. and a flow rate of 17-25 cu. ft./hr., and oxygen at a pressure of 12 p.s.i. and a flow rate of 29-35 cu. ft./hr.
A self bonding cermet coating is formed which showed excellent thermal shock-resistance, hardness, abrasion-resistance, and which strongly inhibited oxidation of the base.
It is possible to vary the percentages of the ceramic in the mixture between 5 and in order to vary the properties of the coating. With an increased amount of the intermetallic compound in the cermet coating formed, the bonding and thermal shock-resistant properties increased, whereas with an increased amount of the ceramic, the hardness and wear-resistant properties of the coating are increased and the thermal conductivity decreased.
Example 4 Example 3 is repeated, using the following materials in place of the aluminum oxide:
Zirconia, calcium zirconate, magnesium zirconate, spinel, ceric oxide, hafnium oxide, rare earth oxides, molybdenum disilicide, tungsten silicide, chromium silicide, titanium silicide, tungsten carbide, titanium carbide and chromium carbide.
In each case an excellent coating was formed.
Example 5 A nucleus of silicon powder is coated with nickel to form a nickel-clad flame spray powder having a particle size between and 325 mesh and containing 75-85% nickel based on the silicon-nickel total. The composite powder is sprayed with the flame spray gun described in Example 1 on a steel base prepared by lightly grit-blasting, using the spraying conditions as described in Example 1. During the spraying silicon combines with the nickel in an exothermic reaction, greatly enhancing the thermal efficiency of the spraying and producing an excellent coating.
Example 6 Titanium is coated with nickel as described in Example 1 to produce a powder having a particle size between 100 and 325 mesh and containing 10 to 50% nickel based on the titanium-nickel total.
The nickel protects the titanium from oxidation during storage and when spraying.
Upon spraying in the manner described in Example 1, on a base material prepared by grit-blasting, the nickel and titanium combine exothermically in the flame to form a corrosion-resistant coating comprising a nickel-titanium intermetallic compound.
Example 7 Tellurium powder was coated with copper so as to form a composite having a particle size between 100 and 325 mesh and containing 50 to 80% copper based on the tellurium-copper total.
Upon spraying in the manner described in Example 1, on a base material prepared by grit-blasting, the copper and tellurium combine to form a new material.
During the spraying heat was evolved upon the combination of the copper and tellurium increasing the thermal economy of the process.
Example 8 The nickel-clad flame spray power of Example 1 is mixed with about 20% by weight of low pressure polyethylene powder and molded at a temperature of about 212 F. into the form of a rod of /a" diameter. The rod is sprayer, using a conventional wire-type flame spray gun sold by Metco Inc. of Westbury, N.Y., as the Metco type 4E gun. The spraying is eflected with acetylene at a pressure of 15 p.s.i. and a flow rate of 37 cu. ft./hr. with oxygen as oxidizing gas at a pressure of 38 p.s.i. and a flow rate of 75 cu. ft./hr.; with air as a blast gas at a pressure of 40 p.s.i. and a flow rate of 25 cu. ft./min. The end coating produced is similar to the coating produced in Example 1.
Example 9 A wire is formed by encasing a core of nickel in a tube of aluminum and drawing to a size of .125" in diameter plus or minus .002". The wire contains 82 to 84% by weight of nickel based on the aluminum-nickel total.
The wire is sprayed, using a conventional wire type flame spray gun sold by Metco Inc. of Westbury, N.Y., as the Metco type 4E gun. Spraying is efiected with acetylene at a pressure of 15 p.s.i. and a flow rate of 37 cu. ft./hr. with oxygen as the oxidizing gas at a pressure of 38 p.s.i. and a flow rate of 75 cu. ft./hr. Air is used as a blast gas at a pressure of 55 p.s.i. and a flow rate of 30 cu. ft./min. The end coating produced is similar to the coating produced in Example 1.
Similar results are also obtained using 55-90% weight of nickel in the wire.
Example 10 A composite wire is formed by winding individual wires of nickel and aluminum to form a stranded wire with a diameter of .125 plus or minus .002". The wire contains 55 to 90% by weight of nickel based on the total Al-Ni. The wire is sprayed in the manner described in Example 9, with identical conditions and coating resulting.
Example 11 A silicon powder having a particle size between 140 and 325 mesh is coated with molybdenum in the known manner and a composite powder is formed containing about 35 to 39% by weight of silicon and about 61 to 65% by weight of molybdenum, and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
The molybdenum coating and the silicon base combine in the heat of the flame, forming a molybdenum silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at elevated temperatures and will protect the base material from oxidation.
Example 12 A molybdenum powder having a particle size range between 140 and 325 mesh is coated with silicon in the known manner and a composite powder is formed containing about 35 to 39% by weight of silicon and about 61 to 65% by weight of molybdenum, and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting. The spraying is effected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, N.Y., under the trade name of type 2MB Plasma Flame gun. The spraying is effected at a rate of six to nine lbs. of powder per hour, using a mixture of argon and hydrogen gas as the plasma gas, with argon at a pressure of 100 p.s.i. and a flow rate of 110 cu. ft./hr., and hydrogen at 50 p.s.i. and a flow rate of 25 cu. ft./hr., using argon as the powder carrier gas at 100 p.s.i. and a flow rate of 15 cu. ft./hr., using a standard electrode and D" Argon nozzle, and using arc current of 400-500 amperes at 57-62 volts.
The molybdenum base and silicon coating combine in the heat of the flame, forming a molybdenum silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
Example 13 A silicon powder having a particle size between 140 and 325 mesh is coated with chromium in the known manner, and a composite powder is formed containing about 48 to chromium and 15 to 52% silicon by weight and a size of to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
The chromium coating and the silicon base combine in the heat of the flame, forming a chromium-silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at elevated temperatures and will protect the base material from oxidation.
Example 14 A chromium powder having a particle size between 140 and 325 mesh is coated with silicon in the known manner, and a composite powder is formed containing about 48 to 85% chromium and 15 to 52% silicon by weight and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting. The spraying is effected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, Long Island, New York, under the trade name of type 2MB Plasma Flame gun. The spraying is effected at a rate of six to nine lbs, of powder per hour, using argon gas as the plasma gas at a pressure of 100 p.s.i. and a flow rate of cu. ft./hr., using argon as the powder carrier gas at 100 p.s.i. and a flow rate of 15 cu. ft./hr., using a standard electrode and D Argon nozzle, and using arc current of 400-500 amperes at 57-62 volts.
