US3301939A - Multilayer circuit boards with plated through holes - Google Patents

Multilayer circuit boards with plated through holes Download PDF

Info

Publication number
US3301939A
US3301939A US334361A US33436163A US3301939A US 3301939 A US3301939 A US 3301939A US 334361 A US334361 A US 334361A US 33436163 A US33436163 A US 33436163A US 3301939 A US3301939 A US 3301939A
Authority
US
United States
Prior art keywords
hole
layers
printed circuit
conductor
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US334361A
Inventor
Krasnow S Bert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PREC CIRCUITS Inc
PRECISION CIRCUITS Inc
Original Assignee
PREC CIRCUITS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PREC CIRCUITS Inc filed Critical PREC CIRCUITS Inc
Priority to US334361A priority Critical patent/US3301939A/en
Application granted granted Critical
Publication of US3301939A publication Critical patent/US3301939A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0242Cutting around hole, e.g. for disconnecting land or Plated Through-Hole [PTH] or for partly removing a PTH
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • a multilayer printed circuit board comprises a printed circuit which exists in three or more different layers with a substrate between each to electrically insulate one layer from another.
  • Printed circuit boards with only outside layers of printed circuitry are not generally considered multilayer boards.
  • the printed circuits existing at each layer have often been connected into a single unitary printed circuit by drilling a plurality of holes through or partially through the board to expose certain of the inner layer printed circuit conductors.
  • the conductors are exposed at their edges which form part of the hole wall.
  • the hole wall has then been plated with a conducting material so as to electrically interconnect the various printed circuit layers with each other.
  • Another object is to provide a multilayer printed circuit board of the type in which the conductors of the several layers are connected by a conductive coating on the walls of holes penetrating the board, wherein the electrical interconnections between the inner layer conductors and the conductive material deposited on the walls of the holes will not rupture when subjected to severe stresses such as have heretofore caused failure.
  • Another object is to provide an improved method of manufacturing multilayer printed circuit boards.
  • Another object is to provide in multilayer printed circuit boards a more reliable interconnection between the inner layer conductors and the conductive material deposited on the walls of the holes.
  • Another object is to provide a multilayer printed circuit board with a lock-in structure which insures a tight mechanical and electrical joint between the conducting material deposited on the inner wall of the hole and the inner layer conductors.
  • seeding is used to describe the process of placing conductive material on a surface, such as for example, by plating of copper on the wall of a hole through a printed circuit board by chemical reactions or mechanical means. Seeding is a well known process, and normally produces a very thin base layer of conductive material about one micro-inch thick. It is used to form a micro-thin base on which a more substantial layer of conductive material may be deposited.
  • Plating refers to the process of placing conductive material on a surface by means of an electrical current, such as by electroplating. This process is used to build up a layer of practical thickness on top of the thin seeded layer.
  • a plated layer is normally from about .0005-.004 inch thick.
  • depositing is used to describe, generally, the forming of a layer of material on a surface and includes seeding and then plating.
  • the drawing shows successively, the steps in the formation of a multilayer printed circuit board according to the invention.
  • FIG. 1 is a vertical section view of a part of a conventional laminated multilayer printed circuit board.
  • FIG. 2 is a view similar to FIG. l of the board after a hole has been formed through it intersecting the inner layer conductors.
  • FIG. 3 is a view similar to FIGS. l and 2 of the board in which a portion of the inner layer conductors has lbeen removed.
  • FIG. 4 is a view similar to FIG. 3 with metallic plating through the hole showing the interlock between the plating and the inner layer conductors.
  • a conventional multilayer printed circuit board designated generally by numeral 10, comprises a plurality of plates or substrate layers 13 made of any suitable insulating material, of which commercially available epoxy-glass composition sheets are only one example.
  • each layer 13 is a support for and has firmly adhered to one surface a thin layer or coating of conducting material 15 such as, for example, copper, nickel, gold, kovar or combinations or alloys of these or other metals, as is also common with multilayer circuit boards.
  • conducting material 15 such as, for example, copper, nickel, gold, kovar or combinations or alloys of these or other metals, as is also common with multilayer circuit boards.
  • the insulation board layers 13 are adhered together by layers 14 of adhesive such as epoxy resin glue or other adhesive commonly used in securing together the laminations of a multilayer printed circuit board.
  • the configuration of the circuitry of at least the inner conductive layers 15 will have lbeen formed in usual fashion, ⁇ as -by etching away unwanted portions for example, prior to adhering the layers 1S together.
