US3287121A - Process for the sensitization of photoconductors - Google Patents

Process for the sensitization of photoconductors Download PDF

Info

Publication number
US3287121A
US3287121A US426363A US42636365A US3287121A US 3287121 A US3287121 A US 3287121A US 426363 A US426363 A US 426363A US 42636365 A US42636365 A US 42636365A US 3287121 A US3287121 A US 3287121A
Authority
US
United States
Prior art keywords
parts
weight
acid
photoconductor
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US426363A
Inventor
Hoegl Helmut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azoplate Corp
Original Assignee
Azoplate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azoplate Corp filed Critical Azoplate Corp
Priority to US426363A priority Critical patent/US3287121A/en
Application granted granted Critical
Publication of US3287121A publication Critical patent/US3287121A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/001Electric or magnetic imagery, e.g., xerography, electrography, magnetography, etc. Process, composition, or product
    • Y10S430/10Donor-acceptor complex photoconductor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

United States Patent 30 Claims. (or. 96-15) This application is a division of copending application Serial No. 125,984, filed July 24, 1961, now abandoned, which, in turn, is a continuation-in-part of application Serial No. 30,752, filed May 23, 1960, and also now abandoned.
Electrophotographic material normally consists of a support on which there is a photoconductive substance, this coating being provided in the absence of light with an electrostatic charge. Then, the material is exposed to light behind a master, or an episcopic image is projected thereon, so that an electrostatic image is formed which corresponds to the master. This image is developed by being briefly contacted with a resin powder, whereupon a visible image is formed which is fixed by heating or by the action of solvents. In this way, an image of the master which is resistant to abrasion is obtained electrophotographically.
In the electrophotographic process as described an increase in the sensitivity of the photoconductive coatings has already been attempted by the addition of organic dyestuffs, e.g. triphenylmethane, xanthene, phthalein, thiazine and acn'dine dyestuifs, to the photoconductors.
The absorption maxima of the organic photoconductors are mostly in the ultra-violet region of the spectrum. The addition of these dyestufi sensitizers achieves the result that the photoconductors become sensitive to visible light. Generally, the dyestuft' sensitizers cause a displacement of the available sensitivity from the ultraviolet region to the visible region. With increased addition of dyestufi sensitizer, the sensitivity to visible light at first increases rapidly, but further additions give an increase in sensitivity which is much less than would be expected, and still further additions finally give no appreciable increase in sensitivity. The dyestufi sensitizers have the disadvantage that they color the coating considerably. In practice, the maximum achievable increase in sensitivity can seldom be utilized because then the photoconductor coatings have an intensity of color that is undesirable. Colorless or practically colorless photoconductor coatings are desired, since colored material can be employed only in special cases. If additions of dyestufit' sensitizers are such as not to adversely affect the coloring of the coating for practical purposes, the sensitizing effect often does not meet the demands of general usage. Further, the dyestufi sensitizers have the disadvantage that they bleach out relatively quickly so that their sensitizing action tends to be lost during the storage of the electrophotographic material.
A process for the sensitization of photoconductor coatings has now been found in wln'ch organic substances, containing polarizing residues and being capable of serving as electron-acceptors in a molecule complex, having low molecular Weight, i.e. being non-resinous, being colorless or of pale color and having a melting point above room temperature, are added to the photoconductor coatings.
Substances which are primarily of interest as photoconductor coatings in accordance with the present process are those which can serve as electron donors in moleice cule complexes of the donor/acceptor type (knowncas tr-COIIIPICX) and contain at least one aromatic or heterocyclic ring, which may be substituted. Such photoconductors include aromatic hydrocarbons such as naphthalene, anthracene, benzanthrene, chrysene, p-diphenylbenzene, diphenyl anthracene, p-terphenyl, p-quaterphenyl, sexiphenyl; heterocycles such as N-alkyl carbazole, thiodiphenylamine, oxadiazoles, e.g., 2,5-bis-(p-aminophenyl)-1,3,4-oxadiazole and its N-alkyl and N-acyl derivatives; triazoles such as 2,5 bis-(p-aminophenyl)- 1,3 ,4-triazole and its N-alkyl and N-acyl derivatives; imidazolones and imidazolthiones, e.g., 1,3,4,5-tetraphenyl-imidazolone-Z and 1,3,4,5-tetraphenyl-imidazolthione-Z; N-aryl-pyrazolines, e.g. 1,3,5-triphenyl-pyrazoline; hydrated imidazoles, e.g., 1,3-diphenyl-tetrahydroimidazole; oxazole derivates such as 2,5-diphenyloxazole-2 p-dimethylamino-4,5-diphenyloxazole; thlazole derivatives such as 2-p-dialkylaminophenyl-methyl-benzthiazole; as also the following:
Oxazoles and imidazoles described in German patent application K 35,586 IVa/57b, filed Aug. 22, 1958. Acylhydrazones described in German patent application K 36,517 IVa/57b, filed Dec. 19, 1958.
2,2,4-triazines described in German patent application K 36,651 Iva/57b, filed Ian. 7, 1959.
Metal compounds of mercapto-benzthiazole, mereaptobenzoxazole and mercapto-benzimidazole described in German patent application K 37,508 Iva/57b, filed Apr. 18, 1959.
Imidazoles described in German patent application K 37,435lVa/57b, filed Apr. 9, 1959.
Triphenylamines described in German patent K 37,436 Iva/57b, filed Apr. 9, 1959.
Furans, thiophenes and pyrroles described in German patent application K 37,423 IV a/ 57b, filed Apr. 8, 1959.
Amino compounds with multinuclear heterocyclic and multinuclear aromatic ring system described in Gerrlngasn9 patent application K 37,437 IVa/ 57b, filed Apr. 9
Azomethines described in German patent K 29,270 Iva/57b, filed July 4, 1956.
Molecule complexes are defined in H. A. Staabs Einfuhrung in die theoretische organische' Chemie (Introduction to Theoretical Organic Chemistry), Verlag Chemie, 1959, pp. 694-707, and by L. I. Andrews, Chemical Review, vol. 54, 1954, pp. 713-777. In particular, the donor/ acceptor complex (w-complexes) and charge-transfer? complexes which are formed from an electron-acceptor and an electron-donor are included. In the present case, the photoconductors are the electrondonors and the substances here called activators-to distinguish them from the dyestutf sensitizers-are the electron-acceptors. The electron-donors have a low ionization energy and have a tendency to give up electrons. They are bases in the sense of the definition of acids and bases given by G. N. Lewis (H. A. Staab, as above, p. 600). The electron-donors primarily concerned in the present case are the photoconductors described above. These photoconductors consist of aromatic or heterocyclic systems containing a plurality of fused rings, or, alternatively, single rings having substituents which facilitate further electrophilie substitution of the aromatic ring, socalled electron-repellent substituents, as described by L. F. and M. Fieser, Lehrbuch der organischen Chemie (Textbook of Organic Chemistry), Verlag Chemie, 1954, p. 651, Table I. These are, in particular, saturated groups, e.g., alkyl groups such as methyl, ethyl, and propyl; alkoxy groups such as methoxy, ethoxy and propoxy; carbalkoxy groups such as carbmethoxy, carbethoxy and carbpropoxy; hydroxyl groups, amino groups application application 3 and dialkylamino groups such as dimcthylamino, diethylamino and dipropylamino.
