US3298805A - Natural gas for transport - Google Patents

Natural gas for transport Download PDF

Info

Publication number
US3298805A
US3298805A US478604A US47860465A US3298805A US 3298805 A US3298805 A US 3298805A US 478604 A US478604 A US 478604A US 47860465 A US47860465 A US 47860465A US 3298805 A US3298805 A US 3298805A
Authority
US
United States
Prior art keywords
gas mixture
pressure
temperature
operating
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US478604A
Inventor
Secord Herbert Campbell
Bernard J Clarke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehoc Corp
Original Assignee
Vehoc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB2866462A external-priority patent/GB1002491A/en
Application filed by Vehoc Corp filed Critical Vehoc Corp
Priority to US478604A priority Critical patent/US3298805A/en
Application granted granted Critical
Publication of US3298805A publication Critical patent/US3298805A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/005Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Jan. 17, 1967 H. c, sEcoRD ET AL 3,298,805
NATURADGBS FOR TRANSPORT Filed Aug. 10, 1965 Tmpercnure "amssaJ INVENTOR HERBERT CAMPBELL SECORD ATTORNEYS United States Patent This application is a continuation-in-part of our copending application Serial No. 297,522, filed July 25, 1963, now Patent No. 3,232,725.
This invention relates to the storage and transportation of natural hydrocarbon gas mixtures and, more particularly, to a method whereby a natural gas mixture is contained in a dense state suitable for transport, particularly by ship, at minimal compression, refrigeration and containment costs per unit weight of the mixture.
Vast amounts of hydrocarbon gases are available from gas and oil fields in regions so far removed or separated by water from sources of demand that much of it has not heretofore been put to commercially profitable use. Certain heavier gas mixtures rich in propane and/ or butane sometimes are recovered and transported as liquids (LPG), but the lighter natural gases consisting principally of methane are often flashed oif and burned or vented at the wellhead. It is the broad purpose of this invention to provide a new and improved method for storing and transporting these lighter hydrocarbon gases which are rich in methane and thus make their enormous energy potential available in all parts of the world. In particular, the new method is intended to make use of ships by which gas mixtures can be transported in bulk.
Several methods have been proposed by others heretofore for the storage and shipment of light hydrocarbon gas mixturesrich in methane but none of them has been entirely satisfactory. The socalled LNG process, in which methane-rich natural gas is contained at its liquefication temperature (258 F.) and atmospheric pressure, has shown more promise than most, but as a mode of transport for commercial trades it has distinct disadvan tages because of the enormous cost involved in achieving and maintaining such extremely low cryogenic temperatures. By turning instead to certain combinations of moderate compression and refrigeration as described in our above-identified prior application, 'we have provided a method of transport of methane-rich natural gas mixtures which is often vastly superior economically to LNG or any other conventional process. It involves temperatures no less than about the critical temperature of methane (116" F.) and pressures no less than the bubb le point-dew point pressure of the gas so that the contained mixture is always in a single-phase state. While its container costs are greater than with LNG because the container must withstand pressure, the savings in refrigeration are so great that our prior method is notably more economical overall.
However, recent experience with our improved method has led to the discovery that lesser operating temperatures (still well above the cryogenic temperatures of LNG) and reduced operating pressures closer to and even below the bubble point-dew point pressure of the gas mixture result in yet greater cost savings when, for example, a relatively leaner mixture is to be transported and/ or the distances involved are comparatively greater. In this new mode of operation, neither refrigeration expense nor container costs far outweighs the other.
Accordingly, the present method ofstoring a natural gas mixture preferably for transport contemplates mixtures containing at least 60 mol percent methane and at least mol percent methane-plus-ethane, the remainder being heavier hydrocarbons and up to 10 mol percent inert constituents, and having a gross calorific value of 800 B.t.u./s.c.f. to 1600 B.t.u./s.c.f. The method provides that the temperature and pressure of the gas mixture be established within an operating state wherein the maximum operating temperature is immediately below about the critical temperature of methane, the minimum operating temperature is about 200 F., the maximum operating pressure is 300 p.s.i. above the bubble point-dew point pressure of the gas mixture at the operating temperature, and the minimum operating pressure is 15 p.s.i. below the bubble point-dew point pressure of the gas mixture at the operating temperature. Having achieved piessures and temperatures within these parameters, the gas mixture is contained in the operating state to prevent expansion and is thermally insulated against substantial heat leakage into the gas mixture so that it remains in the operating state throughout the duration of its containment. In this fashion the gas mixture is maintained in a dense state suitable for storage and transport at minimal compression, refrigeration and containment costs per unit weight of gas.