  • the configuration of the circuitry of the outer conductive layer may have also been done prior to gluing the insulation layers together or may be done later, as conditions indicate the preference.
  • holes 17 are drilled or otherwise Iformed through the several layers of the 'board in position to pass through conducting layers which it is desired to electrically connect on the insulation plates.
  • recesses 20 are formed in the wall of the hole in the zones or planes 16 of the conductive layers.
  • Such recesses may be completely or only partially annular and may be formed chemically by etching or mechanically 'by chipping or grinding away the exposed edges 16 of the holes formed in the conductive layers.
  • Such exposed edges will 'be complete circles when the hole area is less than the area of the ⁇ conductive layer penetrated by the hole; or the exposed edges may be less than a complete circle if lthe hole is inaccurately drilled or formed or if the hole is purposely or necessarily formed adjacent an edge of the conductive layer or the edge of a circuit configuration thereon.
  • the Wall of the hole is u seeded with a microthin layer of ⁇ copper (not visible inl surfaces of the conductive layers 12 ⁇ and physically and electrically united thereto by reason of having been electroplated thereon.
  • the 4cylindrical portion 19 has integral radial annular ribs or rings 22 extending into the previously Iformed recesses in the hole wall and physically and electrically united with the edgesof the c onductive layers 15.f v v are formed in the surface of said, cylindrical portion 19 ⁇ during'the electroplating, as the plating lls the previously formed recesses; but they have no undesirable effects.
  • etching,chipping or otherwise forming of the recesses in the hole wall, in the zones or planes of the conductive layers provides shouldered offset spaces which the plating metal fills, thereby providing the rings 22 around the cylindrical plating wall which can be supported on top and bottom by the shoulders of the offset spaces as well as by their electrical andl mechanical bonding to the conductive layers.
  • the additional support afforded by the rings and shoulders strengthens the connection between the conductive layers to such an extent that such connections do not break or fail under the shear and vi-bratory stresses which routinely heretofore have caused a breakdown of plated connections between the conductive layers.
  • a multilayer printed circuit board comprising a plurality of layers of insulating material, a plurality of thin layers' of conductive material at least one of which is Jbetween two insulating layers and is configured for a printed circuit, at least one hole penetrating all said insulating and conductive layers, the edges of lall inner con- Grease-like inward annular depressions 23A radially extending flange portions 18 overlying the outer ductive layers being recessed radially outward from the hole, and platingon the wallof said hole, said plating having a flange in the plane of each interior conductive layer which is electrically and mechanically bonded to each such layer, while the opposite radially extending surfaces of the ange are supported by contiguous surfaces of said insulating layers.
  • a multilayer printed circuit ⁇ board comprising a plurality of layers of insulating material, a plurality of thin layers of -conductive material at least one of which is between two insulating layers and is configured for a printed circuit, at least one hole penetratingall said insulating and conductive layers, the edges of all innerconductive layers being recessed radially outward ⁇ from the hole, and plating on the wall of said hole, said plating having a rib in the plane of each interior conductive layer which is electrically and mechanically bonded to each such layer while opposite side surfaces of said rib are supported by contiguous surfaces of said insulation layers.
  • a multilayer printed circuit board as claimed in claim 2 having at least one outside conductive layer and having an integral radial extension at at least one .outside end of the plating overlying and electrically and mechanically ⁇ bonded to an outside conductive layer.
  • a multilayer printed circuit board comprising a stack of at least two insulating sheets having desired printed circuit conductor configurations adhered thereto, said sheets being secured to each other to form said board with at least one outer conductor configuration and at least one inner conductor configuration embedded 4between said sheets, at least one hole penetrating through a sufficient number of 'said sheets at a predetermined location to intersect at least two of said conductor configurations in different layers, at least one of said intersected conductor configurations being an inner layer, a portion of each of said intersected inner conductor layers lbeing recessed radially outwardly from said hole, and plating in said hole, said plating having a protruding portion extending radially outwardly from said hole in the plane of each of said inner intersected conductor layers andeach of said portions being electrically and mechanically connected to the radially recessed inner intersectedconductor configuration in its plane and being supported above and below by adjacent insulating sheets.
  • a multilayer board according to claim 4 wherein at least one hole penetrates through the board and said platingextends through said hole, and said protruding portion comprises an annular flange.