The activators in accordance with the invention, which are electron-acceptors, are compoundswith a high electron-aflinity and have a tendency to take .up electrons. They are acids in the sense of Lewis definition. Such properties are possessed by substances having strongly polarizing residues or groupings such as cyano and nitro groups, halogens such as fluorine, chlorine, bromine and iodine; ketone groups, ester groups, acid anhydride groups, acid groups such as carboxyl groups or the quinone grouping. Strongly polarizing electron-attracting groups of this type are described by L. F. and M. Fieser in the 'Lehrbuch der organischen Chemie," Verlag Chemie, 1954, p. 651, Table I. Of these substances with a melting point above room temperature,
(25. C.) are preferable, i.e. solid substances, because these impart a particularly long shelf life to the photoconductive coatings as a result of their low vapor pressure. Substances which are rather deeply colored such as quinones can be used, but those that are colorless or only weak in color are preferable. [Their absorption maximum should preferably be in the ultra-violet region of the spectrum, i.e. below 4,500 A.- Further, the activator substances in accordance with the present process should be of lower molecular weight, i.e. between about 50 and 5000, preferably between about 100 and 1000, because with activators of lower molecular weight it is possible for reproducible results to be obtained insofar as sensitivity is concerned. Also, the sensitivity remains constant over rather long periods, since substances of lower molecular weight, unlike. those of high molecular weight, undergo hardly any change during storage. The following are examples, of such substances:
2-bromo-5-nitro-benzoic acid. .o-Chloronitrobenzenc. 2-bromobenzoic acid Chioracetophenone. 2-chloro-toluene-4-sulphonic acid--- 2-chlorocinnamlc acid. Chloromaleic anhydride Q-chloroacridine--- 2chloro4-nitr0-Lbenzoic acid. 3ohloroacridine- 2-chIoro5-nitro-1-benzoic acid. b-chloronitrobenze 3-ch1oro-6-nitro-1-henzoic acid.
chloride. 4-chloro-3-nitro-1-benzoic acid Mucochloric acid. Mucobromic acid.
Styrenedibromide. zchloro-3-nitro-l-toluene-5-sul- Tetrabromo xylene.
phonic acid. 4-chloro-3-nitro-benzene-phosfi-Trichlorolactic acid nitrile.
phonic acid. I Dibromosuceimc acid Triphenylchloromethane. 2,4-dichlorobenzoic acid Tetrachlorophthalic acid. Dibromomaleic anhydride Tetrabromophthalic acid. 9,10-dibromoanthracene Tetraiodophthalic acid. 1,5-dichlornaphthalene--- Tetlachlorophthalic anhydride. 1,8-dichloronalphtha1ene Tettabromophthalic anhydride. 2,4-dinitro1-c loronaphthalene-- Tetraiodophthalic anhydride. 3,4-dichloro-nitrobenzene Tettrlpchlnrophthalic acid monoe es er. 2,4-dichloro-benzisatin Tetrabromophthalic acid monoethylester. 2,6-dich1oro-benza1dehyde Tetraiodophthalic acid monoethyiester. Hexabrornonaphthalic anhydride Iodoform. bz-l-cyano-benzanthrone Fumaric acid dinitrile. Cyan acetic acid Tetracyanethylene. 2-cyanocinnamic acid s-Tricyano-benzene. 1,5-dicyanonaphthalene 3,5-dinitrobenzoic acid 2,4-dinitro-l-chloronaphthalene. 3,5dinitrosalicylic acid 1,4-dinitro-naphthalene. 2,4-dinitrod'benzoic acid 1,5-dinitro-naphthaiene.
2,4-dinitro-l-toiuene-6-suiionic acid- 1,8-dinitro-naphthalene.
2,6-dititt0-1-phenol-4-sulphonic Z-nitrobenzoic acid.
1,8-dinitrobenzene 3-nitrobenzoic acid. 4-nitrobenzoic acid. 3-nitro-4-ethoxy-benzoic acid.
3-n itro-2-cresol-5-sulphonic acid. G-mfiro--methyI-l-phenoi-2-sulonltrobarbituric acid.
p on 0 ac 2-nitrobenzenesui hinic acid 4-nitro-acenaphthene.
S-nitro-Z-hydroxy -1-benzoic acid 4-nitro-benzaldehyde.
2-nitro-1-phenol-4-sulphonic acid-.- 4-m'tro-phenol.
3-nitro1I-butylcarbazole Picryl chloride.
4-nitrob1phenyi 2,4 7-trinitro-fiuorenone.
Tetranitrofluorenone s-Trinitro-benzene.
2,4,6-trinitro-anisoie.
Anthraqmnone 1-chloro-2-methyl-anthraquinone.
Anthraquinone-Z-carboxylic acid.-- Duroquinone.
Anthraquinone-zaldehyde 2,6-dich1oroquinone.
Anthraquinone-Z-sulphonic acid 1,ddiphenoxy-anthraquinone.
amllde. Anthraquinone-2,7-disulphonio 2,7-dinitrozmthraquinonc. acid.
methylamide. Acenaphthenequinonedichlonde- Benzoquinone-1,4 l-methyl-kchloro-anthraquinone. 4-nitro-1-phenol-2-sulphonic acid--- Picric acid. 1,2-benzanthraquinone 2-rnethy1anthraquinone. Bromanil Naphthoqnmone-1,2.
Naphthoquinone-1,4. I
1,5-dichloro-anthraquinone.
Chloran Pentacenequinone. l-chlor-anthraquinone- Tetracene-7,12-quinone. Chrysenequinonc.-- 1,4toluquinone.
Thymoquinone 2,5,7,1O-tetrachloropyrenequinono.1
The quantity of the solid, non-resinous, substantially colorless electron-acceptors (activators) which is best incorporated in the photoconductive coating to be sensitized is easily established by simple experiments. The; photoconductive coating containing at least one photoconductor and at least one solid, non-resinous, substantially colorless, electron-acceptor, should contain the. l
photoconductor and electron-acceptor in proportions rang-. ing from substantially less than equal amounts to a substantial excess of the photoconductor with respect to the. electron-acceptor. The optimum of the proportions.
varies somewhat according to the substance used. Gen erally, minor amounts are used, i.e. from about 0.1 to
about 300 moles, preferably from about 1 to about 50 moles of electron-acceptor per .1000 moles of photoconductor. Alternatively, it has also been foundthat in the photoconductive coatings containing atleast one photo: conductor and at least one solid, non-resinous, substantially colorless electron-acceptor, it is also very useful to have present the photoconductor and the electron-acceptor in proportions ranging from substantially less-than. equal amounts to a substantial excess of the electronacceptor with respect to the photoconductor These proportions in which minor amounts of the photoconductor are added to the activator vary according to. the
substance used; however, in general, amounts from'about 0.1 to about 300 moles, preferably. from about 1 to about 50 molesphotoconductor per 1000 molesactivator are used. In some cases, it is also possible to use more moles activator or photoconductor, respectively, but by exceeding the above range the dark decay of the mixture usually increases, and in such cases coatings made therefrom are inferior.