The foregoing definition of natural gas mixtures suitable for containment in accordance with the present method includes wellhead gases, gases separated from crude oil at a wellhead and tail gases from oil refineries and other processing plants, but it excludes propane-butane mixtures conventionally handled in the liquid state as LPG and artificially prepared solutions of pure methane dissolved in a heavier carrier such as ethane. If the mixture originally contains more than the specified amount of inert constituents (up to 10 mol percent), they should be reduced accordingly; not only will this increase the heating value of the cargo but in the case of excess carbon dioxide it will avoid solidification and in the case of excess nitrogen it will lower the vapor pressure of the mixture. The contemplated gas compositions are somewhat leaner overall as compared to the range of compositions applicable to our prior method, since in no case here will they include less than 60 mol percent methane and 80 mol percent methane-plus-ethane. One Of the most important features of the invention is that these lighter mixtures are precisely the Methane Ethane 5 .02
Propane 2.71 Butane 2.43
Pentane .03
Hexane .01
Nitrogen .3 4 Carbon dioxide .66
The method of the invention may be better under stood by referring to the accompanying drawing, which is a pressure-temperature diagram (not drawn to scale) of a representative natural gas mixture showing the contemplated operating state.
Absolute values are not given in this diagram but the shape of the various curves is illustrative of a typical natural gas composition of the type described previously. The curve ABC defines the envelope wherein the gas mixture exists in a two-phase state, part liquid and part vapor. Point A indicates the liquefication temperature of the gas mixture at atmospheric pressure and in absolute terms it might be apprOXimately -25 8 F. Point B is the true critical point of the gas mixture at which the various lines of uni-form liquid and vapor concentrations within the twophase region of the envelope converge. From A to B the envelope curve is generally referred to as the bubble point line since it marks those definite equilibrium states where vapor will begin to appear, for example during isothermal expansion of the gas mixture. From the critical point B to the point C on the envelope, the curve is commonly referred to as the dew point line at which liquid begins to condense, for example during isobaric cooling of the gas mixture. Critical points of representative natural gas mixtures contemplated for use in this method are at pressures of about 675 p.s.i.a. to 1800 p.s.i.a. and temperatures of about -l30 F. to +75 F.
Within the two-phase envelope ABC, it can properly be said that the gas mixture exists as a liquid and a vapor but outside the envelope it is best thought of as a compressible fluid regardless of pressure and temperature since its physical state varies primarily with respect to density. Thus, if the gas mixture is compressed from the point X to Y and then cooled to Z, its density would gradually change without a distinct change in phase. Only when changes in temperature and pressure are carried out through the two-phase envelope, for example directly between X and Z, can the creation of a part liquid and part vapor condition be distinctly noted. Therefore, the behavior of natural gas is referred to herein as that of a fluid whenever it is outside the two-phase region of the envelope, and by this is meant a compressible single-phase fluid.
In the broadest form of the present method, the gas mixture is compressed and refrigerated to an operating state circumscribed by the dotted lines connecting points 1-3, 3-4, 4-5 and 5-1 on the diagram. Thus, the gas mixture is brought to an operating temperature below the dotted line connecting the points 3 and 4 in the diagram, which is immediately below about the critical temperature of methane (1l6 F.). In every instance, therefore, the operating temperature defined herein is necessarily less than the minimum operating temperature called for in applicants aforementioned Patent No. 3,232,725. Above that maximum temperature illustrated by the line 3 in the accompanying diagram, the absolute pressures required render the containment costs disproportionately large. The diagram also indicates the minimum operating temperature by the dotted line connecting the points 1 and 5, which is about 200 F. More refrigeration is therefore necessary in all forms of the contemplated method than in our prior method, but the gas mixture is not chilled to the low cryogenic temperatures of LNG be cause below about 200 F. refrigeration costs begin to rise steeply, the gain in density decreases, and a point of diminishing returns is reached in the economics of container costs as explained hereinafter.
