US3295725A - Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece - Google Patents

Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece Download PDF

Info

Publication number
US3295725A
US3295725A US550074A US55007466A US3295725A US 3295725 A US3295725 A US 3295725A US 550074 A US550074 A US 550074A US 55007466 A US55007466 A US 55007466A US 3295725 A US3295725 A US 3295725A
Authority
US
United States
Prior art keywords
headpiece
laminated
thermoplastic
barrier
breast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US550074A
Inventor
Brandt Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primerica Inc
Original Assignee
American Can Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL300441D priority Critical patent/NL300441A/xx
Priority to BE639801D priority patent/BE639801A/xx
Priority to US118697A priority patent/US3172571A/en
Priority claimed from US242991A external-priority patent/US3260777A/en
Priority to FR953310A priority patent/FR1383064A/en
Application filed by American Can Co filed Critical American Can Co
Priority to US550074A priority patent/US3295725A/en
Application granted granted Critical
Publication of US3295725A publication Critical patent/US3295725A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/02Body construction
    • B65D35/12Connections between body and closure-receiving bush
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/48Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively
    • B29C53/50Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively using internal forming surfaces, e.g. mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/49Internally supporting the, e.g. tubular, article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/20Flexible squeeze tubes, e.g. for cosmetics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • B29C65/028Particular heating or welding methods not otherwise provided for making use of inherent heat, i.e. the heat for the joining comes from the moulding process of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/324Avoiding burr formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/324Avoiding burr formation
    • B29C66/3242Avoiding burr formation on the inside of a tubular or hollow article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/20Flexible squeeze tubes, e.g. for cosmetics

Definitions

  • the tubular body portion 1d in the exemplary embodiment illustrated comprises three layers laminated or otherwise bonded one to the other, although as will be noted later, particular applications may permit a reduction in the number of layers to two while other environments may render desirable the use of four or more layers in the laminate.
  • the collapsible body portion includes an outer layer 15 desirably provided by a thermoplastic material such as a polyolefin, although a cellulosic material such as paper can be used in certain instances and of course in this event the laminating and tube forming techniques would be suitably modified in a manner which will be later set forth.
  • the outer protective medium is a polyolefin illustratively taking the form of polyethylene, but it will be appreciated that the layer 15 may have the same composition as inner layer 17 laminated to the opposite surface of intermediate layer 16.
  • the intermediate layer 16 may have printing or ornamental indicia applied thereto on its outer surface, as will be noted in connection with a description of FIG- URE 7.
  • the outer layer will be transparent to permit the indicia to be seen.
  • the layer 15 thus protects the indicia, and by providing the ornamentation or printing on the interlayer, treatment of the outer layer to render it more receptive to inks is eliminated.
  • the innermost layer 17 when constituted of the above copolymer avoids the earlier mentioned problem of delarnination from the metallic substrate 16 when exposed to fluoride-containing dentif-rices, imparts to the tubular container C excellent stress crack resistance, and provides a highly adherent bond with the headpiece 12, the structural details of which appear in FIGURES 1 to 4.
  • the headpiece is formed with a substantially cylindrical skirt portion 20 and a peripheral inwardly curved portion 21 merging into the sloping breast portion 14 which mounts the upstanding passaged neck portion 13, shown as externally threaded to receive an internally threaded closure (not shown).
  • a continuous web 40 of foil material may first be passed through a printing unit 41 if it is desired to provide preprinted tube bodies in contrast with later applying suitable indicia to the outer thermoplastic layer 15.
  • the printing unit 41 applies indicia on the upper surface of the web or foil strip 40, and a single printing roll is illustrated at 42 in backup relation with a roll 43.
  • multiple rolls may be used in those instances where a multicolor design is desired.
  • the outer layer 15 of the laminated tube body can be any one of a number of different thermoplastics capable of fusion during the side seaming step and granting adequate protection to the metallic foil interlayer 16.
  • the outer layer 15 can be eliminated if the foil barrier is of sufficient thickness to resist damage, and by flowing a thermoplastic material into the overlap side seam during the sealing thereof.