Mixtures of several photoconductors and activator sub- 3 than 300 moles. photoconductor or activator per 1000 stances may also be used. Moreover, in addition to these substances, sensitizing dyestufis. may be added.
By means of the present process, photoconductor coatings can be prepared which have a high degree of lightsensitivity, particularly in the ultra-violet region, and
which are practically colorless. There is the further possibility of the photoconductor coatings beingthereby strongly activated in the ultra-violet region and afterwards being invested with a high degree of sensitivity to visible light by a very small addition. of dyestuii sensitizer without it being necessary for so much dyestuii to be added that the coating takes on a deep color. Also, it is possible, by means of activators, for photoconductors such as naphthalene, whose initial sensitivity is very slight, to be given adequate sensitivity for the production of satisfactory images by elcctrophotographic processes.
Furthermore, by addition of minor amounts of photoconductors to activators, photoconductive mixtures are, obtained which have photoconductivity much higher than could be expected from the amount of the photoconducl tor added to the activator. A further increase in the photoconductivity may be obtained by the addition of dyestufi sensitizers in the same amounts as in the photoconductor-activator mixtures in which the photoconductor 1 is present in a major amount.
The coatings are treated in other respects in accordance with the known processes of electrophotography, i.e. the photoconductor substances are used in the form of thin,
coherent homogeneous coatings on a supporting ma terial. The materials used 1 as supports are primarily metals, such as aluminum, zinc, and copper; cellulose products, such as paper and cellulose hydrate; plastics, such as polyvinyl alcohol, polyamides, and polyurethanes. Other plastics, such as cellulose acetate and cellulose butyrate, especially in a partially saponified form, polyesters, polycarbonates, and polyolefins, if they are covered with an electroconductive layer or if they are converted into materials which have the above-mentioned specific conductivity, e.g. by chemical treatment or by introduction of materials which render them electrically conductive, can also be used, as well as glass plates. In general, materials are suitable the specific resistance of which is less than ohm-cm., preferably less than 10 ohm-cm.
If paper is used as the supporting material, it is preferably pretreated against the penetration of coating solutions, e.g., it can be treated with a solution of methyl cellulose or polyvinyl alcohol in water or with a solution of an interpolymer of acrylic acid methyl ester and acrylonitrile in a mixture of acetone and methylethyl ketone, or with solutions of polyamides in aqueous alcohols or with dispersions of such substances.
For the preparation of the electrophotographic material, the photoconductive compounds are preferably dissolved in organic solvents such as benzene, acetone, methylene chloride or ethyleneglycol monomethylether or other organic solvents or in mixtures of such solvents, and resins and the activators--and possibly also the dyestuff sensitizers-are advantageously added thereto. These solutions are coated upon the supporting material in the normal manner, e.g., by immersion processes, painting or roller application or by spraying. The material is then heated so that the solvent will'be removed.
A number of the compounds in question can be applied together to the supporting material or the compounds can be applied in association with other photoconductive substances.
Further, it is often advantageous for the photoconductor substances to be applied to the supporting material in association with one or more binders, e.g., resins. Resins primarily of interest as additions to the photoconductor coatings include natural resins such as balsam resins, colophony and shellac, synthetic resins such as coumarone resins and indene resins, processed natural substances such as cellulose ethers; polymers such as vinyl polymers, e.g. polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvinyl alcohol, polyvinyl ethers, polyacrylic and polymethacrylic acid esters, isobutylene and chlorinated rubber.
If the photoconductive compounds in accordance with the invention are used in association with the resins described above, the proportion of resin to photoconductor substance can vary very greatly. Mixtures of from two parts of resin and one part of photoconductor substance to two parts of photoconductor substance and one part of resin are to be preferred. Mixtures of the two substances in equal parts by weight are particularly favorable.
For the displacement of sensitivity from the ultra-violet to the visible range of the spectrum, dyestuff sensitizers can be used in addition to the activators. Even very small additions of sensitizer, e.g., less than 0.01 percent, give good results. In general, however, 0.01 to 5 percent, and preferably 0.1 to 3 percent of dyestuff sensitizer is added to the photoconductor coatings. The addition of larger quantities is possible but in general is not accompanied by any considerable increase in sensitivity.
Some examples are given below of dyestuff sensitizers which may be used with good results, and some with very good results. They are taken from Schultz Farbstofitabellen (7th edition, 1931, 1st vol.):
Triarylmethane dyestufis such as Brilliant Green (No. 760, p. 314), Victoria Blue B (No. 822, p. 347), Methyl Violet (No. 783, p. 327), Crystal Violet (No. 785, p. 329), Acid Violet 6B (No. 831, p. 351); xanthene dyestufls, namely rhod-amines, such as Rhodamine B (No. 864, p. 365), Rhodamine 66 (No. 866, p. 366), Rhodamine G Extra (No. 865, p. 366), Sulphorhodamine B (No. 863, p. 364) and Fast Acid Eosin G (No. 870, p. 368), as also phthaleins such as Eosin S (No. 883, p. 375), Eosin A (No. 881, p. 374), Erythrosin (No. 886, p. 376), Phloxin (No. 890, p. 378), Bengal Rose (No. 889, p. 378), and Fluorescein (No. 880, p. 373); thiaziue dyestufis such as Methylene Blue (No. 1038, p. 449); acridine dyestuffs such as Acridine Yellow (No. 901, p. 383), Acridine Orange (No. 908, p. 387) and Trypafl-avine (No. 906, p. 386); quinoline dyestuffs such as Pin-acyanol (No. 924, p. 396) and Cryptocyanine (N0. 927, p. 397); cyanine dyestufis, e.g., Cyanine (No. 921, p. 394) and chlorophyll.
For the production of copies with the electrocopying material, the photoconductive coating is charged by means of, for example, a corona discharge with a charging apparatus maintained at 6000-7000 volts. The electro-copying material is then exposed to light in contact with a master. Alternatively, an episcopic or diascopic image is projected thereon. An electrostatic image corresponding to the master is thus produced on the material. This invisible image is developed by contact with a developer consisting of carrier and toner. The carriers used may be, for example, tiny glass balls, iron powder or tiny plastic balls. The toner consists of a resin-carbon black mixture or a pigmented resin. The toner is used in a grainsize of 1 to g. The developer may also consist of a resin or pigment suspended in a non-conductive liquid in which resins may be dissolved. The image that is made visible by development is then fixed, e. g., by heating with an infra-red radiator to IOU-170 C., preferably -150? C. or by treatment with solvents such as trichloroethylene, carbon tetrachloride or ethyl alcohol, or steam. Images corresponding to the master characterized by good contrast effect are obtained.