In the diagram the dotted line connecting the points 4 and 5 indicates the maximum operating pressure of 300 p.s.i. above the bubble point-dew point pressure of the gas mixture. For the gas compositions contemplated in this method, the maximum operating pressure at the warmest condition of operation (point 4) may be in the order about 1000 p.s.i.a., while at the coldest condition of operation (point 5) it may be in the order of about 500 p.s.i.a. Since the intended temperature conditions are in most instances less than the critical temperature B of the contemplated mixtures, this definition of maximum operating pressure necessarily results in absolute compression of a relatively modest degree. Consequently, the bottles or containers in which the gas mixture is disposed during the practice of the method may be particularly large and constructed of a material (e.g., high nickel content steel or a high strength aluminum alloy) chosen more for its resistance to low temperatures than for its resistance to greatly elevated pressures.
The minimum operating pressure in accordance with the method is shown by the dotted line connecting the points 1 and 3 in the diagram, which throughout the contemplated temperature range is 15 psi. below the phase boundary of the gas mixture. For virtually all of the gas mixtures intended for the practice of this method, the minimum operating pressure under conditions of least refrigeration (point 3) will be in the order of about 500 p.s.i.a., and for conditions of greatest refrigeration (point 1) it will be in the order of about p.s.i.a. Below this limit of minimum pressure, the average density of the contained mixture becomes too low for economical operation.
It will be noted that practically all of the contemplated operating region on the phase diagram is above the bubble point-dew point line and thus in the single-phase condition of a dense fluid without ullage or other evidence of the coexistence of liquid and vapor. However, since the minimum operating pressure is below the bubble point-dew point line, the presence of an observable interface between separate liquid and vapor phases i not excluded from the contemplated operating conditions. Most of the gas compositions applicable to this method have a critical temperature greater than the critical temperature of methane and hence this narrow two-phase region included in the operating state is beneath the bubble point portion of the phase boundary where a slight amount of vapor exists with a considerably larger volume of liquid. In almost all cases, no more than 10 percent by volume of the gas composition contained in the operating state will be vapor even at the lowest operating pressure and temperature at the point 1 in phase diaphragm. One of the principal reasons why this narrow region of two-phase conditions is contemplated by the present invention is to provide a slight ullage space within the containers so that in the event of rapid heating of the containers under emergency conditions (such as flooding of seawater around the containers in the hold of a ship) the resulting increase in pressure will not occur too rapidly. Somewhat less cargo is transported per container when this allowance for ullage is made. However, safety require ments for single-phase operation may necessitate the addition of empty surge chambers in the ship to accommodate expansion of the cargo and this extra cost may well outweigh the economic disadvantage of lesser net cargo in the two-phase state.
In the commercial practice of this invention, optimum cost savings are present at temperatures well below the critical temperature of methane. Thi is one reason why the maximum operating temperature is defined as immediately below rather than at, the critical temperature of methane and few if any circumstances will require the choice of an operating temperature at that limit.
The present method is less expensive than our prior method as a mode of static storage since its operating pressures are considerably lower. Nonetheless it may be desirable under some circumstances of marine transport to avoid static storage at the points of loading and unloading so that the gas mixture can be prepared at a relatively constant rate for shipment and delivered with similar uniform flow rates to consumers. To do this one ship is made available for loading at all times while another is unloading and the remainder of the fleet plies between the two terminal ports. Thus, at least four ships are usually required. This avoids the costs of double loading and unloading operations from static storage tanks which otherwise would be required at both ports.
Depending upon such factors as the particular composition of the mixture to be contained, the distance of the trade, and so on, there is a working range of optimum or preferred conditions within the overall limits of pressure and temperature described above, and this working range is defined on the phase diagram by the dotted line connecting the points 1, 2, 7 and 6. Here the maximum operating temperature (the line 2-7) is -130 F. and the minimum operating temperature (the line 1-6) is as defined above, which is to say about -200 F., well below the critical temperature of gas mixtures intended for this method. The maximum operating pressure (the line 6-7) is 100 p.s.i. above the bubble point pressure of the gas mixture at the operating temperature. Finally, the minimum operating pressure (the line 1-2) again as defined above, 15 p.s.i. below the bubble point pressure of the mixture at the operating temperature. In this region of operation, the gas mixture can be contained at densities from 400 to 575 times its normal density of atmospheric pressure and temperature. The practice of the invention can be illustrated by a typical transport of the Sahara gas mixture defined previously which has a specific