Description

Jan.v 31, 1967 s, B, KRASNOW 3,301,939
MULTILAYER CIRCUIT BOARDS WITH PLATED THROUGH HOLES Filed Deo. BO, 1965 F/a/ f )5 m /4 "ffl INVENTOR.
/8 5. 5677! K/SW 23 BY his af/Orneys www United States Patent O 3,301,939 MULTTLAYER CIRCUlT BOARDS WITH PLATED THRDUGH HLES S. Bert Krasnow, Hartsdale, NY., assigner to Precision Circuits, Inc., New Rochelle, N.Y., a corporation of New York Filed Dec. 30, 1963, Ser. No. 334,361 Claims. (Cl. 174-685) This invention relates to printed circuit boards and more particularly multilayer printed circuit boards and methods for manufacturing them.
A multilayer printed circuit board comprises a printed circuit which exists in three or more different layers with a substrate between each to electrically insulate one layer from another. Printed circuit boards with only outside layers of printed circuitry are not generally considered multilayer boards.
In prior art multilayer printed circuit boards, the printed circuits existing at each layer have often been connected into a single unitary printed circuit by drilling a plurality of holes through or partially through the board to expose certain of the inner layer printed circuit conductors. The conductors are exposed at their edges which form part of the hole wall. The hole wall has then been plated with a conducting material so as to electrically interconnect the various printed circuit layers with each other.
Though there are other techniques available for developing multilayer circuitry, plating through the hole has been found to be the only practical approach to a high density production-oriented process. In the past, however, this technique has been subject to a major disadvantage. The butt type joint in the holes, at the junction of the inner circuit layers and the plating in the hole, has been found to be unreliable. When subjected to vibration stresses, shear stresses, thermal shocks due to the soldering and unsoldering of connections and to normal replacement and repair stresses these joints tend to rupture. Finding and repairing such breaks is diicult and time consuming, for they are not always visible to the naked eye. Thus, it is often desirable to replace the board rather than repair it. The prior art has not satisfactorily taught how to make these joints more reliable so they wont rutpure when stressed by the rugged conditions which todays equipment must be designed to withstand.
It is, therefore, one object of this invention to provide a multilayer printed circuit board which is more reliable than those of the prior art.
Another object is to provide a multilayer printed circuit board of the type in which the conductors of the several layers are connected by a conductive coating on the walls of holes penetrating the board, wherein the electrical interconnections between the inner layer conductors and the conductive material deposited on the walls of the holes will not rupture when subjected to severe stresses such as have heretofore caused failure.
Another object is to provide an improved method of manufacturing multilayer printed circuit boards.
Another object is to provide in multilayer printed circuit boards a more reliable interconnection between the inner layer conductors and the conductive material deposited on the walls of the holes.
Another object is to provide a multilayer printed circuit board with a lock-in structure which insures a tight mechanical and electrical joint between the conducting material deposited on the inner wall of the hole and the inner layer conductors.
Other objects and advantages will appear as the invention is described in connection with the accompanying drawing.
For the purposes of this description, seeding is used to describe the process of placing conductive material on a surface, such as for example, by plating of copper on the wall of a hole through a printed circuit board by chemical reactions or mechanical means. Seeding is a well known process, and normally produces a very thin base layer of conductive material about one micro-inch thick. It is used to form a micro-thin base on which a more substantial layer of conductive material may be deposited.