If transparent supporting material is used, the electrophotographic images can also be used as masters for the pfioduction of further copies on any type of light-sensitive s eets. I
If translucent supports are used for photoconductive layers such as are provided by the invention, reflex images can be produced also.
The application of the activators in accordance with the present process is not restricted to electrophotographic coatings, but can extend to other devices containing photoconductors, e.g., photoelectric cells, photoresistances, sensing heads or camera tubes and electroluminescent apparatus.
The invention will be further illustrated by reference to the following specific examples:
EXAMPLE 1 A solution containing 26 parts by weight of polyvinyl acetate (e.g., Mowilith 50), 25.6 parts by weight of naphthalene, 0.0415 part by Weight of 2,3,7-trinitrofiuorenone and 800 parts by volume of toluene is applied by means of a coating device to an aluminum foil. After the coating has dried, direct images are produced thereon by the electrophotographic process in the following manner: the coated foil is given a negative electric charge by corona discharge, exposed behind a master to the light of a high-pressure mercury vapor lamp watts, at a distance of 30 cm.) for about 10 seconds and then dusted over with a developer.
The developer consists of tiny glass balls and a mixture of resin and carbon black which has been melted together and then finely divided. A developer of this sort consists of, e.g.. 100 parts by weight of tiny glass balls (grain size: 100-400 approx.) and a toner (grain size: 20-50/1.
- is as described in Example 1.
approx) The toner is prepared by melting together 30 parts by weight of Polystyrol LG, 30 parts by weight of modified maleic acid resin (Beckacite K105) and 3 parts by weight of Peerless Black Russ 552.1 The melt is then ground and screened. The finely divided resin ad-' heresto the 'parts of the coating not struck by light during the exposure and a positive image of the master becomes visible. It is slightly heated and thereby fixed.
If 2,4,7-trinitrofluorenone is not added to the coatings described above, even an exposure of two minutes will not produce an electrophotographic image.
EXAMPLE 2 26 parts by weight of polyvinyl acetate, 16.6 parts by weight of fluorene and 0.3 602 part by weight of tetranitrofluorenone are dissolved in 800 parts by volume of toluene. This solution is applied to. an aluminum foil and further procedure is as described in Example 1. Exposure time, if a 125-watt high-pressure mercury vapor lamp is used, is seconds.
Without the tetranitrofluorenone addition, the images obtained even after an exposure of two minutes are not free of background, i.e., the exposed parts are not fully discharged andtherefore retain a certain amount of de-.
veloper.
EXAMPLE 3 A solution of 26 parts by weight of polyvinyl acetate, 17.8 parts by weightof anthracene and 0.3357 part by 8 EXAMPLE 5 A solution of 26 parts by'weight of polyvinyl acetate;
21.6 parts by weight of 1,5-diethoxynaphthalene and 0.258 part by weight of 1,2-benzanthraquinone in 800, parts by volume of toluene is applied to paper and the material is further processed as described in Example 1.
The exposure time (125-watt high-pressure mercury vapor lamp) is 20 seconds.
Without the 1,2-benzanthraquinone addition, the copy 26 parts by weight of polyvinyl acetate, 17.8 parts by weight of phenanthrene and 0.245 part by weight of chloranil are dissolved together in 800 parts by volume of toluene. The solution is applied to a superficially:
roughened aluminum foil and then the material is further processed as described in Example 1. If the material is exposed to a l25-watt high-pressure mercury vapor lamp, an exposure of 10 seconds gives an image free of background and rich in contrast, whereas Without the chloranil addition there is heavy background even after an exposure of one minute.
EXAMPLE 7 A solution containing 26 parts .by weight of polyvinyl acetate, 24.4 parts by weight of o-dianisidine and 0.0256 part by weight of dibromomaleic anhydride in 800 parts by volume of toluene is applied to an aluminum foil and the material is further processed as-described in Example 1. The exposure time (125-watt high-pressure mercury vapor lamp) is 2 seconds. Without the dibromomaleic anhydride addition, it is 10 seconds.
TABLE A No. A B C V D E 1 Polyvinylacetate, 10 parts (1)- 8 120 b 3 Anthraquinone, 0.08 30 see. (I) (ca) 8 Anthraqulnone, 0.17 20 see. (b). 8 Anthraquinone, 0 25 20 see. (b). s i 0.001 60 see. (b).
I g 0.005 60 see. (b). 3 0.010 60 see. (b). 8 0. 030 see. (b). 8 0. 050 90 see. (b 8 Anthraquluone, 0.17 0. 001 20 see. (b 1L 8 dn 0.010 20 see. (b). 8 20 see. (b). s 240 see. (a). n 8 180 see. (a). 15 Cychzed rubber, 10 parts (2) 8 240 m, S Anthraquinone, 0.25 30 see. (a). 17 Alterchlorinated polyvinylchlorlde, 7 par 3 10 18 Polyvinylchloride, afterchlorinated, 7 parts (3). 8 Anth aqu n P 3 s (8)- 19 Maleic acid resin, 10 parts (4) 8 240 see. (a), 8 Anthraquinone, 0.25 part 60 see. (a). 21 Chlorinated rubber, 10 parts (5) 8 20 8 Anthraquinone, 0.25 part 10 see. (a). 23 Chlorinated rubber, 10 parts (6) 3 20 fl 8 Anthraquinone, 0.25 10 see. (a). 8 1,2-benzanthraquinone, 0.31 part"- 11.5 see. (a). 8 Hexabromonaphthalic anhydride, 0.80 part- 11.5 see. (a). 8 2,1,5,7-tetranitrofluorenone, 0.43 part- 1.5 sec. (5.). 8 Dlbromornaleic anhydride, 0.30 part 4-6 sec. (a). 8 Nltroterephthallo acid-dimethylester, 0.28 6-8 see. (a).
par 8 Tetraeyano ethylene, 0.15 part- 4-0 see. (a). 3L 8 1,3,5-trmltrobenzene, 0.25 part 1.5-2 see. (a).
Explanations on Table A Column A: Quantity and kind of binder used. In all cases, the quantities stated were dissolved in 200 parts by volume of toluene.
Column B: Quantity of the photoconductor. In all examples, the same amount of pyrene was used. Column C: Quantity of the activator used.
Column D: Quantity of dyestufi sensitizer used (Rhodamine B extra).
Column E: Time of exposure, using:
(a) a 250 watt photographic lamp (Philips Photocrescenta). (b) a customary watt incandescent lamp.
The tests were carried through under the same experimental conditions, with the exception of the variations stated in the table.