gravity relative to air of .648. This gas mixture may be piped from a wellhead along with its associated heavier hydrocarbons and delivered to separator facilities where the gas is separated from the associated liquid and dehydrated. The mixture is then piped overland under pressure and at ambient temperature to dockside where it is to be loaded on board ship. At that point its pressure and temperature may be brought to the chosen operating condition, for example 170 F. and 224 p.s.i.a. (essentially at its bubble point pressure at that temperature) by cooling at high pressure to 150 F. and then expanding to the operating pressure and temperature. This condition is maintained as the gas mixture is delivered into containers within the hold of the ship where about one percent by volume is ullage which provides the requisite expansion space for safety purposes. Alternatively, the gas mixture may be expanded into the containers in a fashion such that its pressure and temperature vary through the two-phase region of the diagram before the final operating state is achieved.
The containers may be elongated bottles of a material such as 9% nickel content steel or a high strength aluminum alloy located in a thermally insulated hold. They may be about ten feet in diameter and perhaps fifty feet long vertically arranged in a multiplicity of suitably interconnected batteries. The density of this cargo in the operating state described above (-170 F. and 224 p.s.i.a.) is about 24 lbs/ft. and this is about 485 times its normal density at atmospheric temperature and pressure. Taking into account all the cost factors in a shipment as described above over a trans-Mediterranean route of about 500 miles, from the beginning of loading at embarkation to the end of unloading at the destination, the gas mixture is transported at significantly less cost per unit weight by the present method than by the highertemperature method we have disclosed previously. As compared to LNG, of course, the unit cost advantage is even more impressive.
Natural gas mixtures transported in accordance with this invention may be separated at the point of destination essentially to methane for continuous supply into a transmission system and heavier ends such as ethane, LPG, and natural gasoline which may be piped separately to areas of use. The heavy ends may alternatively be converted mainly to methane by exothermic reaction with steam over a nickel-containing catalyst to augment further the pipe-line gas supply.
We claim:
1. A method of storing for transport a natural gas mixture containing at least 60 mol percent methane and at least mol percent methane-plus-ethane, the remainder being heavier hydrocarbons and up to 10 mol percent inert constituents, and having a gross calorific value of from 800 B.t.u./s.c.f. to 1600 B.t.u./s.c.f., which comprises:
(a) establishing the pressure and temperature of the gas mixture within an operating state wherein (i) the maximum operating temperature is immediately below about the critical temperature of methane,
(ii) the mini-mum operating temperature is about (iii) the maximum operating pressure is 300 psi. above the bubble point-dew point pressure of the gas mixture at the operating temperature, and
(iv) the minimum operating pressure is 15 psi. below the bubble point-dew point pressure of the gas mixture at the operating temperature,
(b) containing said gas in the operating state to prevent expansion of said gas mixture; and
(c) thermally insulating the contained gas mixture against substantial heat leakage into said gas mixture so that it remains in said operating state throughout the duration of its containment;
((1) whereby the gas mixture is maintained in a dense state suitable for storage and transport at minimal compression, refrigeration and containment costs per unit weight of gas mixture.
2. A method of storing a natural gas mixture according to claim 1 wherein the maximum operating temperature is -130 F. and the maximum operating pressure is p.s.i. above the bubble point pressure of the gas mixture at the operating temperature.
3. A method of storing a natural gas mixture according to claim 2 wherein the density of the gas mixture in the operating state is 400 to 5 75 times greater than its density at atmospheric pressure and temperature.
4. A method of storing natural gas mixture according to claim 1 wherein said gas mixture is contained in said operating state in a multiplicityof containers resistant to the chosen operating temperature and pressure, and said containers are surrounded by thermal insulation and transported by ship.
5. A method of storing natural gas mixture according to claim 4 wherein said gas mixture is loaded in and unloaded from at least four of said ships sequentially at a substantially uniform rate without static storage at the points of loading and unloading.
References Cited by the Examiner UNITED STATES PATENTS 2,217,678 10/1940 Goosmann. 2,231,500 2/ 1941 Harlow.
OTHER REFERENCES Katz et al.: Industrial and Engineering Chemistry, vol. 32, No. 6, pp. 817-827 (June 1940).
MORRIS O. WOLK, Primary Examiner.
JOSE-PH SCOVRONEK, Examiner.
Dedication 3,298,805.Herbert Campbell Sec-0rd, Markyate, England and Bernard J. Clarke, Columbus, Ohio. NATURAL GAS FOR TRANSPORT. Patent dated Jan. 17 1967. Dedication filed Sept. 16, 1971, by the assignee, Vehoc Corporation. Hereby dedicates to the Public the entire remaining term of said patent.
[Oflicz'al Gazette December 28, 1.971.]