The chromium base and silicon coating combine in the heat of the flame, forming a chromium silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
Example 15 A zirconium powder having a particle size between and 325 mesh is coated with chromium in the known manner and a composite powder is formed containing about 45% zirconium and 60% chromium by weight and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material in the manner described in Example 1.
The chromium coating and the zirconium base combine in the heat of the flame, forming a chromium zirconium intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures.
Example I 6 A titanium powder having a particle size range between 140 and 325 mesh is coated with silicon in the known manner and a composite powder is formed containing about 35 to 65% titanium and 35 to 65% silicon by weight and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting.
The spraying is eflected at about five inches from the plate, using a powder type plasma flame-spray gun sold by Metco Inc. of Westbury, N.Y., under the trade name of type 2MB Plasma Flame gun. The spraying is effected at a rate of six to nine lbs of powder per hour, using argon gas as the plasma gas at a pressure of 100 p.s.i. and a flow rate of 110 cu. ft./hr., using argon as the powder carrier gas at 100 psi. and a flow rate of 15 cu. ft./hr., using a standard electrode and D Argon nozzle, and using arc current of 4005OO amperes at 5762 volts.
The titanium base and silicon coating combine exothermically in the heat of the flame, forming a titanium silicon intermetallic which deposits on the base as a dense, high quality coating which exhibits excellent resistance to oxidation at high temperatures and will protect the base material from oxidation.
Example 17 A dysprosium powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed containing 60 to 75% dysprosium and to 40% aluminum by weight and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by light grit-blasting in the manner described in Example 1.
The aluminum coating and the dysprosium base combine in the heat of the flame with a strong exothermic action, forming a dysprosium aluminum intermetallic compound which deposits on the base as a dense, high quality coating which exhibits excellent properties at high temperatures.
Example 1 8 A lanthanum powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed containing 70 to 75% lanthanum and 25 to aluminum by weight and a size of 100 to 270 mesh.
The powder thus formed is flamesprayed on a base material which has been prepared by grit-blasting in the manner described in Example 1.
The aluminum coating and the lanthanum base combine exothermically in the heat of the flame with a strong exothermic action, forming a lanthanum aluminum intermetallic compound which deposits on the base as a dense, high quality coating which exhibits excellent properties at high temperatures.
Example 19 A chromium powder having a particle size between 140 and 325 mesh is coated with aluminum in the known manner and a composite powder is formed consisting of 60 to 62% chromium and 38 to aluminum by weight and a size of 100 to 270 mesh.
The powder thus formed is flame-sprayed on a base material which has been prepared by grit-blasting in the manner described in Example 1.
The aluminum coating and the chromium base combine in the heat of the flame with a strong exotherimic action, forming a chromium aluminum intermetallic compound which deposits on the base as a dense, high quality coating of very high melting point and excellent oxidadon-resistance.
Example 20 Example 19 is repeated except that the composite powder is formed with an aluminum core and chromium coating. Identical results are obtained.
Example 21 The nickel-clad aluminum composite powder of Example 1 is mixed with cobalt bonded tungsten carbide particle powder having a particle size range of -l4-0 mesh +10 microns, and preferably l4O +325 mesh in proportions of:
(a) weight percent tungsten carbide to 20 weight percent of the composite.
(b) 20 weight percent of the carbide to 80 weight percent of the composite, and
(c) preferably 50 weight percent each of the tungsten carbide and composite.
The powder mixtures are each flame-sprayed on a mild steel plate which has been surfacecleaned by grinding or very light sand-blast cleaning. The spraying is effected at about 89 inches from the plate, using a powder-type flame-spray gun as described in US. Patent 2,961,335, issued Nov. 22, 1960, and sold by Metco Inc. of Westbury, N.Y., under the trade name of Thermo-Spray powder gun. The spraying is effected at a rate of 6 to 10 lbs. per hour using acetylene gas as the fuel at a pressure of 12 psi. and a flow rate of 20 to 30 cu. ft./hr. and oxygen as the oxidizing gas at a pressure of 14 p.s.i. and a flow rate of 30 to 40 cu. ft./hr.
The nickel-aluminum composite powder in the mixture reacts exothermically in the flame to provide the selfbonding properties of the mixture and, being fully molten on impact with the substrate, becomes the matrix which securely binds the tungsten carbide particles together in the coating.
Used as sprayed, or finished by proper grinding procedure, the resultant coating is of a highly wear-resistant coating material, applicable to virtually any base material and not subject to the limitations of the previously used self-fluxing alloy matrix materials which must be fused at approximately 1900" F.
Example 22 Example 21 is repeated except that in place of the grade of tungsten carbide cobalt powder grains used, cobalt-bonded tungsten carbide grains with lower cobalt content and sharp, angular shape are used.
The powder was sprayed in the manner described in Example 21. The sharp, angular edges of the initial tungsten carbide particles were retained in the coating.
The deposited coating may be suitably finished by grinding for use as a wear-resistant coating or used as deposited where the coated article is to be used as a hone or lap, the sharp edges of the carbide inclusions constituting the abrading or cutting edges.
Example 23 Example 22 is repeated except that in place of the tungsten carbide grains described, cobalt-bonded tungsten carbide particles of sharp, angular shape were used which were first coated with nickel in the manner described in Example 1, so as to produce nickel-clad particles having a size between and 325 mesh and containing from 2050% nickel based on the tungsten carbide-nickel total.
Example 24 The nickel-clad aluminum composite described in Example 1 is mixed with a columbium (niobium) powder of size between mesh and 10 microns and preferably +325 mesh in the proportions of 60 Weight percent of the nickel-aluminum composite.
The powder mixture is sprayed in the manner described in Example 21. The resultant coating is self-bonding to a wide variety of substrate materials and when properly finished, by grinding or other means, is a highly wearresistant, hard coating.
Example 25 The nickel-clad aluminum composite described in Example 1 is mixed with a molybdenum powder of a size between 120 mesh and +10 microns and preferably --140 +325 mesh in the proportions of 65 weight percc. 1 molybdenum to 35 weight percent of the nickelaluminum composite.
The powder mixture is sprayed in the manner described in Example 21. The resultant coating is self-bonding to a wide variety of substrate materials and when properly finished, by grinding or other means, presents a highly wear-resistant, hard surface.