(1) The polyvinyl acetate used was the product commercially available under the registered trademark Mowilith C. 1
(2) The cyclized rubber used was the product commercially available under the registered trademark Pliolite S5D.
(3) The afterchlorinated polyvinylchloride used was the product commercially available under the registered trademark Rhenoflex.
(4) The maleic acid resin used was the product commercially available under the designation Alrosat.
(5) The chlorinated rubber used in Table A, col. A, under N0. 21 (5) was the product commercially available under the registered trademark Parlon S-S cps.
(6) The chlorinated rubber used in Table A, col. A, under N0. 23 (6) was a product commercially available under the registered trademark Pergut 8-40.
The following Table B shows further examples of various photoconductors which were activated, and the reduction in exposure time caused by the activators:
TABLE B 26 Chloranil Hexabromonaphthalic anhydride. 2,4,5,7-tetranitrofinorenone Hgilr agromonaphthalie anhy- 13.6 hydroquinonedimethylether.
25.6 naphthalene- 26 3,5-dinitrosa1icylic a Dibromomaleic anhydride- Tetrachlorophthalic anhydride Hexabromonaphthalic anhydride. Picrylchloride 2,4,5.7-tetranitrofluorenone- 15.4 acenaphthene" 26 1,2benzanthraquinone Dibromomaleic anhydride Hexabrornonaphthalic anhydride. Picrylchloride 2,4,5,7-tetranitrofiuorenone- Chloram'l Hexabromonaphthalic anhydride 2,4,5,7-tetranitrofluorenone Chloranil 1,2-b enzauthraquinone. Tetrachlorophthalic anhydri e. Picrylchloride 2,4,5,7-tetranitrofluoreuone Chloranil 15.2 acenaphthylene 26 15.4 diphenyl 18 24.4 o-dianisidine 26 1,2-benzanthraquln0ne- Tetrachlorophthalic anhydrrde. Hexabromonaphthalic anhydride Picrylchloride Chloranil 1 ,2-b enz anthraquinone Hexabrornouaphthalie anhydride Picrylchlorlde 3,5-dinltrosalicylic acid- 1,2-benzanthraquinoue- Dibromomaleic auhydride Tetrachlorophthalic anhydride- 2,4,5,7-tetranitrofiuorenone Benzoquinone Chloranil. 3,5dinitrosalicylic acid 1,2-benzanthraquiuone.-. Tetrachlorophthalic anhydride Hexabromonaphthalic anhydride Picrylchloride 2,4,5,7-tetranitrofiuorenone Benzoquinone- Ohlorauil 2,4,5,7-tetranitrofiuorenoue 1,4-benzoquinone Chloranil 3,5-dinitrosalicy1ic acid- 1,2-beuzauthraquinone Dibromomaleic acid anhydride. Tetrachlorophthalic anhydride Hexabromonaphthalic auhydride Picrylchloride 2,4,5,7-tetranitrofiuorenone. 1,2-benzanthraquinone Dibromomaleic anhydride. Tetrachlorophthalic snhydride- Hexabromonaphthalic anhydrlde Picrylchloride 2,4,5,7-tetranitrofluoren 16.6 fluorene 26 17.8 anthracene 26 22.8 chrysene 52 16.9 diphenylamine* 26 26.9 2,2-dinaphthylamine 26 17.8 phenanthrene 26 TABLE B-Continued A B C 19.3 2-phenyl-indole.. 26 Chloranil 1,2-benzanthraquinone. Dibromomaleic anhydride. Tetrachlorophthalic anhydride- Hexabrornouaphthalic anhydride.
Picrylchloride 16.7 earbazole 26 1,2benzanthraquiuoue. 3,5-dinitrosalicylic acid Dibromomaleic anhydride- Tetrachlorophthalie anhydride Hexabromonaphthalic anhydride- Picrylchloride 2,4,5,7-tetranitrofluorenone- 1,2-benzanthraquinone- 2,4,5,7-tetranitrofiuoren 1,2-benzanthraquinone- 2,4dichlorobenzoic acid- Tetrachlorophthalic acid. 3,5-dinit-rosalicylic acid- 1,2-benzanthraquinone. Dibromomaleic auhydrid Hexabromonaphthalic anhydride- Picrylchloride 2,4,5,7-tetranitrofiuorenone 19.9 thiodiphenylamine 25.48 2,4-bis-(4'-diethylarniuophenyl)-1,3,4- oxadiazole.
18.2 2,4-bis-(4-diethy1- aminophenyl)-1,3,4- triazole.
Explanations on Table B The table describes a series of experiments carried through for improving the photoconductivity of organic substances by adding activators.
In Column A the quantity and nature of the substance used is stated. The substances marked with a yielded no electrophotographic images even after an exposure time of several minutes.
In Column B the quantity of the binder used is stated. In all of the cases, polyvinyl acetate having a K-value of 50 was used. Binder, photoconductive substance, and activator were dissolved in toluene, coated onto an aluminum foil, and dried.
In Column C the substance used as activator is stated. In all of the cases 1 mol of the activator stated under C was used per moles of the substance stated under A.
In Column D the reduced time of exposure is stated which is required to produce images equal in quality to those produced without the addition of an activator. In those cases where a prolonged exposure of the photoconductor yielded not even a weak image (marked with a the calculation of the reduced time of exposure was based on the longest exposure used for the unactivated photoconductor substance.
Alternatively, the increase in sensibility obtained by the addition of activating substances may be taken from a comparison of the degrees of blackening obtained with the activated photoconductive layer and with the unactivated photoconductive layer, under the same customary step wedge (e.g. Kodak No. 2 density strip with color patches).
EXAMPLE 8 A solution containing 20 parts by weight of afterchlorinated polyvinyl chloride with a content of chlorine from 61.7 to 62.3 percent and K-value from 59 to 62, 18.01 parts by weight of 2,4,5,7-tetranitrofluorenone and 0.216 part by weight of 1,5-diethoxynaphthalene dissolved in a mixture of 450 parts by volume toluene and parts by volume butanone is applied to an aluminum foil. The subsequent procedure is that described in Example 1. The exposure time, with a 100 watt incandescent lamp at a distance of 30 centimeters is 2 seconds.
Without the addition of 1,5diethoxynaphthalene the exposure time is about 40 seconds.
11 In the following table, the exposure times are given, which were obtained when using other photoconductors instead of the 1,5-diethoxynapht'halene.
Exposure time diazole compound is replaced by 0.120 part by weight of 2,2'-dinaphthylamine, the exposure time is about 10 secs. i
onds.