Claims (1)

1. A METHOD OF STORING FOR TRANSPORT A NATURAL GAS MIXTURE CONTAINING AT LEAST 60 MOL PERCENT METHANE AND AT LEAST 80 MOL PERCENT METHANE-PLUS-ETHANE, THE REMAINDER BEING HEAVIER HYDROCARBONS AND UP TO 100 MOL PERCENT INERT CONSTITUENTS, AND HAVING A GROSS CALORIFIC VALUE OF FROM 800 B.T.U./S.C.F. TO 100 B.T.U./S.C.F., WHICH COMPRISES: (A) ESTABLISHING THE PRESSURE AND TEMPERATURE OF THE GAS MIXTURE WITHIN AN OPERATING STATE WHEREIN (I) THE MAXIMUM OPERATING TEMPERATURE IS IMMEDIATELY BELOW ABOUT THE CRITICAL TEMPERATURE OF METHANE, (II) THE MAXIMUM OPERATING TEMPERATURE IS ABOUT -200*F., (III) THE MAXIMUM OPERATING PRESSURE IS 300 P.S.I. ABOVE THE BUBBLE POINT-DEW POINT PRESSURE OF THE GAS MIXTURE AT THE OPERATING TEMPERATURE, AND (IV) THE MINIMUM OPERATING PRESSURE IS 15 P.S.I. BELOW THE BUBBLE POINT-DEW POINT PRESSURE OF THE GAS MIXTURE AT THE OPERATING TEMPERATURE, (B) CONATAINING SAID GAS IN THE OPERATING STATE TO PREVENT EXPANSION OF SAID GAS MIXTURE; AND (C) THERMALLY INSULATING THE CONTAINED GAS MIXTURE AGAINST SUBSTANTIAL HEAT LEAKAGE INTO SAID GAS MIXTURE SO THAT IT REMAINS IN SAID OPERATING STATE THROUGHOUT THE DURATION OF ITS CONTAINMENT; (D) WHEREBY THE GAS MIXTURE IS MAINTAINED IN A DENSE STATE SUITABLE FOR STORAGE AND TRANSPORT AT MINIMAL COMPRESSION, REFRIGERATION AND CONTAINMENT COSTS PER UNIT WEIGHT OF GAS MIXTURE.
US478604A 1962-07-25 1965-08-10 Natural gas for transport Expired - Lifetime US3298805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US478604A US3298805A (en) 1962-07-25 1965-08-10 Natural gas for transport

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2866462A GB1002491A (en) 1962-07-25 1962-07-25 Improvements in the storage and transportation of natural gas
GB4800362 1962-12-19
US478604A US3298805A (en) 1962-07-25 1965-08-10 Natural gas for transport

Publications (1)

Publication Number Publication Date
US3298805A true US3298805A (en) 1967-01-17

Family

ID=27258742

Family Applications (1)

Application Number Title Priority Date Filing Date
US478604A Expired - Lifetime US3298805A (en) 1962-07-25 1965-08-10 Natural gas for transport

Country Status (1)