Example 26 Example 21 is repeated except in place of the tungsten carbide, other carbides such as titanium carbide, tantalum carbide, columbium carbide, chromium carbide and mixtures of the various carbides are used.
Example 27 The nickel-clad aluminum core composite from Example 21 is mixed with aluminum powder in the mesh size range 100 +325 mesh, and preferably in the -l70 +325 mesh size range in the proportions of 80 weight percent nickel aluminum composite to 20 weight percent aluminum.
The mixture was sprayed in the manner described in Example 21. The coating as deposited consists of an intimate mixture of the flame-reacted nickel aluminide and aluminum securely bonded to the base and particle to particle within the coating.
Upon heat-treating in the temperature range 1250 F. to 1500 F. in reducing atmosphere, dry hydrogen for instance, the nickel aluminide and aluminum combine to form a dense, homogenous coating fused to the base material which can be used for cathodic protection of iron and steel subject to water and salt-water corrosion.
Example 28 The nickel-clad aluminum composite powder of Example 21 is mixed with Monel powder of a size between -100 mesh and microns, and preferably between 140 and +325 mesh in the proportions 35 weight percent composite to 65 weight percent Monel.
The powder mixture was sprayed in the manner described in Example 21. The resultant coating is selfbonding to a wide variety of substrate materials and the inclusion of the nickel-aluminum composite, the components of which combine exothermically in the flame to provide the self-bonding ability of the mixture, considerably increase the particle to particle bonds within the coating and decrease the permeability of the coating.
Example 29 Example 28 is repeated except that nickel and stainless steel powders are substituted for the Monel.
Example 30 Example 28 is repeated except that chromium is substituted for the Monel.
The resultant coating when properly finished, by grinding or other means, shows high resistance to abrasion, wear, and galling by other metals, and is an excellent hearing surface.
Example 31 Finely divided aluminum powder (-325 mesh) was blended with a phenolic varnish having approximately 50% solid contents so as to form a mixture having the consistency of a heavy syrup and containing 60% by weight of the metallic aluminum.
100 grams of this varnish aluminum powder mixture was added to 240 grams of nickel powder having a size between 200 and +325 mesh, and the two were thoroughly mixed, with the mixing continued until the varnish dried, leaving a fairly free-flowing powder in which all of the nickel core particles were clad with a dry film, which consisted of aluminum particles bonded to each other and to the core material by the phenolic binder. The powder is then warmed to 250 F. to insure complete drying. There were some minor agglomerates which were screened out and handmilled to reduce the same to a 100 mesh powder. The end powder consisted of approximately weight percent aluminum and 85 weight percent nickel due to the loss of some aluminum during the milling. The powder is sprayed in the manner described in Example 1 producing a similar coating having, however, more than twice the tensile strength of the coating produced in Example 1.
Example 32 (a) A mixture of 6 weight percent aluminum and 94 weight percent nickel powder are thoroughly blended and pressed together in the form of cylindrical briquettes which are loaded into an aluminum tube of .375" outside diameter, after which the tube ends are welded closed. The diameter feed stock is then swaged to 4" diameter, then to a dig" diameter then to a /s finished wire diameter. The wire is then annealed and coiled. The wire is then sprayed, using the conventional wire type flame spray gun sold by Metco Inc. as the Metco type 4-E gun. Spraying is effected, using acetylene at a pressure of about 15 lbs. psi. and a flow rate of 37 cu. ft./hr. and oxygen as the oxidizing gas at a pressure of 38 lbs. p.s.i. and flow rate of 75 cu. ft./hr. Air is used as a blast gas at a pressure of 55 lbs. psi. and flow rate of 30 cu.ft./min. The wire is sprayed at a rate of 5 ft. per minute. The spray material is deposited on a surface of ground and machine-finished, cold rolled steel with a tensile bond strength of 3820 lbs. psi. The sprayed coating is hard and dense; it is wear and oxidation-resistant and it also could serve as a base for further spraying.
(b) Example 32(a) is repeated except that chromium is used in place of the nickel powder in amounts of from 2495 weight percent, based on the total of the aluminum and chromium. Spraying results in a high quality coating which has self-bonding properties and is resistant to oxidation at high temperatures.
(c) Example 32(a) is repeated, using columbium powder in place of the nickel powder in amounts of from 40- and preferably 5055 weight percent, based on the total of the columbium and aluminum. The sprayed coating formed is a high quality coating which is resistant to oxidation at high temperatures and may be used to protect tantalum and molybdenum bases from oxidation.
(d) Example 32(a) is repeated, using tantalum powder in place of the nickel powder in amounts of 4090 weight percent and preferably 65-75 weight percent of tantalum, based on the total of tantalum and aluminum. The sprayed coating is a dense, high quality coating which is selfbonding and is resistant to oxidation at high temperatures.
(e) Example 32(a) is repeated, using boron powder in place of the nickel powder in amounts of 40 90 weight percent, based on the total of boron and aluminum. The resulting sprayed coating is self-bonding and is resistant to oxidation at high temperatures.
(f) Example 32(c) is repeated except that the powder additionally contains 0.5 to 5 weight percent of boron, and/or 0.5 to 5 weight percent of silicon, based on the total of the components. The coating formed is similar to that obtained in Example 32(0) except that on heating to high temperature in air, a very thin, dense, adherent, protective oxide film forms on the surface of the intermetallic compound formed, which is resistant to spelling due to thermal shock, and which is believed self-healing.
(g) Example 32(a) is repeated except that tungsten carbide containing 12% binder and having a particle size below 140 mesh is added in amount of 570 weight percent, based on the total of the components. The resulting coating is a dense, extremely wear-resistant coating, which has self-bonding properties. This example may be further repeated, using in place of the tungsten carbide specified, crystalline tungsten carbide, aluminum oxide, diamonds or any other abrasive material.
(h) Example 32(a) is repeated. However, l-l0% by weight and preferably 15% by weight of titanium hydride of a size below mesh and preferably below 325 mesh, based on the total of the components, is added to the core material. The results are the same as indicated in Example 32(a) except that the coating formed is of improved physical strength, containing considerably less oxide inclusions. In place of the titanium hydride other metal hydrides may be used.
(i) Example 32(a) is repeated except that the nickel powder is replaced with a nichrome powder consisting of a chrome alloy containing 80% nickel and 20% chromium. When sprayed the wire gives a dense, self-bonding coating which is extremely oxidation-resistant.