EXAMPLE 12 To a solution containing 28.6 parts by weight of tetra- Photoconductors (parts by welght) (Seconds) 15 5 chlorophthalic acid anhydride and 20 parts by weight of Acenaphthene (154) f afterchlorinated polyvinyl chloride in a mixture of 150 Nsithylcarbazole $0195) 1 parts by volume of butanone and 450 parts by volume *imaphtlly'lamme (0270) 15 of toluene, X parts by weight of photoconductor and Dfphenylamme, (0'170) 15 Y parts by weight of dyestuff sensitizer are added. In the Dlphenyleneoxlde (0'170) 20 following table, the amounts of the photoconductor and Indole (0120) 10 sensitizer are given together with the corresponding ex lf (0200) 12 posure times. It is advantageous to dissolve the dyestuff stllbffne -7---- 5 sensitizer in a small amount of ethyleneglycol mono-. 2,545,13-(4 dlethylammophenyn1,3,4 oxdlazole methyl ether before adding it to the solution. The latter 1 is applied to a paper base material and further processed Y' Y (0-193) 6 as described in Example 1. The light source used Phenoxathlne (0100) 6 throughout was a l25-watt high pressure mercury vapor lamp and the distance between this lamp and the mate- EXAMPLE 9 rial ex osed was about 30 centimeters.
A solution of 12 parts by weight of chlorinated rubber P (Pergut 8-40), 504 parts by weight of 1,3-dinitrobenzene and 0.106 part by weight of anthracene in 150 parts y volume of toluene is applied to a paper {011 and the PhotoconductorX parts Dyestufi sensitizer-Y Exposure material is further processed as described in Example 1. by weight Parts by weight ime The exposure time (125 watt high pressure mercury va- (Secmds) por lamp) is 20 seconds. Without the anthracene addi- N ion, even after an exposure tirdne of 80 secondlsl, onlly g i $2 5 cazog traces of an image were obtain This means 11 31.11 6 Do;--, Rhodamine B 2-3 therefore still attracted developer. h i i(g:1 y l{1m0 None 4 In th following table the exposure times are given, 53111.1-1fifi3f1--- 0.30 RhodamlneBextra 1-2 which were obtained, when using other photoconductors 8 8% g i g figfi I g t instead of the 1,3 -d1nitrobenzene. E D 8.8}? lK/{risgallvlglet 2 5 xposure time e Yen Photoconductors (parts by weight): (Sec i fil fi i fiii fifii: i -'I iii& ???f i i ff. fi 2 2,2-dinaphthylamine (0.180) 20 2,5-bis-(4'-diethylaminophenyl)-1,3,4 oxdiazole EXAMPLE 10 EXAMPLE 13 A solution containing 20 parts by weight of the after- A solution is'prepared, containing 57.2 parts by weight chlorinated polyvinyl chloride mentioned in Example 8, of tetrachlorophthalic acid anhydride and 65 parts by;
21.02 parts by Weight of benzile and 0.370 part by weight Weight of afterchlorinated polyvinyl chloride in 700 parts of benzidinein a mixture of 450 parts by volume of tolby volume toluene and suflicient butanone is added to uene and 150 parts by volume of butanone is applied to make up 1000 parts by volume. To parts by volume 1 an l i f il d h t i l i f th processed of the resulting stock solution, one of the photoconducas described i E l 1 The exposure ti (125 watt tors listed belciwllis added, and the solution is applied to high pressure mercury vapor lamp at a distance of 30 an a uminum o' and further processed as described in centimeters) is 10 seconds. Without the addition of the 50 EXdmPIe In the following table, the added p otobenzidine activator, even after an exposure time of 4 mincplldllctors are indicated, and The Corresponding exposure utes, no electrophotographic image could be obtained. tlmes are g the light Source, a 125-Walt high In the following table, the exposure times are given P s mercury vapor p in a n e of about 30 which were obtained when using photoconductors other Fentlmeters from the exposed material as used in all than benzidine. mstances- Exposure time Ex osure Photoconductors (parts by weight): (seconds) Photoconductor (parts by weight): secondg 2,2'-dinaphthylamine (0.540) 20 None 1 2,5-bis-(4'diethylamino-phenyl) 1,3,4 oxdia- Naphthalene (0.064) 30 zole (0.730) 5 0 Hydroquinonedimethyl ether (0.070) 30 Poly-N-vinylcarbazole (0.390) 30 Anthracene (0.090) 30 EXAMPLE n 8213253? (093 43 55:31:33.":3: 33
A solution containing 6.2 parts by weight of afterchlori- Pyrelle 0) 30 nated polyvinyl chloride, 3.94 parts by weight of 1,5-dio-Diflllisidine 30 chloronaphthalene and 0.145 part by weight of 2,5-bis- Lidiethoxynaphthalene 30 (4-diethylaminophenyl)-1,3,4-oxdiazole in a mixture of zs6'dimefllylnaphthalene 30 135 parts by volume of toluene and 45 parts by volume Hexamefllylbenzene of butanone is applied to a paper base and is further proc- Diphellylamille 10 essed as described in Example 1. The exposure time( 70 Diphenyleneoxide 30 watt high pressure mercury vapor lamp at a distance of Indole 20 30 oentirneters) is 10 seconds. Without the addition of Fluorene 60 the oxdiazole compound, even after an exposure time of Benzodiphmykm'wxide 30 40 seconds, no. image could be obtained. When the oxz'methoxy'naphthalene 60 1 Image with heavy background,
Photoconductor (parts by weight) Exposure time Continued (seconds) Phenanthrene (0.089) Phenoxathin (0.100) 10 Stilbene (0.090) 30 2,3,5-triphenyipyrrole (0.153) 10 1,1'-dinaphthylamine (0.134) 30 l,2'-dinaphthylamine. (0.134) 30 '-tolyl-1-naphthylamine (0.116) 60 2-phenylindole (0.096) 60 Acenaphthene (0.077) 60 Diphenyl (0.077) 120 N-methyldiphenylamine (0.091) 30 4-hydroxy-diphenylamine (0.092) 30 Phlorglucinediethyl ether (0.091) 120 EXAMPLE 14 57.2 parts by weight of tetrachlorophthalic acid anhydride and 65 parts by weight of polyvinyl acetate are dissolved in suflicient toluene to make up 1000 parts by volume. To 50 parts by volume of this stock solution, one of the photoconductors listed below is addedand the coating solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source from the exposedmaterial were the same as in the foregoing example.
Exposure time (seconds) Photoconductor (parts by weight):
None Naphthalene (0.064) Hydroquinonedimethyl ether (0.069) N-ethylcarbazole (0.097) Anthracene (0.089) Carbazole (0.081) Chrysene (0.114) Pyrene (0.101) o-Dianisidine (0.122) 1,5-diethoxynaphthalene (0.101) 2,6-dimethyl-naphthalene (0.078) Hexamethylbenzene (0.081) 2,2-dinaphthylamine (0.134) Diphenylamine (0.084) Diphenyleneoxide (0.084) Indole (0.058) Fluorene (0.083) Stilbene (0.090)
EXAMPLE 15 29.62 parts by weight of phthalic acid anhydride and 33 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and 330 parts by volume of butanone. To 50 parts by volume of the resulting stock solution, one of the photoconductors listed in the following table is added; these coating solutions are applied to an aluminum foil, and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13..