Description

Jan. 3, I967 FL BRANDT 3,295,725
COLLAPSIBLE DISPENSING CONTAINER WITH AN IMPERMEABLE BARRIER BOTH IN ITS LAMINATED WALL AND IN ITS HEADPIECE Original Filed Dec. '7, 1952 2 Sheets-sheet 1 Z/ /7 INVENTOR.
A 066? 5544/02" 42/ Qk BY Jan. 3, 1967 R. BRANDT 3, COLLAPSIBLE DISPENSING CONTAINER WITH AN IMPERMEABLE BARRIER BOTH IN ITS LAMINATED WALL AND IN ITS HEADPIECE Original Filed Dec. 7, 1962 2 Sheets-Sheet 2 M /j b, I I /f 1/ 7W0 7 /7 /7 7% 7/ INVENTOR. ,7 Aflffl EIQA/VQT ATTJ/PA/EV United States Patent COLLAPSIBLE DISPENSING CONTAINER WITH AN IMPERMEAELE BARKER BOTH IN ITS LAMlNATED WALL AND IN ITS HEADPHECE Roger Brandt, Wayland, Mesa, assignor to American Can Company, New York, N.Y., a corporation of New Jersey Original application Dec. 7, 1962, Ser. No. 242,991, now Patent No. 3,266,777, dated July 12, 1966. Divided and this application Mar. 14, 1966, Ser. No. 550,074
8 Claims. (Cl. 222107) This is a division of my copending application Serial No. 242,991, filed December 7, 1962, now Patent No. 3,260,777.
The present invention relates broadly to the container art, and is more particularly concerned with a collapsible dispensing container of laminated wall construction in the body and breast portions thereof, whereby product permeation and oxygen absorption are effectively prevented in all regions of the container structure susceptible thereto.
Collapsible tubes formed of metallic and plastic materials have long been known in the packaging field. Extruded metal tubes, and particularly those constructed of lead, are inherently brittle and repeated use not infrequently results in wall cracks so that product is exuded from a location other than the dispensing orifice. Aluminum tubes, while being less brittle, are somewhat limited in their applications since to date it has not been possible to apply to the interior surfaces thereof a completely satisfactory coating, when required to prevent attack and corrosion of the metal by alkaline or acid contents and contamination of the contents by the reaction products. And notwithstanding the relatively brittle nature of lead tubes, the mentioned internal coating operation requires an additional processing step which necessarily increases the cost of the final article.
Tubes formed of polyethylene and other plastic materials have enjoyed wide commercial success in the packaging of many products, however, certain other products after a time have been noted to deteriorate when contained therein. Plastics as exemplified by polyethylene are permeable to a degree when employed in the wall thicknesses used in tubular containers, and the essential oils embodied in most dentifrices for flavoring purposes are reduced in volume during storage of the container, rendering the dentifrice less palatable. Then too, the plastic container wall absorbs oxygen after a period of time and ultimately may decompose the product, which has actually been found to be the case with fluoride-containing toothpastes.
It has accordingly been proposed to provide a relatively thin metallic barrier between the product and the polyethylene tube body to prevent the mentioned loss of essential oils and the absorption of oxygen. The metallic barrier has been suggested as an interlayer between facing sheets of polyethylene, and that a laminate be formed by heat with or without suitable adhesives. However, while a structure of this general character is effective to prevent product permeation and oxygen absorption through the tube body, and particularly when the inner thermoplastic layer is a copolyrner of an olefin and a polar group-containing monomer which is co-polymerizable therewith, there remains the possibility of product deterioration by reason of the absence of a barrier layer in the region of the tube breast. This possibility is especially present when as a matter of material savings or for other reasons the wall thickness of the termoplastic headpiece is reduced.
It is, therefore, an important aim of the present invention to provide a collapsible dispensing container of laminated wall construction in not only the body portion, but also in the breast portion thereof.
"ice
Another object of this invention lies in the provision of a tubular container having a plurality of adherent layers in the body and breast portions thereof, one of said layers providing a barrier to product permeation and oxygen absorption and another of said layers being a material selected from the group consisting of a polyolefin and a copolymer of an olefin and a polar groupcontaining monomer which is copolymerizable therewith.
, A further object of the instant invention is to provide a method of producing laminated tubes in which a tubular body is formed of a barrier layer and a thermoplastic layer laminated thereto, the laminated tube body then located on a forming member in adjacency to a barrier member also positioned thereon, and thermoplastic material thereafter bonded to the barrier member and to the thermoplastic layer to form a headpiece on the tube body.
Other objects and advantages of the invention will become more apparent as the description proceeds, particularly when taken in connection with the accompanying drawings.
In the drawings, wherein like numerals are employed to designate like parts throughout the same:
FIGURE 1 is a side elevational view of a collapsible dispensing container embodying the novel concepts of this invention, with portions of the body walls being broken away to more fully illustrate the laminated structure;
FIGURE 2 is an enlarged fragmentary sectional view of the laminated body and breast portions of the instant container;
FIGURE 3 is a top plan view of the container of FIGURE 1, a portion thereof being broken away for purposes of illustrating the juncture between the laminations in the tube breast and body;
FIGURE 4 is a perspective view of an exemplary form of laminated disc for use in the container breast portion;
FIGURES 5 and 6 are sectional views through typical molding apparatus, andshowing two steps in the formation of the instant container; and
FIGURE 7 is a side elevational view of an illustrative process for forming laminated tube bodies.
Referring now first to FIGURE 1 of the drawings, a container constructed in accordance with the principles of this invention is designated generally therein by the legend C and comprises a collapsible body portion 10 closed at one end by heat sealing or other techniques, as indicated at 11. The tubular body mounts at its opposite end a plastic headpiece 12 shaped to provide a neck portion 13 and breast portion 14 of which the structural features and mode of fabrication will be more fully described hereinafter.
The tubular body portion 1d in the exemplary embodiment illustrated comprises three layers laminated or otherwise bonded one to the other, although as will be noted later, particular applications may permit a reduction in the number of layers to two while other environments may render desirable the use of four or more layers in the laminate. However, as shown, the collapsible body portion includes an outer layer 15 desirably provided by a thermoplastic material such as a polyolefin, although a cellulosic material such as paper can be used in certain instances and of course in this event the laminating and tube forming techniques would be suitably modified in a manner which will be later set forth. Preferably though, the outer protective medium is a polyolefin illustratively taking the form of polyethylene, but it will be appreciated that the layer 15 may have the same composition as inner layer 17 laminated to the opposite surface of intermediate layer 16.
The interlayer 16, which provides the barrier protection against oxygen absorption from atmosphere and essential oil permeation outwardly through the tube body, is
a metallic foil having a thickness sutlicient to impart the requisite barrier properties and yet is maintained relatively thin in the interests of cost and pliability of the container during use. Aluminum foil has been found suitable, and the intermediate layer 16 may have printing or ornamental indicia applied thereto on its outer surface, as will be noted in connection with a description of FIG- URE 7. In this event, the outer layer will be transparent to permit the indicia to be seen. The layer 15 thus protects the indicia, and by providing the ornamentation or printing on the interlayer, treatment of the outer layer to render it more receptive to inks is eliminated.
The composition of the inner layer 17 may also be varied and one of the polyolefins may provide satisfactory results in certain applications. However, to date it has been found important in attainment of a bond with the foil layer 16 which will not delaminate upon direct exposure to certain products, particularly those of a highly acidic nature and which may be exemplified in the present instance by fluoride-containing toothpastes, that the thermoplastic layer 17 be provided by a copolymer of an olefin and a polar group-containing monomer which is copolymerizable therewith. Or, as may otherwise be stated, the layer 17 desirably is a copolymer of an olefin and an ethylenically unsaturated carboxylic acid.