Plating refers to the process of placing conductive material on a surface by means of an electrical current, such as by electroplating. This process is used to build up a layer of practical thickness on top of the thin seeded layer. A plated layer is normally from about .0005-.004 inch thick.
The term depositing is used to describe, generally, the forming of a layer of material on a surface and includes seeding and then plating.
The drawing shows successively, the steps in the formation of a multilayer printed circuit board according to the invention.
In the drawing:
FIG. 1 is a vertical section view of a part of a conventional laminated multilayer printed circuit board.
FIG. 2 is a view similar to FIG. l of the board after a hole has been formed through it intersecting the inner layer conductors.
FIG. 3 is a view similar to FIGS. l and 2 of the board in which a portion of the inner layer conductors has lbeen removed.
FIG. 4 is a view similar to FIG. 3 with metallic plating through the hole showing the interlock between the plating and the inner layer conductors.
Referring to FIG. l, a conventional multilayer printed circuit board, designated generally by numeral 10, comprises a plurality of plates or substrate layers 13 made of any suitable insulating material, of which commercially available epoxy-glass composition sheets are only one example.
As is common in multilayer circuit boards, each layer 13 is a support for and has firmly adhered to one surface a thin layer or coating of conducting material 15 such as, for example, copper, nickel, gold, kovar or combinations or alloys of these or other metals, as is also common with multilayer circuit boards.
The insulation board layers 13 are adhered together by layers 14 of adhesive such as epoxy resin glue or other adhesive commonly used in securing together the laminations of a multilayer printed circuit board.
The configuration of the circuitry of at least the inner conductive layers 15 will have lbeen formed in usual fashion, `as -by etching away unwanted portions for example, prior to adhering the layers 1S together. The configuration of the circuitry of the outer conductive layer may have also been done prior to gluing the insulation layers together or may be done later, as conditions indicate the preference.
Having glued together the several insulation plates 13 each with its lconductive layer thereon and thus formed the laminated or multilayer circuit board, holes 17 are drilled or otherwise Iformed through the several layers of the 'board in position to pass through conducting layers which it is desired to electrically connect on the insulation plates.
In order toprovide a stronger, more rugged electrical and mechanical connection between the conductive layers recesses 20 are formed in the wall of the hole in the zones or planes 16 of the conductive layers. Such recesses may be completely or only partially annular and may be formed chemically by etching or mechanically 'by chipping or grinding away the exposed edges 16 of the holes formed in the conductive layers. Such exposed edges will 'be complete circles when the hole area is less than the area of the `conductive layer penetrated by the hole; or the exposed edges may be less than a complete circle if lthe hole is inaccurately drilled or formed or if the hole is purposely or necessarily formed adjacent an edge of the conductive layer or the edge of a circuit configuration thereon.
To prepare the wall orf the hole in the insulation layers for electrically conductive plating the Wall of the hole is u seeded with a microthin layer of `copper (not visible inl surfaces of the conductive layers 12 `and physically and electrically united thereto by reason of having been electroplated thereon. The 4cylindrical portion 19 has integral radial annular ribs or rings 22 extending into the previously Iformed recesses in the hole wall and physically and electrically united with the edgesof the c onductive layers 15.f v v are formed in the surface of said, cylindrical portion 19 `during'the electroplating, as the plating lls the previously formed recesses; but they have no undesirable effects.