Exposure time Photoconductor (parts by weight): (seconds) None 1 60 N-ethylcarbazole (0.10) 5 Anthracene (0.09) Chrysene (0.114) Pyrene (0.10) 10 2,2'-dinaphthylamine (0.134) 10 2,3,5-triphenylpyrrole (0.153) 10 1 No image obtained.
EXAMPLE 16 49.2 parts by weight of chloranil and 5 6 parts by weight of afterchlorinated polyvinyl chloride are dissolved in a mixture of 1170 parts by volume of toluene and parts by volume of butanone. The resulting solution is filled up to 2000 parts by volume with chlorobenzene. To 100 parts by volume of this stock solution, one of the photoconductors listed in the following table is added; the coating solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
Exposuretime 10.6 parts by weight of Z-acetyl fluorene and 12 parts by weight of afterchlorinated polyvinyl chloride are dissolved in parts of toluene and sufficient butanol to make up 250 parts by volume of solution. To 50 parts by volume of this stock solution, one of the photoconductors of the following table is added. The solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 1 180 o-Dianisidine (0.120) 30 2,5 -bis- 4'-diethylaminophenyl) -1 ,3,4-oxdiazole 1 No image obtained,
EXAMPLE 18 44 parts by weight of 9 acetyl-anthracene and 48 parts by weight of atterchlorinated polyvinyl chloride are dissolved in 700 parts by volume of solution. To 50 parts by volume of the resulting stock solution, one of the photoconductors of the following table is added. This solution is applied to an aluminum foil and further proc essed as described in Example 1. The light source and the distance thereof was the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 1 180 Hydroquinonedimethyl ether (0.069) 30 N-ethyl carbazole (0.097) 60 Anthracene (0.089) 60 Hexamethylbenzene (0.081) 30 1 Image with heavy background.
EXAMPLE 19 46.2 parts by weight of pyrene-S-aldehyde and 50 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and suflicient butanol to make up 1000 parts by volume of solution. To 5 0 parts by volume of the resulting stock solution one of the photoconductors of the following table is added. The solution is applied to an aluminum foil and further processed as described in Example 1. Thelight source '15 and the distance of the light source were the same as in Example 13.
Exposure time EXAMPLE 20 13.1 parts by weight of 1,4,5-trinitronaphthalene and 15 parts by weight of atterchlorinated polyvinyl chloride were dissolved in 180 parts by volume of toluene and sufiicient butanone to make up 250 parts by volume. To 50 parts of the resulting stock solution, one of the photoconductors of the following table is added in the amount indicated. This solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance thereof were the same as in Example 13.
Photoconductor (parts by weight): (seconds) None 180 N-ethylcarbazole (0.10) 30 Anthracene (0.09) 30 o-Dianisidine (0.12) l 2,5-bis-(4'-diethylarninophenyl) -1,3,4-0Xdiazole 1 Image with heavy background.
It will be obvious to those skilled in the art that many modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
What is claimed is:
' 1. A sensitized photoconductive. layer comprising a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; and at least one solid, non-resinous, substantially colorless electron-acceptor.
2.. A sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially less than equal amounts to a substantial excess of the photoconductor with respect to the electronacceptor and from substantially less than equal amounts to a substantial excess of the electron-acceptor with respect to the photoconductor.
Exposure time 3. A sensitized photoconductive .layer comprising at leastone solid, non-resinous, substantially colorless electron-accepton-and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups,
and R is selected from the group consisting of oxygen,
least one solid, non-resinous, substantially colorless elec-.
tron-acceptor and a compound having the formula in which Ris an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen,
sulfur, and imino; in proportions ranging from about 0.1 to about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
5. A sensitized photoconductive layer comprising at, least one solid, non-resinous, substantially colorless elec-.
tron-acceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from p the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen,
sulfur, and imino; in proportions ranging from about 1 to about 50 moles of the electron-acceptor per 1000 moles of the photoconductor.
6. A sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless elec-.
tron-acceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups,
and R is selected from the group consisting of oxygen,;
sulfur, and imino; in proportions ranging from about 1 to about 50 moles of the photoconductor per 1000 moles of the electron-acceptor.
7. A layer according to claim 1 in which the electron-.
acceptor is 2,4,7-trinitrofluorenone.
8. A layer according to claim 1 in which the electronacceptor is tetranit-rofluorenone.
9. A layer according to claim 1 in which the electronacceptor is hexa-bromonaphthalic anhydride.
10. A layer according to claim 1 in which the electronacceptor is tetrachlorophthalic anhydride.
11. A layer according to claim 1 in which the electron-acceptor is 1,2-benzanthraquinone.
12. A layer according to claim 1 in which the electronacceptor is chloranil.
13. A layer according to claim 1 in which the electronacceptor is dibromomaleic anhydride.
14. A layer according to claim 1 including a resin.
15. A layer according to claim 1 including a dyestuif sensitizer.
16. A photographic reproduction process which comprises exposing an electrostatically charged, supported,
photoconductive insulating layer to light under a masterand developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula R OR1 in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino.
17. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially less than equal amounts to a substantial excess of the photoconductor with respect to the electronacceptor and from substantially less than equal amounts to a substantial excess of the electron-acceptor with respect to the photoconductor.
18. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula R/ CRi in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; in proportions ranging from about 0.1 to about 300 moles of the electron-acceptor per 1000 moles of photoconductor.
19. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; in proportions ranging from about 0.1 to about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
20. A photographic reproduction process which comprises exposing an electrostatically charged, supported 18 photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic :material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; in proportions ranging from about 1 to about 50 moles of the electron-acceptor per 1000 moles of the photoconductor.
21. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor and a compound having the formula in which R is an ortho-arylene group, R is selected from the group consisting of aryl and heterocyclic groups, and R is selected from the group consisting of oxygen, sulfur, and imino; in proportions ranging from about 1 to about 50 moles of the photoconductor per 1000 moles of the electron-acceptor.
22. A process according to claim 17 in which the ,7
electron-acceptor is 2,4,7-trinitr-ofluorenone.
23. A process according to claim 17 in which the electron-acceptor is tetranitrofluorenone.
24. A process according to claim 17 in which the electron-acceptor is hexabromonaphthalic anhydride.
25. A process according to claim 17 in which the electron-acceptor is tetrachlorophthalic anhydride.
26. A process according to claim 17 in which the electron-acceptor is 1,2-benzanthraquinone.
27. A process according to claim 17 in which the electron-acceptor is chloranil.
28. A process according to claim 17 in which the electron-acceptor is dibromomaleic anhydride.
29. A process according to claim 17 in which the layer includes a resin.
30. A process according to claim 17 in which the layer includes a dyestufi sensitizer.
References Cited by the Examiner UNITED STATES PATENTS 3,037,861 6/1962 Hoegl et a1. 96-1 3,113,022 12/1963 Cassiers et al. 96-1 3,155,503 11/1964 Cassiers et al. 961
OTHER REFERENCES Andrews, Chemical Reviews, 43: 713-777, October 1954.