(j) Example 32(a) is repeated except that the nickel powder is replaced with a powder mixture consisting of 80% by weight nickel and 20% by weight chrome. When sprayed the wire gives a dense, self-bonding coating which is highly oxidation-resistant.
Example 33 Table I below gives examples of further component pairs which may be used to form the powders and/or wires in accordance with the invention.
Each of the component pairs as listed in Table I below may be formed into a composite powder or wire as described above, and when flame-sprayed will exothermically react, forming an intermetallic compound and high grade coating. Thus, the component pairs may be formed into clad powders as described in Example 31 and sprayed as described therein, or formed into a composite wire as described in Example 32 and sprayed as described therein.
TABLE I Ag Ce As Cd Be U Ga Pr Mg Sb Si V Al A As (la Be Zr Ga Sb Mg Sn Si Zr Al Au As In Bi Ca Ga Te Na Pb Sn Tc Al B As Mg Bi Ce (la U Na Sb Sn U Al Ba As Zn Bi K Ge Mg Na Sc Sn Zr Al Ca. B Y Bi Li Ge Nb Na Sn Te Zn Al (.c B Ca Bi Mg tic Zr Nu To M0 B0 Al Co B (r Bi Na. Li In Na Tl Nb Be Al Cr B iii Bi Se In Te Nb Si Ta Be Al La B Nb Bi To In Ru Ni Th V Be Al Li B Ta Bi Th K Sb Pb Pr Ti Be A] M0 B Th Ca Yb K Se Pb lu Cr Si Al Nb B Ti Ca Sn K Sn Pb Sc (.r Ti Al Ni B V Ca Tl K Tl Pb T1 01' Zr Al Pr B W Cd Li La Pb Pd U Mg To Al Ti B Zr Cd Na La Sb Pr Sn Ni Te Al Z! Ba Bi Co In La Sn Pr Tl Si Th Al Sb Ba Pb Ce Mg La Tl Sb Zr Si W Al Se Ba Sb Ce Pb La Zn Se Sn 00 Si Al Ta Be Co Co Si Li Pb Se Th Mo Si Al Te Bu (1r Ce Sn Li Sb Se Tl Ni Si Al U Bu Ni Co Tl Li Sn (In Tc Si Ta Al V Bo Np (c Zn Li Tl Si Ti Al W Be I'll be Na Li Zn Si U While the invention has been described in detail with reference to certain specific embodiments, various changes and modifications which fall within the spirit of the invention and scope of the appended claims will become apparent to the skilled artisan. The invention therefore is only intended to be limited by the appended claims or their equivalents, wherein we have endeavored to claim all inherent novelty.
We claim:
1. A flame spray material comprising a composite in a form suitable for flame spraying, formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
2. A flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound with the release of at least 3,000 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
3. A flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, forming an intermetallic compound with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
4. A flame spray material comprising a composite in a form suitable for flame spraying formed of aluminum and nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
5. Composite according to claim 4 in which said aluminum is present in amount of about 10-45%, based on the total of nickel and aluminum.
6. Composite according to claim 1 in which said components are component pairs selected from the group listed in Table I above.
7. A flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermctallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
8. A flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermetallic compound, with the release of at least 3,000 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
9. A flame spray powder in the form of individual clad particles comprising a metal nucleus and at least one coating layer of a metal differing from said nucleus and exothermically reactive therewith when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
10. A flame spray powder according to claim 7 in which said metal nucleus and metal differing from said nucleus are component pairs selected from the group listed in Table I above.
11. A flame spray powder according to claim 7 in which said coating layer is in the form of a finely divided metal powder bound to the nucleus by a binder.
12. A flame spray powder in the form of individual clad particles comprising a nucleus of aluminum and a coating layer of nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
l3. Powder according to claim 12 in which said aluminum is present in amounts of about 1045% based on the total of nickel and aluminum.
14. A flame spray powder in the form of individual clad particles comprising a nucleus of nickel and a coating layer of finely divided aluminum particles bound to the nucleus with a binder and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
15. A non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
16. A non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reactiing with each other when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the sur face being sprayed.
17. A non-cavitating flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, one of said components being aluminum and the other nickel and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
18. A flame spray wire comprising two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound, with the release of 7,500 gram calories per gram atom, said components being component pairs selected from the group listed in Table I above and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
19. A flame spray Wire comprising a sheath of a first metal component and a powder core of at least one second metal component, said first and second components being capable of exothermically reacting with each other when melted together, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
20. A flame spray wire according to claim 19 in which said sheath is aluminum and said core a mixture of aluminum and nickel powder.
21. A flame spray wire comprising individual strands of two separate metal components differing from each other and capable of exothermically reacting with each other when melted together, forming an intermetallic compound, with the release of at least 7,500 gram calories per gram atom and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
22. Flame spray material according to claim 1 additionally containing a metal hydride.
23. Flame spray material according to claim 1 in which one of the said components is at least partially in the form of a hydride.
24. Flame spray material according to claim 1 additionally containing a, member selected from the group consisting of boron, silicon and mixtures thereof.
25. A flame spray material comprising a composite in a form suitable for flame spraying formed of at least two metal components which exothermically react with each other when melted, said components being component pairs selected from the group consisting of A1 Co, Al Cr, Al Mo, Al W, Al Ta, Al Nb, Al Ti, Al Ni, Si Nb, Si Cr, Si W, Si Co, Si Mo, Si Ni, and Si Ta and characterized by the ability of generating heat during flame spraying which aids in bonding to the surface being sprayed.
26. A flame spray material according to claim 25 in the form of a powder.
27. A flame spray material according to claim 25 in which one of the components is in the form of a coating on the other component.
28. A flame spray material according to claim 25 in the form of a wire.
References Cited UNITED STATES PATENTS 1,379,063 5/1921 Van A1166 29 191 2,853,403 9/1958 Mackiw eta]. 117 2,884,688 5/1959 Herz 75 170 2,910,356 10/1959 Grala etal 75 170 2,933,415 4/1961 Homer 29 191 3,025,182 3/1962 Schrewelius 117 3,050,409 8/1962 Bayer 117 22 3,l2l,643 2/1964 Eisenberg 117 105.2 3,135,626 6/1964 Moenetal 117 105.2
DAVID L. RECK, Primary Examiner.
RICHARD D. NEVIUS, HYLAND BIZOT, Examiners. A. GOLIAN, R. O. DEAN, Assistant Examiners.