Country Link
US (1) US3298805A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848427A (en) * 1971-03-01 1974-11-19 R Loofbourow Storage of gas in underground excavation
US3950958A (en) * 1971-03-01 1976-04-20 Loofbourow Robert L Refrigerated underground storage and tempering system for compressed gas received as a cryogenic liquid
DE2946197A1 (en) * 1979-02-12 1980-08-21 Texas Gas Transport METHOD AND DEVICE FOR PRODUCING AND TRANSPORTING NATURAL GAS
US4987932A (en) * 1989-10-02 1991-01-29 Pierson Robert M Process and apparatus for rapidly filling a pressure vessel with gas
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US5956971A (en) * 1997-07-01 1999-09-28 Exxon Production Research Company Process for liquefying a natural gas stream containing at least one freezable component
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US6112528A (en) * 1998-12-18 2000-09-05 Exxonmobil Upstream Research Company Process for unloading pressurized liquefied natural gas from containers
US6141973A (en) * 1998-09-15 2000-11-07 Yukon Pacific Corporation Apparatus and process for cooling gas flow in a pressurized pipeline
US6192705B1 (en) 1998-10-23 2001-02-27 Exxonmobil Upstream Research Company Reliquefaction of pressurized boil-off from pressurized liquid natural gas
US6199403B1 (en) 1998-02-09 2001-03-13 Exxonmobil Upstream Research Company Process for separating a multi-component pressurizied feed stream using distillation
US6201163B1 (en) 1995-11-17 2001-03-13 Jl Energy Transportation Inc. Pipeline transmission method
US6202707B1 (en) 1998-12-18 2001-03-20 Exxonmobil Upstream Research Company Method for displacing pressurized liquefied gas from containers
US6203631B1 (en) 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6209350B1 (en) 1998-10-23 2001-04-03 Exxonmobil Upstream Research Company Refrigeration process for liquefaction of natural gas
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
US6217626B1 (en) 1995-11-17 2001-04-17 Jl Energy Transportation Inc. High pressure storage and transport of natural gas containing added C2 or C3, or ammonia, hydrogen fluoride or carbon monoxide
US6223557B1 (en) 1998-10-22 2001-05-01 Exxonmobil Upstream Research Company Process for removing a volatile component from natural gas
US6257017B1 (en) 1998-12-18 2001-07-10 Exxonmobil Upstream Research Company Process for producing a displacement gas to unload pressurized liquefied gas from containers
EP1144928A2 (en) * 1998-12-18 2001-10-17 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas
EP1169601A1 (en) * 1999-01-15 2002-01-09 Exxonmobil Upstream Research Company Process for producing a methane-rich liquid
US6378330B1 (en) 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US6460721B2 (en) 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
US6539747B2 (en) 2001-01-31 2003-04-01 Exxonmobil Upstream Research Company Process of manufacturing pressurized liquid natural gas containing heavy hydrocarbons
US20030098098A1 (en) * 2001-11-27 2003-05-29 Petersen Clifford W. High strength marine structures
US20030183638A1 (en) * 2002-03-27 2003-10-02 Moses Minta Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
US6751985B2 (en) 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US20060042692A1 (en) * 2004-08-26 2006-03-02 Seaone Maritime Corp. Liquid displacement shuttle system and method
US20060042273A1 (en) * 2004-08-26 2006-03-02 Seaone Maritime Corp. Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US20060207264A1 (en) * 2001-02-05 2006-09-21 Perry Glen F Method and substance for refrigerated natural gas transport
US20060283519A1 (en) * 2005-06-20 2006-12-21 Steven Campbell Method for transporting liquified natural gas
US20070017575A1 (en) * 2005-07-08 2007-01-25 Bruce Hall Method of bulk transport and storage of gas in a liquid medium
US20080087328A1 (en) * 2004-10-25 2008-04-17 Sargas As Method and Plant for Transport of Rich Gas
US20080209916A1 (en) * 2007-03-02 2008-09-04 Enersea Transport Llc Apparatus and method for flowing compressed fluids into and out of containment
US20100000252A1 (en) * 2008-06-20 2010-01-07 Ian Morris Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
US20110132033A1 (en) * 2009-12-07 2011-06-09 Alkane, Llc Conditioning an Ethane-Rich Stream for Storage and Transportation
WO2012051336A1 (en) 2010-10-12 2012-04-19 Seaone Ag Methods for storage and transportation of natural gas in liquid solvents

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217678A (en) * 1937-09-24 1940-10-15 White S Dental Mfg Co Solidification of gases
US2231500A (en) * 1939-06-26 1941-02-11 Phillips Petroleum Co Transportation of oil and gas vapors in a pipe line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217678A (en) * 1937-09-24 1940-10-15 White S Dental Mfg Co Solidification of gases
US2231500A (en) * 1939-06-26 1941-02-11 Phillips Petroleum Co Transportation of oil and gas vapors in a pipe line