Preferably, the copolymer is of the random type and has a carboxylic acid content from about 0.5 to about 20 percent by weight, based on copolymer weight. The melt index of the copolymer is between 1 and 50. Quite clearly, many copolymers fall within the above definition, and an especially well-suited compound is provided when the olefin is ethylene and the acid is an ethylenically unsaturated monocarboxylic acid such as acrylic or alkacrylic acid, the former being more desirable at present.
Particularly satisfactory results have been obtained when the inner layer 17 of the laminated body portion is a thermoplastic resin which is a random copolymer of ethylene and acrylic acid made according to the known high pressure process for making low density polyethylene. This specific copolymer has a copolymerized acrylic acid content in the neighborhood of 3 plus or minus 0.5, by weight based on copolymer weight, and a melt index of 8, plus or minus 1.
The innermost layer 17 when constituted of the above copolymer avoids the earlier mentioned problem of delarnination from the metallic substrate 16 when exposed to fluoride-containing dentif-rices, imparts to the tubular container C excellent stress crack resistance, and provides a highly adherent bond with the headpiece 12, the structural details of which appear in FIGURES 1 to 4. As is shown, the headpiece is formed with a substantially cylindrical skirt portion 20 and a peripheral inwardly curved portion 21 merging into the sloping breast portion 14 which mounts the upstanding passaged neck portion 13, shown as externally threaded to receive an internally threaded closure (not shown).
The skirt portion 20 has substantially the same diameter as the inner diameter of the tube body 10 and is disposed therewithin with the upper end 22 of the body 10 curved inwardly to overlie the inwardly curved portion 21 of the headpiece 12. The inner thermoplastic layer 17 of the tube bond 10 is fused to the skirt portion 20 and curved portion 21 of the head to form an exceptionally strong, head joint 23. The continuous peripheral and vertical fused areas of the joint 23 result in a strong attachment of the headpiece 12 to the tube body 10 with a high resistance to separation by either axial, radial or twisting forces, or combinations thereof. Preferably, the upper end of the tube body 10 is recessed into the head 12, assuring that the metallic interlayer 16 is not exposed along the marginal edge thereof, and the outer layer of the body is Welded at its edge 24 to the material of the head so that the outer surface of the joint 23 is a smooth substantially uninterrupted surface. As was stated, the thermoplastic of the head may be low or high density polyethylene, or a different polyolefin, or it could be the same copolymer as forms the inner layer 17, or any one of a number of different thermoplastics which are readily moldable and bound well to the resin of the inner layer 17.
In the conventional laminated tube structure the upper end of the body portion thereof normally terminates at the location shown in FIGURE 2, which is generally along shoulder portion 19 of the tube body 141 defining the lower terminus of the breast portion 14. There accordingly exists in the breast area the possibility that there will be encountered the same problems which exist when the body portion 10 is constituted solely of polyethylene, namely, product permeation and oxygen absorption. This condition is of course most likely to occur when the headpiece is reduced in wall thickness to less than that shown for aesthetic, materials savings, or other reasons.
However, in accordance with the novel concepts of this invention the mentioned difficulty of the prior art construction is obviated by provision of a breast portion containing therein a barrier member 31 which extends from the lower end of the tube neck portion 13 to a point closely spaced from marginal edge portion 24 of the laminated body 10. The barrier member 30 is preferably constituted of a metallic foil, such as aluminum, and may be embedded by itself in the thermoplastic of the breast portion 14 during the molding thereof, although currently the more desirable construction takes the form of a laminated disc member 29 comprised of a metallic foil interlayer 30 and facing thermoplastic layers 31 and 32.
As appears in FIGURE 4, the laminated disc member 29 may be centrally apertured as at 33, for a purpose which presently will be manifest, and may include a relatively short length upstanding collar portion 34 from which flares outwardly and downwardly a skirt portion 35. The disc member 29 is a prefabricated structure, and prior to assembly and lamination of the metallic interlayer 30 and thermoplastic outer layers 31 and 32, the metallic foil barrier 30 may be creased as at 3% along circumferentially spaced line to take up the excess ma terial therein. Of course, in substitution for the pleats or folds 30a the foil disc 30 could be slit.
Prior to describing a preferred technique for molding the disc member 29 into the thermoplastic material of the headpiece 12, it is desired to make reference to FIG- URE 7 in connection with an illustrative process for making the laminated tube body 16. A continuous web 40 of foil material may first be passed through a printing unit 41 if it is desired to provide preprinted tube bodies in contrast with later applying suitable indicia to the outer thermoplastic layer 15. The printing unit 41 applies indicia on the upper surface of the web or foil strip 40, and a single printing roll is illustrated at 42 in backup relation with a roll 43. Of course, multiple rolls may be used in those instances where a multicolor design is desired.
The continuous foil layer 40 is preferably preheated and then passes between upper and lower plastic extrusion devices 44 and 45 from which plastic webs or strips 46 and 47 are continuously extruded. The plastic webs 46 and 47 are brought into contact with the upper and lower surfaces of the base material 44 and laminated thereto by driven pressure rolls 48 and 49 to form a laminated web structure 50. Desirably the rate of extrusion of the thermoplastic webs 46 and 57 is less than the linear velocity of the foil base 40 and rolls 48 and 49 so that the extruded plastic webs are drawn down and thinned in the conventional manner prior to being laminated to the base material.
In the technique illustrated in FIGURE 7, the thermoplastic and foil webs are coextensive in width, although if desired the intermediate foil layer may be of lesser width than the facing thermoplastic strips. By so proceeding, an additional plastic extends beyond the longitudinal side edges of the foil and can be utilized during the later side-seaming operation.
The laminated web 50 next passes between a pair of driven rolls 51 and 52, the former roll having a plurality of cutting knives 53 mounted on the surface thereof along a line parallel to its axis of rotation and re gistrable with and receivable in a similarly positioned series of grooves 55 on the surface of the roll 52. The action of the knives is to periodically produce a series of slits (not shown) in the laminated web 50 along a line transverse to its longitudinal axis. The circumferential dimension of the rolls 51 and 52 is equal to the desired length of the tube bodies 11);, so that the slits are produced in the laminated web at longitudinally spaced intervals equal to the desired length of the tube bodies. It can be appreciated, however, that provision of the slits is not at all times required, and that by suitably indexing the later to be described severing means, tube bodies of uniform lengths can be produced.
The edges of the laminated web 50 are then directed downwardly around a cylindrical mandrel 60 to form the webinto a tubular configuration with the opposite longitudinal margins 61 of the laminated web in overlapping relation. The overlapped margins are then heated by suitable means, such as a tape sealer or gas heater 62, and then compressed between the mandrel 6t and a pressure roller 63 to fuse the thermoplastic layers thereby fusing and sealing the seam.
After the side seam is formed in the continuous tube, the tube is severed along the lines formed by the now circumferentially disposed slits to produce the tube bodies 10 of the desired length. As appears in FIGURE 7, a pair of oscillatable shear blades 64 are employed for the severing operation.