It will thus be seen that etching,chipping or otherwise forming of the recesses in the hole wall, in the zones or planes of the conductive layers provides shouldered offset spaces which the plating metal fills, thereby providing the rings 22 around the cylindrical plating wall which can be supported on top and bottom by the shoulders of the offset spaces as well as by their electrical andl mechanical bonding to the conductive layers. The additional support afforded by the rings and shoulders strengthens the connection between the conductive layers to such an extent that such connections do not break or fail under the shear and vi-bratory stresses which routinely heretofore have caused a breakdown of plated connections between the conductive layers.
It will be'understood that various changes in the details, materials', steps and arrangements of parts which have 'been herein described and illustrated, may be made by those skilled in the art within the scope of the invention.
What I claim is: i
1. A multilayer printed circuit board comprising a plurality of layers of insulating material, a plurality of thin layers' of conductive material at least one of which is Jbetween two insulating layers and is configured for a printed circuit, at least one hole penetrating all said insulating and conductive layers, the edges of lall inner con- Grease-like inward annular depressions 23A radially extending flange portions 18 overlying the outer ductive layers being recessed radially outward from the hole, and platingon the wallof said hole, said plating having a flange in the plane of each interior conductive layer which is electrically and mechanically bonded to each such layer, while the opposite radially extending surfaces of the ange are supported by contiguous surfaces of said insulating layers.
2. A multilayer printed circuit `board comprising a plurality of layers of insulating material, a plurality of thin layers of -conductive material at least one of which is between two insulating layers and is configured for a printed circuit, at least one hole penetratingall said insulating and conductive layers, the edges of all innerconductive layers being recessed radially outward `from the hole, and plating on the wall of said hole, said plating having a rib in the plane of each interior conductive layer which is electrically and mechanically bonded to each such layer while opposite side surfaces of said rib are supported by contiguous surfaces of said insulation layers.
3. A multilayer printed circuit board as claimed in claim 2, having at least one outside conductive layer and having an integral radial extension at at least one .outside end of the plating overlying and electrically and mechanically `bonded to an outside conductive layer.
4. A multilayer printed circuit board comprising a stack of at least two insulating sheets having desired printed circuit conductor configurations adhered thereto, said sheets being secured to each other to form said board with at least one outer conductor configuration and at least one inner conductor configuration embedded 4between said sheets, at least one hole penetrating through a sufficient number of 'said sheets at a predetermined location to intersect at least two of said conductor configurations in different layers, at least one of said intersected conductor configurations being an inner layer, a portion of each of said intersected inner conductor layers lbeing recessed radially outwardly from said hole, and plating in said hole, said plating having a protruding portion extending radially outwardly from said hole in the plane of each of said inner intersected conductor layers andeach of said portions being electrically and mechanically connected to the radially recessed inner intersectedconductor configuration in its plane and being supported above and below by adjacent insulating sheets.
5. A multilayer board according to claim 4 wherein at least one hole penetrates through the board and said platingextends through said hole, and said protruding portion comprises an annular flange.
LEWIS H. MYERS, Prim-ary Examiner.
DARRELL L. CLAY, Examiner,