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950958A (en) * 1971-03-01 1976-04-20 Loofbourow Robert L Refrigerated underground storage and tempering system for compressed gas received as a cryogenic liquid
US3848427A (en) * 1971-03-01 1974-11-19 R Loofbourow Storage of gas in underground excavation
DE2946197A1 (en) * 1979-02-12 1980-08-21 Texas Gas Transport METHOD AND DEVICE FOR PRODUCING AND TRANSPORTING NATURAL GAS
US4987932A (en) * 1989-10-02 1991-01-29 Pierson Robert M Process and apparatus for rapidly filling a pressure vessel with gas
US6217626B1 (en) 1995-11-17 2001-04-17 Jl Energy Transportation Inc. High pressure storage and transport of natural gas containing added C2 or C3, or ammonia, hydrogen fluoride or carbon monoxide
US6201163B1 (en) 1995-11-17 2001-03-13 Jl Energy Transportation Inc. Pipeline transmission method
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6203631B1 (en) 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
EP1021689A2 (en) * 1997-06-20 2000-07-26 Exxon Mobil Upstream Research Company Improved process for liquefaction of natural gas
EP1021690A1 (en) * 1997-06-20 2000-07-26 Exxon Mobil Upstream Research Company Improved cascade refrigeration process for liquefaction of natural gas
ES2187228A1 (en) * 1997-06-20 2003-05-16 Exxonmobil Upstream Res Co Lng fuel storage and delivery systems for natural gas powered vehicles
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US5956971A (en) * 1997-07-01 1999-09-28 Exxon Production Research Company Process for liquefying a natural gas stream containing at least one freezable component
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
US6199403B1 (en) 1998-02-09 2001-03-13 Exxonmobil Upstream Research Company Process for separating a multi-component pressurizied feed stream using distillation
US6141973A (en) * 1998-09-15 2000-11-07 Yukon Pacific Corporation Apparatus and process for cooling gas flow in a pressurized pipeline
US6223557B1 (en) 1998-10-22 2001-05-01 Exxonmobil Upstream Research Company Process for removing a volatile component from natural gas
US6209350B1 (en) 1998-10-23 2001-04-03 Exxonmobil Upstream Research Company Refrigeration process for liquefaction of natural gas
US6192705B1 (en) 1998-10-23 2001-02-27 Exxonmobil Upstream Research Company Reliquefaction of pressurized boil-off from pressurized liquid natural gas
EP1144928A2 (en) * 1998-12-18 2001-10-17 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas
US6257017B1 (en) 1998-12-18 2001-07-10 Exxonmobil Upstream Research Company Process for producing a displacement gas to unload pressurized liquefied gas from containers
US6202707B1 (en) 1998-12-18 2001-03-20 Exxonmobil Upstream Research Company Method for displacing pressurized liquefied gas from containers
US6112528A (en) * 1998-12-18 2000-09-05 Exxonmobil Upstream Research Company Process for unloading pressurized liquefied natural gas from containers
EP1169601A1 (en) * 1999-01-15 2002-01-09 Exxonmobil Upstream Research Company Process for producing a methane-rich liquid
US6460721B2 (en) 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
US6378330B1 (en) 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US6539747B2 (en) 2001-01-31 2003-04-01 Exxonmobil Upstream Research Company Process of manufacturing pressurized liquid natural gas containing heavy hydrocarbons
US7418822B2 (en) 2001-02-05 2008-09-02 Zedgas Inc. Method and substance for refrigerated natural gas transport
US20060207264A1 (en) * 2001-02-05 2006-09-21 Perry Glen F Method and substance for refrigerated natural gas transport
US6852175B2 (en) 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures
US20030098098A1 (en) * 2001-11-27 2003-05-29 Petersen Clifford W. High strength marine structures
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US6751985B2 (en) 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US20030183638A1 (en) * 2002-03-27 2003-10-02 Moses Minta Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
US7147124B2 (en) 2002-03-27 2006-12-12 Exxon Mobil Upstream Research Company Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
US20070113959A1 (en) * 2002-03-27 2007-05-24 Moses Minta Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
US7607310B2 (en) 2004-08-26 2009-10-27 Seaone Maritime Corp. Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US20100058779A1 (en) * 2004-08-26 2010-03-11 Seaone Maritime Corporation Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US7219682B2 (en) 2004-08-26 2007-05-22 Seaone Maritime Corp. Liquid displacement shuttle system and method
US20060042273A1 (en) * 2004-08-26 2006-03-02 Seaone Maritime Corp. Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US20060042692A1 (en) * 2004-08-26 2006-03-02 Seaone Maritime Corp. Liquid displacement shuttle system and method
US8225617B2 (en) 2004-08-26 2012-07-24 Seaone Maritime Corporation Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US20080087328A1 (en) * 2004-10-25 2008-04-17 Sargas As Method and Plant for Transport of Rich Gas
US20060283519A1 (en) * 2005-06-20 2006-12-21 Steven Campbell Method for transporting liquified natural gas
US20070017575A1 (en) * 2005-07-08 2007-01-25 Bruce Hall Method of bulk transport and storage of gas in a liquid medium
US7517391B2 (en) 2005-07-08 2009-04-14 Seaone Maritime Corp. Method of bulk transport and storage of gas in a liquid medium
US8257475B2 (en) 2005-07-08 2012-09-04 Seaone Maritime Corp. Method of bulk transport and storage of gas in a liquid medium
US20100126216A1 (en) * 2005-07-08 2010-05-27 Seaone Maritime Corp Method of bulk transport and storage of gas in a liquid medium
US8607830B2 (en) 2007-03-02 2013-12-17 Enersea Transport Llc Apparatus and method for flowing compressed fluids into and out of containment
US20080209918A1 (en) * 2007-03-02 2008-09-04 Enersea Transport Llc Storing, transporting and handling compressed fluids
US8281820B2 (en) 2007-03-02 2012-10-09 Enersea Transport Llc Apparatus and method for flowing compressed fluids into and out of containment
US20080209916A1 (en) * 2007-03-02 2008-09-04 Enersea Transport Llc Apparatus and method for flowing compressed fluids into and out of containment
US9033178B2 (en) 2007-03-02 2015-05-19 Enersea Transport Llc Storing, transporting and handling compressed fluids
US10780955B2 (en) 2008-06-20 2020-09-22 Seaone Holdings, Llc Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
US11952083B2 (en) 2008-06-20 2024-04-09 Seaone Holdings, Llc Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
US20100000252A1 (en) * 2008-06-20 2010-01-07 Ian Morris Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
US11485455B2 (en) 2008-06-20 2022-11-01 Seaone Holdings, Llc Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
US8707730B2 (en) 2009-12-07 2014-04-29 Alkane, Llc Conditioning an ethane-rich stream for storage and transportation
US20110132033A1 (en) * 2009-12-07 2011-06-09 Alkane, Llc Conditioning an Ethane-Rich Stream for Storage and Transportation
US9574710B2 (en) 2010-10-12 2017-02-21 Seaone Holdings, Llc Methods for storage and transportation of natural gas in liquid solvents
US10801672B2 (en) 2010-10-12 2020-10-13 Seaone Holdings, Llc Methods for storage and transportation of natural gas in liquid solvents
US11280451B2 (en) 2010-10-12 2022-03-22 Seaone Holdings, Llc Methods for storage and transportation of natural gas in liquid solvents
US10100980B2 (en) 2010-10-12 2018-10-16 Seaone Holdings, Llc Methods for storage and transportation of natural gas in liquid solvents
US11815226B2 (en) 2010-10-12 2023-11-14 Seaone Holdings, Llc Methods for storage and transportation of natural gas in liquid solvents
WO2012051336A1 (en) 2010-10-12 2012-04-19 Seaone Ag Methods for storage and transportation of natural gas in liquid solvents