Claims (1)

1. A FLAME SPRAY MATERIAL COMPRISING A COMPOSITE IN A FORM SUITABLE FOR FLAME SPRAYING, FORMED OF AT LEAST TWO METAL COMPONENTS WHICH EXOTHERMICALLY REACT WITH EACH OTHER WHEN MELTED, FORMING AN INTERMETALLIC COMPOUND AND CHARACTERIZED BY THE ABILITY OF GENERATING HEAT DURING FLAME SPRAYING WHICH AID IN BONDING TO THE SURFACE BEING SPRAYED.
US442727A 1960-11-22 1965-03-25 Flame spraying exothermically reacting intermetallic compound forming composites Expired - Lifetime US3322515A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US442727A US3322515A (en) 1965-03-25 1965-03-25 Flame spraying exothermically reacting intermetallic compound forming composites
DE1796342A DE1796342C2 (en) 1965-03-25 1966-02-11 Multi-component flame spray material
DE1521387A DE1521387B2 (en) 1965-03-25 1966-02-11 Multi-component flame spray material
CH230766A CH503123A (en) 1960-11-22 1966-02-17 Method of flame spraying
BE678178D BE678178A (en) 1965-03-25 1966-03-21
NL666603745A NL151922B (en) 1965-03-25 1966-03-22 PROCESS FOR PREPARING A FLAME SPRAYER POWDER, AS WELL AS FLAME SPRAYER POWDER GRAINS, OBTAINED BY APPLYING THIS PROCESS.
SE03868/66A SE331404B (en) 1965-03-25 1966-03-23
FR54773A FR90386E (en) 1960-11-22 1966-03-24 Improvement in spraying using a flame of sprayed synergistic compounds
US592238A US3436248A (en) 1965-03-25 1966-05-26 Flame spraying exothermically reacting intermetallic compound forming composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US442727A US3322515A (en) 1965-03-25 1965-03-25 Flame spraying exothermically reacting intermetallic compound forming composites