The tube bodies 11) as thus produced are then ready for the heading operation, including the provision of barrier means 30 in the breast portion 1a, and a highly successful technique for forming the headpiece 12 and fusing it to the upper end of the tube body to provide the joint 23 of FIGURE 2 is illustrated in FIGURES 5 and 6. The annular disc member 29, or solely the metallic foil portion 30 thereof, is seated upon shoulder portion 741a of mandrel 70 of an injection molding device with the disc member in encircling relation with neck portion 7415b of the mandrel. The tube body 10 is then located upon body portion 70c of the mandrel with the end 22 of the tube body extending into and abutting an inwardly curved surface 71a of a female mold member 71. The curved surface 71a of the mold member forms and bends the end 22 of the tube body 10.
It is important to observe at this point that the marginal edge of the disc member skirt portion 35 is spaced from the marginal edge 19 of the tube body as the laminates 10 and 29 are positioned on the mandrel 71 This provides a flow path for heated thermoplastic material during the injection process, assuring that a firm weld will be formed between the headpiece material and the upper end of the inner thermoplastic layer 17 of the tube body 10, and providing in the final article of FIGURE 2 a strong laminate joint indicated therein at 18 bridging the opposed marginal edges of the laminates 10 and 29.
With the parts positioned as shown in FIGURE 5, the heated thermoplastic material is introduced into passage 71b of the female mold member 71 and under the pressures employed has the effect of lifting the disc member 29 from the mandrel shoulder portion 70a, so that during formation of the headpiece 12 and the welding thereof to the thermoplastic layers and 17 of the tube body 10, the disc member is substantially centered in the thickness of the thermoplastic material providing the breast portion 14. There results from the process described not only a joint 23 between the head material and thermoplastic layer 17 which is highly resistant to fracture, but a breast portion 14 which complements the laminated tube body It) in being possessed of the important feature of resisting product permeation and oxygen absorption.
While by the technique described in connection with FIGURES 5 and 6 the headpiece 12 is formed and fused to the tube body 10 in a single operation, and an overlap provided between the lower end of the headpiece and the upper end of the tube body. using an injection molding process, obviously like results can be achieved using equivalent molding processes. As for example, compression molding can be employed, or a body of thermoplastic material containing a metallic foil interlayer and having the requisite diameter and thickness can be blanked from a Web and compacted to the desired head configuration by male and female mold members, while essentially simultaneously forming the shoulder overlap bond. In addition, the head-piece could be formed in a separate operation and thereafter attached to the tube body by heat sealing.
The preferred approach at present is, however, that shown in FIGURES 5 and 6 and there is obtained as a result a fused connection which has a great resistance to fracture or separation by either axial, radial or twisting forces, or combinations thereof. The material forming the inner thermoplastic body layer 17, whether it be a polyolefin or the mentioned copolymer, bonds Well to the head material, although the copolymer has the advantages of being highly resistive to delamination in the presence of certain products, and as well, has improved stress crack resistance.
It is believed manifest from the foregoing that applicant has provided a collapsible container structure which completely avoids the problems heretofore unsolved by the prior art. The laminated headpiece completely eliminates product permeation and oxygen absorption, and this highly desirable result is achieved by the use of low cost materials which preferably are combined into laminated form in the manner indicated in FIGURES 2 and 4. As is also apparent, the laminated insert 29 is readily introduced into the heading process shown in FIG- URES 5 and 6, although it is also clearly susceptible to use in other methods for forming the head member.
The outer layer 15 of the laminated tube body can be any one of a number of different thermoplastics capable of fusion during the side seaming step and granting adequate protection to the metallic foil interlayer 16. However, the outer layer 15 can be eliminated if the foil barrier is of sufficient thickness to resist damage, and by flowing a thermoplastic material into the overlap side seam during the sealing thereof.
Further, the outer layer may be paper in a three-ply laminate formed of paper, foil and a polyolefin or the copolymer described. A suitable adhesive would of course be used during the side seaming operation. Also, the invention contemplates four-ply laminates comprised of, from outside to in, polyolefin, paper, foil and copolymer, or, polyolefin, foil, paper and copolymer. Like structures can be employed for the headpiece, and where required compatible adhesives would naturally be employed. Additionally, it is within the contemplation of this invention that the thermoplastic material used for molding the headpiece may be of the same composition as the copolymer used for the inner layer 17, and the same copolymer can be used for the layers 31 and 32 of the laminated disc insert 29.
Various modifications of the invention have been disclosed herein, and these and other changes can of course be effected without departing from the novel concepts of the instant contribution.
I claim:
1. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material and another of said laminations providmg a barrier against fluid permeation therethrough, and a thermoplastic headpiece including integral skirt and breast portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion having barrier means embedded therein.
2. A collapsible dispensing container of the character defined in claim 1, in which the barrier lamination and barrier means are spaced from one another along their marginal end portions.
3. A collapsible dispensing container of the character defined in claim 1, in which the barrier lamination and barrier means are metallic foils.
4. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material and another of said laminations providing a barrier against fluid permeation therethrough, and a thermoplastic headpiece including integral skirt and breast portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion hving embedded therein a laminated insert comprised of a barrier interlayer and opposed thermoplastic layers. 5. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material and another of said laminations providing a barrier against fluid permeation therethrough, and a thermoplastic headpiece including integral skirt and breast portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion having embedded therein an annular laminated insert axially spaced from the marginal edge portion of said body portion and being comprised of a barrier interlayer and opposed thermoplastic layers.
6. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material and another of said laminations providing a barrier against fluid permeation therethrough,
and a thermoplastic headpiece including integral skirt and breast portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion having barrier means embedded therein generally centrally of the thickness of said breast portion.
7. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material and another of said laminations providing a barrier against fluid permeation therethrough, and a thermoplastic headpiece including integral neck, breast and skirt portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion having barrier means embedded therein located intermediate the opposed ends of said neck and skirt portions.
8. A collapsible dispensing container, comprising a deformable body portion having a plurality of laminations therein, one of said laminations being a thermoplastic material selected from the group consisting of a polyolefin and a copolymer of an olefin and a polar group-containing monomer copolymerizable therewith and another of said laminations providing a barrier against fluid permeation therethrough, and a thermoplastic headpiece including integral skirt and breast portions, said skirt portion being fused to said one lamination along a band area at one end thereof and said breast portion having barrier means embedded therein.
References Cited by the Examiner UNITED STATES PATENTS 1,322,426 11/1919 Gearhart 222-107 2,274,258 2/1942 Roselle 222107 2,605,018 7/1952 Croce et al. 222-107 2,713,369 7/1955 Strahm --0.5 3,172,571 3/1965 Marchak 222-107 RAPHAEL M. LUPO, Primary Examiner.