Similar Documents

Publication Publication Date Title
US3298805A (en) Natural gas for transport
US3232725A (en) Method of storing natural gas for transport
US3877240A (en) Process and apparatus for the storage and transportation of liquefied gases
US3217503A (en) Method of handling gas
US2897657A (en) Storage and transportation of liquefied gas
CA2419956C (en) Methods and apparatus for compressed gas
US3034309A (en) Method for transporting gas
US3438215A (en) Reservoir for storing two fluids
US2963873A (en) Method and apparatus for storing liquefied gases
US2975604A (en) Method of distribution of condensable gases
US3011321A (en) Apparatus for the maintenance of liquefied petroleum products
US3150495A (en) Storage and pressure control of refrigerated liquefied gases
US3535885A (en) Method of transporting natural gas
US2968161A (en) Bulk helium transportation
WO1990000589A1 (en) A process for liquefying hydrocarbon gas
US3293011A (en) Method of handling natural gas
US20080184735A1 (en) Refrigerant storage in lng production
EP1585799B1 (en) Marginal gas transport in offshore production
US3068657A (en) Method for the transportation and maintenance of a normally gaseous hydrocarbon in solution with a liquid hydrocarbon
US2975608A (en) Transportation and use of liquefied natural gas
US2966040A (en) Tank for the storage and transportation of a low boiling liquid
US2929221A (en) Method and apparatus for the transportation of liquefied petroleum products
US3400545A (en) Use of cold-carriers in liquefaction and regasification of gases
US7240499B1 (en) Method for transporting compressed natural gas to prevent explosions
US2947438A (en) Internal insulation structure for use with liquefied petroleum products