Claims (1)

  1. 4. A MULTILAYER PRINTED CIRCUIT BOARD COMPRISING A STACK OF AT LEAST TWO INSULATING SHEETS HAVING DESIRED PRINTED CIRCUIT CONDUCTOR CONFIGURATIONS ADHERED THERETO, SAID SHEETS BEING SECURED TO EACH OTHER TO FORM SAID BOARD WITH AT LEAST ONE OUTER CONDUCTOR CONFIGURATION AND AT LEAST ONE INNER CONDUCTOR CONFIGURATION EMBEDDED BETWEEN SAID SHEETS, AT LEAST ONE HOLE PENETRATING THROUGH A SUFFICIENT NUMBER OF SAID SHEETS AT A PREDETERMINED LOCATION TO INTERSECT AT LEAST TWO OF SAID CONDUCTOR CONFIGURATIONS IN DIFFERENT LAYERS, AT LEAST ONE OF SAID INTERSECTED CONDUCTOR CONFIGURATIONS BEING AN INNER LAYER, A PORTION OF EACH OF SAID INTERSECTED INNER CONDUCTOR LAYERS BEING RECESSED RADIALLY OUTWARDLY FROM SAID HOLE, AND PLATING IN SAID HOLE, SAID PLATING HAVING A PROTRUDING PORTION EXTENDING RADIALLY OUTWARDLY FROM SAID HOLE IN THE PLANE OF EACH OF SAID INNER INTERSECTED CONDUCTOR LAYERS AND EACH OF SAID PORTIONS BEING ELECTRICALLY AND MECHANICALLY CONNECTED TO THE RADIALLY RECESSED INNER INTERSECTED CONDUCTOR CONFIGURATION IN ITS PLANE AND BEING SUPPORTED ABOVE AND BELOW BY ADJACENT INSULATING SHEETS.
US334361A 1963-12-30 1963-12-30 Multilayer circuit boards with plated through holes Expired - Lifetime US3301939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US334361A US3301939A (en) 1963-12-30 1963-12-30 Multilayer circuit boards with plated through holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US334361A US3301939A (en) 1963-12-30 1963-12-30 Multilayer circuit boards with plated through holes

Publications (1)

Publication Number Publication Date
US3301939A true US3301939A (en) 1967-01-31

Family

ID=23306869

Family Applications (1)

Application Number Title Priority Date Filing Date
US334361A Expired - Lifetime US3301939A (en) 1963-12-30 1963-12-30 Multilayer circuit boards with plated through holes

Country Status (1)

Country Link
US (1) US3301939A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496072A (en) * 1967-06-26 1970-02-17 Control Data Corp Multilayer printed circuit board and method for manufacturing same
US3532801A (en) * 1965-02-23 1970-10-06 Burroughs Corp Method and apparatus for fabricating laminated circuit boards
US3853528A (en) * 1970-02-27 1974-12-10 Siemens Ag Slot nozzle for isotope separation of gaseous compounds
US3934985A (en) * 1973-10-01 1976-01-27 Georgy Avenirovich Kitaev Multilayer structure
US4221925A (en) * 1978-09-18 1980-09-09 Western Electric Company, Incorporated Printed circuit board
US4368106A (en) * 1980-10-27 1983-01-11 General Electric Company Implantation of electrical feed-through conductors
US4396467A (en) * 1980-10-27 1983-08-02 General Electric Company Periodic reverse current pulsing to form uniformly sized feed through conductors
US4499655A (en) * 1981-03-18 1985-02-19 General Electric Company Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
US4628598A (en) * 1984-10-02 1986-12-16 The United States Of America As Represented By The Secretary Of The Air Force Mechanical locking between multi-layer printed wiring board conductors and through-hole plating
FR2618631A1 (en) * 1987-07-24 1989-01-27 Thomson Csf Method of producing electrical connections between sides of printed-circuit boards withstanding thermal stresses, in particular three-board circuits
US5066908A (en) * 1989-02-27 1991-11-19 Nec Corporation Method for electrically detecting positional deviation of contact hole in semiconductor device
US5243144A (en) * 1988-12-09 1993-09-07 Hitachi Chemical Company, Ltd. Wiring board and process for producing the same
US6963494B2 (en) * 2003-06-13 2005-11-08 Itt Manufacturing Enterprises, Inc. Blind hole termination of pin to pcb
US20050263322A1 (en) * 2003-06-13 2005-12-01 Mickievicz Scott K Enhanced blind hole termination of pin to PCB
US20110176298A1 (en) * 2009-02-12 2011-07-21 William Henry Meurer Lamp housing and operating lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219749A (en) * 1961-04-21 1965-11-23 Litton Systems Inc Multilayer printed circuit board with solder access apertures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219749A (en) * 1961-04-21 1965-11-23 Litton Systems Inc Multilayer printed circuit board with solder access apertures