Claims (1)

1. A COLLAPSIBLE DISPENSING CONTAINER, COMPRISING A DEFORMABLE BODY PORTION HAVING A PLURALITY OF LAMINATIONS THEREIN, ONE OF SAID LAMINATIONS BEING A THERMOPLASTIC MATERIAL AND ANOTHER OF SAID LAMINATIONS PROVIDING A BARRIER AGAINST FLUID PERMEATION THERETHROUGH, AND A THERMOPLASTIC HEADPIECE INCLUDING INTEGRAL SKIRT AND BREAST PORTIONS, SAID SKIRT PORTION BEING FUSED TO SAID ONE LAMINATION ALONG A BAND AREA AT ONE END THEREOF AND SAID BREAST PORTION HAVING BARRIER MEANS EMBEDDED THEREIN.
US550074A 1961-06-21 1966-03-14 Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece Expired - Lifetime US3295725A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL300441D NL300441A (en) 1961-06-21
BE639801D BE639801A (en) 1961-06-21
US118697A US3172571A (en) 1961-06-21 1961-06-21 Collapsible dispensing tube
FR953310A FR1383064A (en) 1961-06-21 1963-11-12 Deformable container and method of manufacturing said container
US550074A US3295725A (en) 1962-12-07 1966-03-14 Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US242991A US3260777A (en) 1962-12-07 1962-12-07 Method of making a collapsible container structure
US550074A US3295725A (en) 1962-12-07 1966-03-14 Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece

Publications (1)

Publication Number Publication Date
US3295725A true US3295725A (en) 1967-01-03

Family

ID=26935503

Family Applications (1)

Application Number Title Priority Date Filing Date
US550074A Expired - Lifetime US3295725A (en) 1961-06-21 1966-03-14 Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece

Country Status (1)

Country Link
US (1) US3295725A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356263A (en) * 1966-04-08 1967-12-05 Victor Metal Products Corp Injection moulded plastic tube and method
US3565293A (en) * 1968-03-20 1971-02-23 American Can Co Collapsible tube
US3599837A (en) * 1969-06-06 1971-08-17 Dave Chapman Goldsmith & Yamos Plastic dispensing container and closure therefor
US3604491A (en) * 1968-12-09 1971-09-14 Thimonnier & Cie Flexible drinking container or bag
US3730393A (en) * 1969-08-28 1973-05-01 Polytube Flexible cylinder for collapsible squeeze tube
US3946903A (en) * 1971-07-30 1976-03-30 Carol Parker Collapsible, spirally fluted container
FR2396695A1 (en) * 1977-07-08 1979-02-02 Schultz Robert FOLDABLE DISTRIBUTION TUBE
US4142630A (en) * 1977-11-07 1979-03-06 Ethyl Corporation Collapsible dispensing tube
US4257536A (en) * 1979-10-15 1981-03-24 American Can Company Laminate structure for collapsible dispensing container
US4410026A (en) * 1981-07-13 1983-10-18 Baxter Travenol Laboratories, Inc. Port block assembly for interconnecting a fluid container with a fluid conduit
US4526297A (en) * 1983-01-25 1985-07-02 Goodway Tools Corporation Collapsible laminated tube container and method for making it
FR2557502A1 (en) * 1983-12-30 1985-07-05 Colgate Palmolive Co LAMINATE SUBSTRATE CONTAINING FLUORINATED POLYMER AND CONTAINER REPLIABLE DISPENSER PRODUCED FROM SUCH A SUBSTRATE
US4581228A (en) * 1980-11-20 1986-04-08 Lion Corporation Toothpaste composition and plastic containers containing the same
FR2575411A1 (en) * 1984-12-28 1986-07-04 Colgate Palmolive Co LAMINATE SUBSTRATE CONTAINING FLUORINATED POLYETHYLENE AND CONTAINING THE SAME
FR2575410A1 (en) * 1985-12-23 1986-07-04 Colgate Palmolive Co Substrate containing polypropylene and container including an application thereof
FR2575412A1 (en) * 1984-12-28 1986-07-04 Colgate Palmolive Co LAMINATE BASED ON A COPOLYMER OF ETHYLENE AND VINYL ALCOHOL AND CONTAINER DISPENSER HAVING APPLICATION
US4693396A (en) * 1984-12-28 1987-09-15 Colgate-Palmolive Company Laminate substrate and article therefrom incorporating fluorinated polyethylene
US4693395A (en) * 1984-12-28 1987-09-15 Colgate-Palmolive Company Ethylene propylene copolymer in a substrate and collapsible dispensing container made therefrom
US4842165A (en) * 1987-08-28 1989-06-27 The Procter & Gamble Company Resilient squeeze bottle package for dispensing viscous products without belching
US4890772A (en) * 1985-11-19 1990-01-02 Carl Edelmann Verpackungstechnik Transport and storage container for concentrates of beverages or the like
US4948015A (en) * 1987-09-24 1990-08-14 Dai Nippon Insatsu Kabushiki Kaisha Carton equipped with liquid pouring-out device
US5238148A (en) * 1992-08-10 1993-08-24 Courtaulds Packaging Inc. Thermoplastic composite layered squeeze tube and method of making same
US5318204A (en) * 1991-06-07 1994-06-07 The Proctor & Gamble Company Resilient squeeze bottle employing air check valve which permits pressure equilibration in response to a decrease in atmospheric pressure
US5407742A (en) * 1990-02-26 1995-04-18 Colgate-Palmolive Company Paste dispensing container
US5858153A (en) * 1997-01-17 1999-01-12 Colgate-Palmolive Company Method for making tubular containers
US20030015576A1 (en) * 2001-07-03 2003-01-23 Canino Paul Allen Paper package with injection-molded plastic seams and handle
WO2003013965A1 (en) * 2001-08-07 2003-02-20 Kmk Lizence Ltd. Packaging container
US20040217084A1 (en) * 2003-04-29 2004-11-04 Tetra Laval Holdings & Finance, S.A. Collapsible semi-rigid container
US20090101672A1 (en) * 2005-12-20 2009-04-23 Alpla-Werke Alwin Lehner Gmbh & Co. Kg Semifinished product for producing a plastic tube and tube of plastic produced from it
US20090324864A1 (en) * 2008-06-25 2009-12-31 Colgate-Palmolive Method of Making Shoulder/Nozzles With Film Barrier Liners
CN1926027B (en) * 2004-03-01 2010-10-06 艾萨帕克控股公司 Multilayer structure
US20110089606A1 (en) * 2008-06-19 2011-04-21 Tetra Laval Holdings & Finance S. A. Method and an apparatus for injection moulding
WO2012078129A1 (en) 2010-12-06 2012-06-14 Colgate-Palmolive Company Laminate tube having enhanced resiliency by a block copolymer
US8383215B2 (en) 2006-04-19 2013-02-26 Colgate-Palmolive Company Container for products containing aromatic compounds
WO2014032880A1 (en) * 2012-08-28 2014-03-06 Albea Services Improved tube head comprising a barrier-forming insert, allowing centering of the insert
FR2994948A1 (en) * 2012-08-28 2014-03-07 Albea Services Tube head for use in tube for storing and dispensing e.g. cosmetic product, has insert comprising internal edge and internal surface that are directed towards internal volume and covered by plastic material in discontinuous manner
US10688748B2 (en) * 2013-03-14 2020-06-23 Milacron Llc Techniques to mold parts with injection-formed aperture in gate area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1322426A (en) * 1919-11-18 Collapsible container
US2274258A (en) * 1939-10-30 1942-02-24 Walter A Roselle Container
US2605018A (en) * 1949-10-05 1952-07-29 Santy M Croce Dispensing tube
US2713369A (en) * 1954-12-28 1955-07-19 Uni Tubo S A Thermoplastic container
US3172571A (en) * 1961-06-21 1965-03-09 American Can Co Collapsible dispensing tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1322426A (en) * 1919-11-18 Collapsible container
US2274258A (en) * 1939-10-30 1942-02-24 Walter A Roselle Container
US2605018A (en) * 1949-10-05 1952-07-29 Santy M Croce Dispensing tube
US2713369A (en) * 1954-12-28 1955-07-19 Uni Tubo S A Thermoplastic container
US3172571A (en) * 1961-06-21 1965-03-09 American Can Co Collapsible dispensing tube