Publications (1)

Publication Number Publication Date
US3322515A true US3322515A (en) 1967-05-30

Family

ID=23757915

Family Applications (1)

Application Number Title Priority Date Filing Date
US442727A Expired - Lifetime US3322515A (en) 1960-11-22 1965-03-25 Flame spraying exothermically reacting intermetallic compound forming composites

Country Status (5)

Country Link
US (1) US3322515A (en)
BE (1) BE678178A (en)
DE (2) DE1521387B2 (en)
NL (1) NL151922B (en)
SE (1) SE331404B (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545944A (en) * 1965-03-10 1970-12-08 United Aircraft Corp Composite metal article having an intermediate bonding layer of nickel aluminide
DE2031616A1 (en) * 1969-07-01 1971-01-21 Metco Ine Westbury (Long Island) NY (VStA) Flame spray powder
US3607343A (en) * 1965-10-04 1971-09-21 Metco Inc Flame spray powders and process with alumina having titanium dioxide bonded to the surface thereof
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US3758124A (en) * 1971-05-17 1973-09-11 Koppers Co Inc Nickel-aluminum-titanium oxide flame-spray coating for bearing and piston ring member wear surfaces
US3760143A (en) * 1972-01-03 1973-09-18 Warren Fastener Corp Welding stud
US3765923A (en) * 1970-12-14 1973-10-16 Hempels Skibsfarve Fab J C Process and composition for blast-cleaning and corrosion-protecting metal surfaces
US3769689A (en) * 1972-01-12 1973-11-06 Nasa Method of making pressure-tight seal for super alloy
US3841901A (en) * 1973-07-06 1974-10-15 Metco Inc Aluminum-and molybdenum-coated nickel, copper or iron core flame spray materials
US3891901A (en) * 1970-02-24 1975-06-24 Mallory & Co Inc P R Capacitors with sprayed electrode terminals
US3973948A (en) * 1973-11-12 1976-08-10 Gte Sylvania Incorporated Free flowing powder and process for producing it
US4011073A (en) * 1975-07-02 1977-03-08 Gte Sylvania Incorporated Flame spray powder of cobalt-molybdenum mixed metal agglomerates using a molybdenum salt binder and process for producing same
US4019875A (en) * 1973-07-06 1977-04-26 Metco, Inc. Aluminum-coated nickel or cobalt core flame spray materials
US4028095A (en) * 1975-07-10 1977-06-07 Gte Sylvania Incorporated Free flowing powder and process for producing it
US4039318A (en) * 1976-07-19 1977-08-02 Eutectic Corporation Metaliferous flame spray material for producing machinable coatings
US4076883A (en) * 1975-07-30 1978-02-28 Metco, Inc. Flame-sprayable flexible wires
US4148971A (en) * 1976-09-08 1979-04-10 Hitachi Cable, Ltd. Flame spraying materials and process for producing the same
DE2929274A1 (en) * 1978-07-19 1980-01-31 Metco Inc SELF-ADHESIVE FLAME SPRAY POWDER FOR THE PRODUCTION OF EASILY EDITABLE COATINGS
US4190443A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
US4190442A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
FR2434212A1 (en) * 1978-08-23 1980-03-21 Metco Inc SELF-ADHESIVE THREAD APPLIED BY FLAME SPRAYING TO PRODUCE EASY-MACHINING COATINGS
US4202691A (en) * 1978-11-21 1980-05-13 Eutectic Corporation Metallo-thermic powder
US4230750A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Metallo-thermic powder
US4230748A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Flame spray powder mix
US4230749A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Flame spray powder mix
US4315786A (en) * 1980-06-24 1982-02-16 Trw Inc. Solid propellant hydrogen generator
US4370367A (en) * 1978-08-23 1983-01-25 Metco Inc. Self-bonding flame spray wire for producing a readily grindable coating
DE3239383A1 (en) * 1981-11-20 1983-05-26 Eutectic Corp., 11358 Flushing, N.Y. FLAME SPRAY ALLOY POWDER
US4578114A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and yttrium oxide coated thermal spray powder
US4578115A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and cobalt coated thermal spray powder
US4593007A (en) * 1984-12-06 1986-06-03 The Perkin-Elmer Corporation Aluminum and silica clad refractory oxide thermal spray powder
US4599270A (en) * 1984-05-02 1986-07-08 The Perkin-Elmer Corporation Zirconium oxide powder containing cerium oxide and yttrium oxide
US4645716A (en) * 1985-04-09 1987-02-24 The Perkin-Elmer Corporation Flame spray material
US4735859A (en) * 1985-12-05 1988-04-05 Tokyo Yogyo Kabushiki Kaisha Magnesia aggregate for refractory article and method for manufacturing same
US4769210A (en) * 1981-12-18 1988-09-06 United Kingdom Atomic Energy Authority Apparatus for use in liquid alkali environment
US5014768A (en) * 1989-06-30 1991-05-14 Waters & Associates Chill plate having high heat conductivity and wear resistance
US5086720A (en) * 1991-01-25 1992-02-11 Kahlil Gibran Furnace for controllable combustion of thermite
USRE33876E (en) * 1975-09-11 1992-04-07 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
US5334235A (en) * 1993-01-22 1994-08-02 The Perkin-Elmer Corporation Thermal spray method for coating cylinder bores for internal combustion engines
US5385789A (en) * 1993-09-15 1995-01-31 Sulzer Plasma Technik, Inc. Composite powders for thermal spray coating
US5506055A (en) * 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
WO1999038725A2 (en) * 1998-02-03 1999-08-05 Talley Defense Systems, Inc. Thin inflator and azide polymer composition thereof
GB2356204A (en) * 1999-10-29 2001-05-16 Praxair Technology Inc Self-bonding aluminium coated MCrAlY powder
US6372362B1 (en) * 1999-03-25 2002-04-16 Hitachi Metals, Ltd. Method for forming composite vapor-deposited films with varied compositions formed in the initial and final stages of deposition, composite vapor-deposition material for the film and method for manufacture thereof
US6613452B2 (en) 2001-01-16 2003-09-02 Northrop Grumman Corporation Corrosion resistant coating system and method
US20060236887A1 (en) * 2005-02-08 2006-10-26 John Childs Delay units and methods of making the same
WO2007043961A1 (en) * 2005-10-13 2007-04-19 Scania Cv Ab (Publ) Wear resistant coated vehicle component and vehicle
US20100163101A1 (en) * 2007-04-25 2010-07-01 Ferro Corporation Thick Film Conductor Formulations Comprising Silver And Nickel Or Silver And Nickel Alloys And Solar Cells Made Therefrom
US20110127314A1 (en) * 2009-11-30 2011-06-02 Infineon Technologies Ag Bonding material with exothermically reactive heterostructures
US8794152B2 (en) 2010-03-09 2014-08-05 Dyno Nobel Inc. Sealer elements, detonators containing the same, and methods of making
US9233883B1 (en) 2013-03-15 2016-01-12 Cornerstone Research Group, Inc. Polymer composite comprising metal based nanoparticles in a polymer matrix
DE102015115320A1 (en) * 2015-09-10 2017-03-16 Phitea GmbH Adhesive layer for a combustion chamber with a pollutant-reducing active layer
US10670186B1 (en) 2015-11-18 2020-06-02 Cornerstone Research Group, Inc. Fiber reinforced energetic composite
US20210269923A1 (en) * 2017-10-31 2021-09-02 Goodrich Corporation Material addition for article identification
US11389853B2 (en) * 2019-12-18 2022-07-19 Harbin Institute Of Technology Device and method for forming metal plate by using high-energy electric pulse to drive energetic materials
US11479674B2 (en) * 2018-03-23 2022-10-25 Nisshin Engineering Inc. Composite particles comprising TiN powder and method for producing the composite particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO173946C (en) * 1988-03-04 1994-02-23 Alcan Int Ltd Procedure for the preparation of a protective coating on metal surfaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1379063A (en) * 1918-09-21 1921-05-24 Baker & Co Inc Dental shell
US2853403A (en) * 1956-04-11 1958-09-23 Sherritt Gordon Mines Ltd Method of producing composite metal powders
US2884688A (en) * 1956-12-28 1959-05-05 Borolite Corp Sintered ni-al-zr compositions
US2910356A (en) * 1956-07-19 1959-10-27 Edward M Grala Cast nickel alloy of high aluminum content
US2933415A (en) * 1954-12-23 1960-04-19 Ohio Commw Eng Co Nickel coated iron particles
US3025182A (en) * 1957-03-05 1962-03-13 Kanthal Ab Formation of corrosion-resistant metallic coatings by so-called flame-spraying techniques
US3050409A (en) * 1959-11-30 1962-08-21 Owens Illinois Glass Co Manufacture of refractory oxide coatings
US3121643A (en) * 1955-03-23 1964-02-18 Eisenberg Marvin Flame spraying of oxidation-resistant, adherent coatings
US3135626A (en) * 1961-01-30 1964-06-02 Air Reduction Internal combustion methods and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254970A (en) 1960-11-22 1966-06-07 Metco Inc Flame spray clad powder composed of a refractory material and nickel or cobalt