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532801A (en) * 1965-02-23 1970-10-06 Burroughs Corp Method and apparatus for fabricating laminated circuit boards
US3496072A (en) * 1967-06-26 1970-02-17 Control Data Corp Multilayer printed circuit board and method for manufacturing same
US3853528A (en) * 1970-02-27 1974-12-10 Siemens Ag Slot nozzle for isotope separation of gaseous compounds
US3934985A (en) * 1973-10-01 1976-01-27 Georgy Avenirovich Kitaev Multilayer structure
US4221925A (en) * 1978-09-18 1980-09-09 Western Electric Company, Incorporated Printed circuit board
US4368106A (en) * 1980-10-27 1983-01-11 General Electric Company Implantation of electrical feed-through conductors
US4396467A (en) * 1980-10-27 1983-08-02 General Electric Company Periodic reverse current pulsing to form uniformly sized feed through conductors
US4499655A (en) * 1981-03-18 1985-02-19 General Electric Company Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
US4628598A (en) * 1984-10-02 1986-12-16 The United States Of America As Represented By The Secretary Of The Air Force Mechanical locking between multi-layer printed wiring board conductors and through-hole plating
FR2618631A1 (en) * 1987-07-24 1989-01-27 Thomson Csf Method of producing electrical connections between sides of printed-circuit boards withstanding thermal stresses, in particular three-board circuits
US5243144A (en) * 1988-12-09 1993-09-07 Hitachi Chemical Company, Ltd. Wiring board and process for producing the same
US5066908A (en) * 1989-02-27 1991-11-19 Nec Corporation Method for electrically detecting positional deviation of contact hole in semiconductor device
US6963494B2 (en) * 2003-06-13 2005-11-08 Itt Manufacturing Enterprises, Inc. Blind hole termination of pin to pcb
US20050263322A1 (en) * 2003-06-13 2005-12-01 Mickievicz Scott K Enhanced blind hole termination of pin to PCB
US7218530B2 (en) 2003-06-13 2007-05-15 Itt Manufacturing Enterprises, Inc. Enhanced blind hole termination of pin to PCB
US20110176298A1 (en) * 2009-02-12 2011-07-21 William Henry Meurer Lamp housing and operating lamp
US8905577B2 (en) * 2009-02-12 2014-12-09 William Henry Meurer Lamp housing with clamping lens

Similar Documents

Publication Publication Date Title
US3301939A (en) Multilayer circuit boards with plated through holes
US4030190A (en) Method for forming a multilayer printed circuit board
JP4203435B2 (en) Multilayer resin wiring board
JP2976049B2 (en) Multilayer electronic components
US4675784A (en) Printed circuit board
US5110654A (en) Ceramic multilayer wiring substrate
US11322417B2 (en) Wiring board
KR900000508B1 (en) Multilayer printed circuit board
CN100435602C (en) Process for producing electronic component and electronic component
WO2015195186A1 (en) Printed circuit board assembly with foam dielectric material
US10182494B1 (en) Landless via concept
KR20140141494A (en) Wiring substrate
KR100315588B1 (en) Manufacturing method of multilayer wiring board
JP2503725B2 (en) Multilayer wiring board
US11310921B2 (en) Buried via in a circuit board
US3627902A (en) Interconnections for multilayer printed circuit boards
WO2022107389A1 (en) Wiring board
US20060175081A1 (en) method for electrical interconnection between printed wiring board layers using through holes with solid core conductive material
CN107615894B (en) Component mounting board
WO2021009865A1 (en) High-density multilayer substrate and method for manufacturing same
US9913382B2 (en) Method for anchoring a conductive cap on a filled via in a printed circuit board and printed circuit board with an anchored conductive cap
JPH09181443A (en) Electronic component manufacturing method
US5763060A (en) Printed wiring board
JP2020161767A (en) Printed wiring board
JPH10150260A (en) Printed wiring board