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356263A (en) * 1966-04-08 1967-12-05 Victor Metal Products Corp Injection moulded plastic tube and method
US3565293A (en) * 1968-03-20 1971-02-23 American Can Co Collapsible tube
DE1761596A1 (en) * 1968-03-20 1971-07-22 American Can Co Collapsible dispensing container
US3604491A (en) * 1968-12-09 1971-09-14 Thimonnier & Cie Flexible drinking container or bag
US3599837A (en) * 1969-06-06 1971-08-17 Dave Chapman Goldsmith & Yamos Plastic dispensing container and closure therefor
US3730393A (en) * 1969-08-28 1973-05-01 Polytube Flexible cylinder for collapsible squeeze tube
US3946903A (en) * 1971-07-30 1976-03-30 Carol Parker Collapsible, spirally fluted container
FR2396695A1 (en) * 1977-07-08 1979-02-02 Schultz Robert FOLDABLE DISTRIBUTION TUBE
US4185757A (en) * 1977-07-08 1980-01-29 Schultz Robert S Collapsible dispensing tube having an anchored barrier member
US4142630A (en) * 1977-11-07 1979-03-06 Ethyl Corporation Collapsible dispensing tube
US4257536A (en) * 1979-10-15 1981-03-24 American Can Company Laminate structure for collapsible dispensing container
US4581228A (en) * 1980-11-20 1986-04-08 Lion Corporation Toothpaste composition and plastic containers containing the same
US4410026A (en) * 1981-07-13 1983-10-18 Baxter Travenol Laboratories, Inc. Port block assembly for interconnecting a fluid container with a fluid conduit
US4526297A (en) * 1983-01-25 1985-07-02 Goodway Tools Corporation Collapsible laminated tube container and method for making it
FR2557502A1 (en) * 1983-12-30 1985-07-05 Colgate Palmolive Co LAMINATE SUBSTRATE CONTAINING FLUORINATED POLYMER AND CONTAINER REPLIABLE DISPENSER PRODUCED FROM SUCH A SUBSTRATE
FR2575411A1 (en) * 1984-12-28 1986-07-04 Colgate Palmolive Co LAMINATE SUBSTRATE CONTAINING FLUORINATED POLYETHYLENE AND CONTAINING THE SAME
FR2575412A1 (en) * 1984-12-28 1986-07-04 Colgate Palmolive Co LAMINATE BASED ON A COPOLYMER OF ETHYLENE AND VINYL ALCOHOL AND CONTAINER DISPENSER HAVING APPLICATION
US4693396A (en) * 1984-12-28 1987-09-15 Colgate-Palmolive Company Laminate substrate and article therefrom incorporating fluorinated polyethylene
US4693395A (en) * 1984-12-28 1987-09-15 Colgate-Palmolive Company Ethylene propylene copolymer in a substrate and collapsible dispensing container made therefrom
US4890772A (en) * 1985-11-19 1990-01-02 Carl Edelmann Verpackungstechnik Transport and storage container for concentrates of beverages or the like
FR2575410A1 (en) * 1985-12-23 1986-07-04 Colgate Palmolive Co Substrate containing polypropylene and container including an application thereof
US4842165A (en) * 1987-08-28 1989-06-27 The Procter & Gamble Company Resilient squeeze bottle package for dispensing viscous products without belching
US4948015A (en) * 1987-09-24 1990-08-14 Dai Nippon Insatsu Kabushiki Kaisha Carton equipped with liquid pouring-out device
US5069372A (en) * 1987-09-24 1991-12-03 Dai Nippon Insatsu Kabushiki Kaisha Carton equipped with liquid pouring-out device
US5027979A (en) * 1987-09-24 1991-07-02 Dai Nippon Insatsu Kabushiki Kaisha Carton equipped with liquid pouring-out device
US5407742A (en) * 1990-02-26 1995-04-18 Colgate-Palmolive Company Paste dispensing container
US5318204A (en) * 1991-06-07 1994-06-07 The Proctor & Gamble Company Resilient squeeze bottle employing air check valve which permits pressure equilibration in response to a decrease in atmospheric pressure
US5238148A (en) * 1992-08-10 1993-08-24 Courtaulds Packaging Inc. Thermoplastic composite layered squeeze tube and method of making same
US5858153A (en) * 1997-01-17 1999-01-12 Colgate-Palmolive Company Method for making tubular containers
US20030015576A1 (en) * 2001-07-03 2003-01-23 Canino Paul Allen Paper package with injection-molded plastic seams and handle
WO2003013965A1 (en) * 2001-08-07 2003-02-20 Kmk Lizence Ltd. Packaging container
US20040217084A1 (en) * 2003-04-29 2004-11-04 Tetra Laval Holdings & Finance, S.A. Collapsible semi-rigid container
US7059487B2 (en) * 2003-04-29 2006-06-13 Tetra Laval Holdings & Finance, Sa Collapsible semi-rigid container
CN1926027B (en) * 2004-03-01 2010-10-06 艾萨帕克控股公司 Multilayer structure
US20090101672A1 (en) * 2005-12-20 2009-04-23 Alpla-Werke Alwin Lehner Gmbh & Co. Kg Semifinished product for producing a plastic tube and tube of plastic produced from it
US8383215B2 (en) 2006-04-19 2013-02-26 Colgate-Palmolive Company Container for products containing aromatic compounds
US20110089606A1 (en) * 2008-06-19 2011-04-21 Tetra Laval Holdings & Finance S. A. Method and an apparatus for injection moulding
US20090324864A1 (en) * 2008-06-25 2009-12-31 Colgate-Palmolive Method of Making Shoulder/Nozzles With Film Barrier Liners
US8906187B2 (en) 2008-06-25 2014-12-09 Colgate-Palmolive Company Method of making shoulder/nozzles with film barrier liners
WO2012078129A1 (en) 2010-12-06 2012-06-14 Colgate-Palmolive Company Laminate tube having enhanced resiliency by a block copolymer
AU2010365033B2 (en) * 2010-12-06 2014-12-04 Colgate-Palmolive Company Laminate tube having enhanced resiliency by a block copolymer
WO2014032880A1 (en) * 2012-08-28 2014-03-06 Albea Services Improved tube head comprising a barrier-forming insert, allowing centering of the insert
FR2994949A1 (en) * 2012-08-28 2014-03-07 Albea Services IMPROVED TUBE HEAD COMPRISING AN INSERT FORMING A BARRIER AND ALLOWING CENTERING THEREOF
FR2994948A1 (en) * 2012-08-28 2014-03-07 Albea Services Tube head for use in tube for storing and dispensing e.g. cosmetic product, has insert comprising internal edge and internal surface that are directed towards internal volume and covered by plastic material in discontinuous manner
US10023368B2 (en) 2012-08-28 2018-07-17 Albea Services Tube head comprising an insert forming a barrier and allowing the insert to be centered
US10688748B2 (en) * 2013-03-14 2020-06-23 Milacron Llc Techniques to mold parts with injection-formed aperture in gate area