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1379063A (en) * 1918-09-21 1921-05-24 Baker & Co Inc Dental shell
US2933415A (en) * 1954-12-23 1960-04-19 Ohio Commw Eng Co Nickel coated iron particles
US3121643A (en) * 1955-03-23 1964-02-18 Eisenberg Marvin Flame spraying of oxidation-resistant, adherent coatings
US2853403A (en) * 1956-04-11 1958-09-23 Sherritt Gordon Mines Ltd Method of producing composite metal powders
US2910356A (en) * 1956-07-19 1959-10-27 Edward M Grala Cast nickel alloy of high aluminum content
US2884688A (en) * 1956-12-28 1959-05-05 Borolite Corp Sintered ni-al-zr compositions
US3025182A (en) * 1957-03-05 1962-03-13 Kanthal Ab Formation of corrosion-resistant metallic coatings by so-called flame-spraying techniques
US3050409A (en) * 1959-11-30 1962-08-21 Owens Illinois Glass Co Manufacture of refractory oxide coatings
US3135626A (en) * 1961-01-30 1964-06-02 Air Reduction Internal combustion methods and apparatus

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545944A (en) * 1965-03-10 1970-12-08 United Aircraft Corp Composite metal article having an intermediate bonding layer of nickel aluminide
US3607343A (en) * 1965-10-04 1971-09-21 Metco Inc Flame spray powders and process with alumina having titanium dioxide bonded to the surface thereof
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
DE2031616A1 (en) * 1969-07-01 1971-01-21 Metco Ine Westbury (Long Island) NY (VStA) Flame spray powder
FR2048433A5 (en) * 1969-07-01 1971-03-19 Metco Inc
US3891901A (en) * 1970-02-24 1975-06-24 Mallory & Co Inc P R Capacitors with sprayed electrode terminals
US3765923A (en) * 1970-12-14 1973-10-16 Hempels Skibsfarve Fab J C Process and composition for blast-cleaning and corrosion-protecting metal surfaces
US3758124A (en) * 1971-05-17 1973-09-11 Koppers Co Inc Nickel-aluminum-titanium oxide flame-spray coating for bearing and piston ring member wear surfaces
US3760143A (en) * 1972-01-03 1973-09-18 Warren Fastener Corp Welding stud
US3769689A (en) * 1972-01-12 1973-11-06 Nasa Method of making pressure-tight seal for super alloy
DE2432125A1 (en) * 1973-07-06 1975-01-23 Metco Inc FLAME SPRAYING MATERIALS
US3841901A (en) * 1973-07-06 1974-10-15 Metco Inc Aluminum-and molybdenum-coated nickel, copper or iron core flame spray materials
US4019875A (en) * 1973-07-06 1977-04-26 Metco, Inc. Aluminum-coated nickel or cobalt core flame spray materials
US3973948A (en) * 1973-11-12 1976-08-10 Gte Sylvania Incorporated Free flowing powder and process for producing it
US4011073A (en) * 1975-07-02 1977-03-08 Gte Sylvania Incorporated Flame spray powder of cobalt-molybdenum mixed metal agglomerates using a molybdenum salt binder and process for producing same
US4028095A (en) * 1975-07-10 1977-06-07 Gte Sylvania Incorporated Free flowing powder and process for producing it
US4076883A (en) * 1975-07-30 1978-02-28 Metco, Inc. Flame-sprayable flexible wires
USRE33876E (en) * 1975-09-11 1992-04-07 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
US4118527A (en) * 1976-07-19 1978-10-03 Eutectic Corporation Metaliferous flame spray material for producing machinable coatings
US4039318A (en) * 1976-07-19 1977-08-02 Eutectic Corporation Metaliferous flame spray material for producing machinable coatings
US4148971A (en) * 1976-09-08 1979-04-10 Hitachi Cable, Ltd. Flame spraying materials and process for producing the same
US4190443A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
US4190442A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
DE2929274A1 (en) * 1978-07-19 1980-01-31 Metco Inc SELF-ADHESIVE FLAME SPRAY POWDER FOR THE PRODUCTION OF EASILY EDITABLE COATINGS
US4370367A (en) * 1978-08-23 1983-01-25 Metco Inc. Self-bonding flame spray wire for producing a readily grindable coating
US4276353A (en) * 1978-08-23 1981-06-30 Metco, Inc. Self-bonding flame spray wire for producing a readily grindable coating
FR2434212A1 (en) * 1978-08-23 1980-03-21 Metco Inc SELF-ADHESIVE THREAD APPLIED BY FLAME SPRAYING TO PRODUCE EASY-MACHINING COATINGS
US4202691A (en) * 1978-11-21 1980-05-13 Eutectic Corporation Metallo-thermic powder
FR2442279A1 (en) * 1978-11-21 1980-06-20 Eutectic Corp FLAME SPRAY POWDER MIXTURES FOR THE PRODUCTION OF COATINGS ON METAL SUBSTRATES
US4230749A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Flame spray powder mix
US4230748A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Flame spray powder mix
US4230750A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Metallo-thermic powder
US4315786A (en) * 1980-06-24 1982-02-16 Trw Inc. Solid propellant hydrogen generator
DE3239383A1 (en) * 1981-11-20 1983-05-26 Eutectic Corp., 11358 Flushing, N.Y. FLAME SPRAY ALLOY POWDER
US4769210A (en) * 1981-12-18 1988-09-06 United Kingdom Atomic Energy Authority Apparatus for use in liquid alkali environment
US4578114A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and yttrium oxide coated thermal spray powder
US4578115A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and cobalt coated thermal spray powder
US4599270A (en) * 1984-05-02 1986-07-08 The Perkin-Elmer Corporation Zirconium oxide powder containing cerium oxide and yttrium oxide
US4593007A (en) * 1984-12-06 1986-06-03 The Perkin-Elmer Corporation Aluminum and silica clad refractory oxide thermal spray powder
US4645716A (en) * 1985-04-09 1987-02-24 The Perkin-Elmer Corporation Flame spray material
US4735859A (en) * 1985-12-05 1988-04-05 Tokyo Yogyo Kabushiki Kaisha Magnesia aggregate for refractory article and method for manufacturing same
US5014768A (en) * 1989-06-30 1991-05-14 Waters & Associates Chill plate having high heat conductivity and wear resistance
US5086720A (en) * 1991-01-25 1992-02-11 Kahlil Gibran Furnace for controllable combustion of thermite
US5334235A (en) * 1993-01-22 1994-08-02 The Perkin-Elmer Corporation Thermal spray method for coating cylinder bores for internal combustion engines
US5385789A (en) * 1993-09-15 1995-01-31 Sulzer Plasma Technik, Inc. Composite powders for thermal spray coating
US5506055A (en) * 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
EP0771884A1 (en) 1994-07-08 1997-05-07 Sulzer Metco (US) Inc. Boron nitride and aluminum thermal spray powder
WO1999038725A2 (en) * 1998-02-03 1999-08-05 Talley Defense Systems, Inc. Thin inflator and azide polymer composition thereof
WO1999038725A3 (en) * 1998-02-03 2001-12-20 Talley Defense Systems Inc Thin inflator and azide polymer composition thereof
US6372362B1 (en) * 1999-03-25 2002-04-16 Hitachi Metals, Ltd. Method for forming composite vapor-deposited films with varied compositions formed in the initial and final stages of deposition, composite vapor-deposition material for the film and method for manufacture thereof
US6635220B2 (en) 1999-03-25 2003-10-21 Hitachi Metals, Ltd. Method for forming composite vapor-deposited films with varied compositions formed in the initial and final stages of deposition, composite vapor-deposition material for the film and method for manufacture thereof
GB2356204A (en) * 1999-10-29 2001-05-16 Praxair Technology Inc Self-bonding aluminium coated MCrAlY powder
US6410159B1 (en) 1999-10-29 2002-06-25 Praxair S. T. Technology, Inc. Self-bonding MCrAly powder
GB2356204B (en) * 1999-10-29 2004-01-21 Praxair Technology Inc Self-bonding MCrA1Y powder
US6613452B2 (en) 2001-01-16 2003-09-02 Northrop Grumman Corporation Corrosion resistant coating system and method
US20060236887A1 (en) * 2005-02-08 2006-10-26 John Childs Delay units and methods of making the same
US7650840B2 (en) 2005-02-08 2010-01-26 Dyno Nobel Inc. Delay units and methods of making the same
US20100064924A1 (en) * 2005-02-08 2010-03-18 John Childs Delay units and methods of making the same
US8245643B2 (en) 2005-02-08 2012-08-21 Dyno Nobel Inc. Delay units and methods of making the same
WO2007043961A1 (en) * 2005-10-13 2007-04-19 Scania Cv Ab (Publ) Wear resistant coated vehicle component and vehicle
US20100163101A1 (en) * 2007-04-25 2010-07-01 Ferro Corporation Thick Film Conductor Formulations Comprising Silver And Nickel Or Silver And Nickel Alloys And Solar Cells Made Therefrom
US20110127314A1 (en) * 2009-11-30 2011-06-02 Infineon Technologies Ag Bonding material with exothermically reactive heterostructures
US8177878B2 (en) * 2009-11-30 2012-05-15 Infineon Technologies Ag Bonding material with exothermically reactive heterostructures
US8794152B2 (en) 2010-03-09 2014-08-05 Dyno Nobel Inc. Sealer elements, detonators containing the same, and methods of making
US9233883B1 (en) 2013-03-15 2016-01-12 Cornerstone Research Group, Inc. Polymer composite comprising metal based nanoparticles in a polymer matrix
US9446994B1 (en) 2013-03-15 2016-09-20 Cornerstone Research Group, Inc. Polymer composite comprising metal based nanoparticles in a polymer matrix
DE102015115320A1 (en) * 2015-09-10 2017-03-16 Phitea GmbH Adhesive layer for a combustion chamber with a pollutant-reducing active layer
US10670186B1 (en) 2015-11-18 2020-06-02 Cornerstone Research Group, Inc. Fiber reinforced energetic composite
US11428368B1 (en) 2015-11-18 2022-08-30 Cornerstone Research Group, Inc. Method of making a fiber reinforced energetic composite
US20210269923A1 (en) * 2017-10-31 2021-09-02 Goodrich Corporation Material addition for article identification
US11479674B2 (en) * 2018-03-23 2022-10-25 Nisshin Engineering Inc. Composite particles comprising TiN powder and method for producing the composite particles
US11389853B2 (en) * 2019-12-18 2022-07-19 Harbin Institute Of Technology Device and method for forming metal plate by using high-energy electric pulse to drive energetic materials