Czekalla et al.: Chemical Abstracts, 52: 4317b (1957).
Schneider and Compton et al.: Journal of Chemical Physics, vol. 25: 358, 1075-1076 (1956).
NORMAN G. TORCHIN, Primary Examiner.
C. E. VAN HORN, Assistant Examiner.

Claims (1)

1. A SENSITIZED PHOTOCONDUCTIVE LAYER COMPRISING A COMPOUND HAVING THE FORMULA
US426363A 1961-07-24 1965-01-18 Process for the sensitization of photoconductors Expired - Lifetime US3287121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US426363A US3287121A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12598461A 1961-07-24 1961-07-24
US426363A US3287121A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Publications (1)

Publication Number Publication Date
US3287121A true US3287121A (en) 1966-11-22

Family

ID=26824159

Family Applications (1)

Application Number Title Priority Date Filing Date
US426363A Expired - Lifetime US3287121A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Country Status (1)

Country Link
US (1) US3287121A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408189A (en) * 1966-10-27 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3408190A (en) * 1966-03-15 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3445225A (en) * 1965-10-01 1969-05-20 Xerox Corp Electrophotographic imaging process
US3501330A (en) * 1964-10-26 1970-03-17 Agfa Gevaert Nv Manufacture of electrophotographic materials
US3535111A (en) * 1966-05-13 1970-10-20 Research Corp Electrostatic reproduction method and apparatus employing a photoemissive surface
US3548059A (en) * 1965-12-16 1970-12-15 Matsushita Electric Ind Co Ltd 9,10-disubstituted anthracenes for use as photoconductors
US3554125A (en) * 1967-04-26 1971-01-12 Xerox Corp Method of making a lithographic master and method of printing therewith
US3609093A (en) * 1968-09-11 1971-09-28 Larry A Harrah Photochromic radiation dosimeter
US3717462A (en) * 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3770428A (en) * 1970-08-25 1973-11-06 Xerox Corp PHOTOCONDUCTIVE REACTION PRODUCT OF N -beta- CHLORETHYL CARBAZOLE AND FORMALDEHYDE
US3775105A (en) * 1972-12-26 1973-11-27 Ibm Disazo pigment sensitized photoconductor
US3917482A (en) * 1970-11-09 1975-11-04 Canon Kk Photoconductive polymers of thiocyano-substituted-9-vinylcarbazoles
US3935008A (en) * 1972-06-23 1976-01-27 Hoechst Aktiengesellschaft Electrophotographic process having developed hydrophilic image areas
FR2426281A1 (en) * 1978-05-17 1979-12-14 Mitsubishi Chem Ind ELECTROPHOTOGRAPHIC PLATE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037861A (en) * 1957-09-07 1962-06-05 Kalle Ag Electrophotographic reproduction material
US3113022A (en) * 1959-02-26 1963-12-03 Gevaert Photo Prod Nv Electrophotographic process
US3155503A (en) * 1959-02-26 1964-11-03 Gevaert Photo Prod Nv Electrophotographic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037861A (en) * 1957-09-07 1962-06-05 Kalle Ag Electrophotographic reproduction material
US3113022A (en) * 1959-02-26 1963-12-03 Gevaert Photo Prod Nv Electrophotographic process
US3155503A (en) * 1959-02-26 1964-11-03 Gevaert Photo Prod Nv Electrophotographic material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501330A (en) * 1964-10-26 1970-03-17 Agfa Gevaert Nv Manufacture of electrophotographic materials
US3445225A (en) * 1965-10-01 1969-05-20 Xerox Corp Electrophotographic imaging process
US3548059A (en) * 1965-12-16 1970-12-15 Matsushita Electric Ind Co Ltd 9,10-disubstituted anthracenes for use as photoconductors
US3408190A (en) * 1966-03-15 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3535111A (en) * 1966-05-13 1970-10-20 Research Corp Electrostatic reproduction method and apparatus employing a photoemissive surface
US3408189A (en) * 1966-10-27 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3554125A (en) * 1967-04-26 1971-01-12 Xerox Corp Method of making a lithographic master and method of printing therewith
US3609093A (en) * 1968-09-11 1971-09-28 Larry A Harrah Photochromic radiation dosimeter
US3717462A (en) * 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3770428A (en) * 1970-08-25 1973-11-06 Xerox Corp PHOTOCONDUCTIVE REACTION PRODUCT OF N -beta- CHLORETHYL CARBAZOLE AND FORMALDEHYDE
US3917482A (en) * 1970-11-09 1975-11-04 Canon Kk Photoconductive polymers of thiocyano-substituted-9-vinylcarbazoles
US3935008A (en) * 1972-06-23 1976-01-27 Hoechst Aktiengesellschaft Electrophotographic process having developed hydrophilic image areas
US3775105A (en) * 1972-12-26 1973-11-27 Ibm Disazo pigment sensitized photoconductor
FR2426281A1 (en) * 1978-05-17 1979-12-14 Mitsubishi Chem Ind ELECTROPHOTOGRAPHIC PLATE

Similar Documents

Publication Publication Date Title
US3287123A (en) Process for the sensitization of photoconductors
US3287120A (en) Process for the sensitization of photoconductors
US3180730A (en) Material for electrophotographic purposes
US3159483A (en) Process for the preparation of electrophotographic reversed images
US3287121A (en) Process for the sensitization of photoconductors
US3512966A (en) Process of electrophotographic recording employing persistent organic photoconductive compositions
US3066023A (en) Member for electrophotographic reproduction and process therefor
US3307940A (en) Electrophotographic process employing photoconductive polymers
JPH04223473A (en) Electronic photograph recording material
US3232755A (en) Photoconductive layers for electrophotographic purposes
US3287114A (en) Process for the sensitization of photoconductors
US3206306A (en) Material for electrophotographic purposes
US3765883A (en) Organic photoconductors sensitized with free radical liberators and organometallic compounds
US3287119A (en) Process for the sensitization of photoconductors
US3287122A (en) Process for the sensitization of photoconductors
US5093219A (en) Electrophotographic photoreceptor with acetylene group containing compound
US3765884A (en) 1-substituted-2-indoline hydrazone photoconductors
EP0069397B1 (en) Electrophotographic plate
JPH02210357A (en) Electrophotographic sensitive body
US3169060A (en) Photoconductive layers for electrophotographic purposes
US3287115A (en) Process for the sensitization of photoconductors
US3114633A (en) Material for electrophotographic and electroradiographic purposes
US3287113A (en) Process for the sensitization of photoconductors
US3287116A (en) Process for the sensitization of photoconductors
US3163531A (en) Photoconductive layers for electrophotographic purposes