Similar Documents

Publication Publication Date Title
US3295725A (en) Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece
US3260777A (en) Method of making a collapsible container structure
US3260410A (en) Collapsible container structure
US3172571A (en) Collapsible dispensing tube
KR102584085B1 (en) pressure vessel
US3347419A (en) Collapsible dispensing tube
US5512337A (en) Packages with controlled easy open features
US3980107A (en) Helically wound tubular wall material
US4262819A (en) Toothpaste tube with laminated headpiece
US4559257A (en) Laminate together with a method for its manufacture
US3555976A (en) Method and apparatus for producing spiral wound container
EP0795492B1 (en) Product package having reliable openability
US3428239A (en) Spiral wound can for packaging beverages under substantial pressure
US3511435A (en) Laminated container and method of making a laminated container
US3018212A (en) Thermoplastic bonding and coating
US4356053A (en) Edge sealing of laminate
JP3369270B2 (en) Method for producing continuous laminated web-like packaging material
JPH02229037A (en) Laminated material having good gas-proofing characteristics and manufacture thereof
GB2156268A (en) Manufacturing thermoplastic tubular containers
US3844861A (en) Method of forming a closure cap having a heat shrinkable tubular element thereover
GB1074683A (en) Collapsible container structure and method of making same
CN100355566C (en) Method in production of packaging laminate
US4595612A (en) Laminated polyester containing substrate and collapsible dispensing container made therefrom
FI85121B (en) LAMINATED BEHAOLLARE AV FLUORIDERAD POLYETEN.
US4693396A (en) Laminate substrate and article therefrom incorporating fluorinated polyethylene