Also Published As

Publication number Publication date
DE1521387B2 (en) 1979-11-29
SE331404B (en) 1970-12-21
DE1796342C2 (en) 1983-07-21
NL6603745A (en) 1966-09-26
BE678178A (en) 1966-09-01
NL151922B (en) 1977-01-17
DE1796342A1 (en) 1974-10-10
DE1521387A1 (en) 1970-08-20

Similar Documents

Publication Publication Date Title
US3322515A (en) Flame spraying exothermically reacting intermetallic compound forming composites
US3436248A (en) Flame spraying exothermically reacting intermetallic compound forming composites
US3254970A (en) Flame spray clad powder composed of a refractory material and nickel or cobalt
US4725508A (en) Composite hard chromium compounds for thermal spraying
US4173685A (en) Coating material and method of applying same for producing wear and corrosion resistant coated articles
US3841901A (en) Aluminum-and molybdenum-coated nickel, copper or iron core flame spray materials
EP0138228B1 (en) Abrasion resistant coating and method for producing the same
US3305326A (en) Self-fusing flame spray material
US5294462A (en) Electric arc spray coating with cored wire
US4578114A (en) Aluminum and yttrium oxide coated thermal spray powder
US4019875A (en) Aluminum-coated nickel or cobalt core flame spray materials
JPH04228555A (en) Thermal spraying powder mixture
US5966585A (en) Titanium carbide/tungsten boride coatings
EP0163020B1 (en) Aluminium and cobalt coated thermal spray powder
CN106975861B (en) A kind of hard material of tungsten carbide particle and preparation method thereof containing clad
CN110014146A (en) A kind of nickel-molybdenum iron chromium-diamond alloy composite powder and its preparation method and application
US4202691A (en) Metallo-thermic powder
JPH09502769A (en) Improved composite powder for thermal spray coating
EP0157231A1 (en) Aluminum and yttrium oxide coated thermal spray powder
US5014768A (en) Chill plate having high heat conductivity and wear resistance
CA1036841A (en) Aluminum-coated nickel or cobalt core flame spray materials
US4230750A (en) Metallo-thermic powder
US4263353A (en) Flame spray powder mix
US5312648A (en) Method for coating particles using counter-rotating disks
US4230749A (en) Flame spray powder mix