US3284425A - Conversion of polymethacrylate to polymethacrylimide in an aqueous system - Google Patents

Conversion of polymethacrylate to polymethacrylimide in an aqueous system Download PDF

Info

Publication number
US3284425A
US3284425A US368452A US36845264A US3284425A US 3284425 A US3284425 A US 3284425A US 368452 A US368452 A US 368452A US 36845264 A US36845264 A US 36845264A US 3284425 A US3284425 A US 3284425A
Authority
US
United States
Prior art keywords
percent
weight
polymer
treated
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US368452A
Inventor
Schroder Gunter
Tessmar Ruth Helene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm and Haas GmbH
Original Assignee
Roehm and Haas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DER22969A external-priority patent/DE1077872B/en
Application filed by Roehm and Haas GmbH filed Critical Roehm and Haas GmbH
Application granted granted Critical
Publication of US3284425A publication Critical patent/US3284425A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Definitions

  • This invention relates to nitrogenous derivatives of polyrnethacrylate, and to methods of making the same, and relates in particular to polymethacrylimide polymers and methods of making the same.
  • polymethacrylate homopolymers and copolymers are treated with dilute aqueous solutions of amines, alone or together with ammonia.
  • polymethacrylimide products are formed which are substantially free of carboxy or ester groups, i.e. in which the degree of imidization is at least about 95 percent, a figure in excess of both the theoretical calculated maximum and the maximum experimentally found by Graves. Because of the scarcity of carboxy groups in the products prepared by the present invention, the materials are more highly resistant to alkali than those produced by prior art processes.
  • the imide groups first formed by the reaction of the invention are in dynamic equilibrium with non-cyclic species. That is, rather than being temporally and spatially fixed on the polymer molecule, the imide rings continually open and close and Wander along the polymer until substantially all of the groups capable of imidization have been imidized. Where such an equilibrium is not possible, a single acid or ester group may become isolated between adjacent imide rings, as was envisioned by Flory in the aforementioned article, resulting in a lower overall degree of imidization.
  • Aqueous solutions of aliphatic, heterocyclic, and araliphatic amines having two hydrogen atoms on the amine nitrogen atom can be used in practicing the present invention.
  • Exemplary of such materials are amines such 3,284,425 Patented Nov. 8, 1966 ice as n-decyl amine, n-dodecyl amine, n-cetyl amine, and n-octadecyl amine.
  • the amines are employed as aqueous solutions containing between about 1 percent by weight and 30 percent by weight of amine. If aqueous ammoniacal solutions of the amines are used, the solutions may additionally contain up to about 10 percent by weight of ammonia. Suitably, sumcient solution is used so that an amount of amine, or of amine and ammonia, is present which is at least equivalent to the imide forming groups of the polymer being treated.
  • the polymers being treated are heated with these aqueous solutions at temperatures of between 180 C. and 300 C.
  • the reaction is commonly carried out in an autoclave under autogenous pressure which varies with the temperature used and the amount and concentration of amine present. In general, pressures between about 8 and about atmospheres, suitably from about 8 to 40 atmospheres, are preferred during treatment, but the pressures are not critical.
  • the treatment may vary in duration from /2 hour to 7 hours, depending on the degree of conversion desired, the temperature used, and the amount and concentration of amine, for example. Such considerations are common to all chemical reactions and are within the skill of the art.
  • the invention is particularly useful when applied to homopolymers of methylmethacrylate, but copolymers of methylmetlracrylate with methacrylic acid and/or with one or more methacrylic acid derivatives such as methacrylonitrile, methacrylamide, Nlower alkyl methacrylamides such as N-methyl, N-ethyl, N-propyl, and N-butyl methacrylamides, methacrylic acid chloride, or ammonium methacrylate can also be treated.
  • methacrylonitrile methacrylamide, Nlower alkyl methacrylamides such as N-methyl, N-ethyl, N-propyl, and N-butyl methacrylamides, methacrylic acid chloride, or ammonium methacrylate
  • methacrylic acid chloride or ammonium methacrylate
  • One or more of these comonomeric materials may be present, with methylmethacrylate, in amounts up to percent by weight of the polymer treated.
  • Particularly convenient starting materials are homopolymers of meth ylmethacrylate, as mentioned, or copolymers of this material with from about 10 up to about 50 percent by weight of one or more of the comonomers mentioned earlier.
  • the products obtained by treating methylmethacrylate homopolymers and copolymers with an aqueous solution of primary amines according to the invention are waterinsoluble and alkali-resistant, but can be dissolved in suitable solvents, for example in a mixture of dimethyl formamide and formic acid, and can then be used for the production of polymer films according to methods known to the art.
  • dried products obtained according to the process can be pressed.
  • the films, as Well as the pressed products, are characterized by a high resistance to deformation by heat even at temperatures higher than 200 C., and notably exceed the behavior of the polymethylmethacrylate starting products in thisrespect.
  • products which are particularly readily susceptible to filtration are obtained when polymethylmethacrylate is treated with primary and/or secondary amines in an aqueous solution of an electrolyte, for example, calcium chloride or ammonium sulfate.
  • an electrolyte for example, calcium chloride or ammonium sulfate.
  • Example 1 120 grams of rough milled polymethylmethacrylate were heated for 7 hours at 230 C. in a tubular autoclave with 192 grams of a 33 /3 percent aqueous solution of methylamine and 780 grams of water. A pressure between about 30 atmospheres and 36 atmospheres was maintained.
  • the reaction product comprised a watery phase and a polymer phase insoluble in water, aqueous ammonia, and most organic solvents.
  • the solid product had a nitrogen content of 8.4 percent and a OCH content of 0.2 percent.
  • the product is extraordinarily resistant to aqueous alkali. For example, it is not attacked by immersion at 90 C. in a percent sodium hydroxide solution for a period of 8 hours.
  • Example 2 120 grams of granulated polymethylmethacrylate were heated at 270 C., with stirring, for 7 hours in a stainless steel autoclave with 149 grams of butyl amine and 910 grams of water. A maximum pressure of 55 atmospheres was attained.
  • a determination of the acid number indicated 1.2 percent by weight of methacrylic acid units. Based on the methoxyl content, 1 percent by weight of methylmethacrylate units had not reacted.
  • Example 4 1 gram of a copolymer comprising 71.3 mol percent of methylmethacrylate and 28.7 mol percent of methacrylonitrile were heated for 7 hours at 270 C. in an autoclave with 0.75 gram of methyl amine and 5 grams of water.
  • the reaction product had the same properties and gave the same elementary analysis as did the poly-N-methylmethacrylimide of the previous example.
  • Example 5 35 grams of a copolymer comprising 55 mol percent of methylmethacrylate and 45 mol percent of N-isopropyl methacrylamide were heated for 4 hours in an autoclave at 270 C. with 500 grams of a 2 percent aqueous solution of isopropyl amine. The reaction product is a yellowwhite mass insoluble in water and aqueous ammonia.
  • a methoxy group determination indicated the presence of 0.02 percent by weight of unreacted methylmethacrylate units. Determination of the acid number indicated 1.8 percent by weight of methacrylic acid units. The nitrogen content of the reaction product amounted to 7.0 percent (the calculated value for pure poly-N-isopropyl methacrylimide is 7.3 percent).
  • Example 6 TABLE Corresponding Mol Percent Exlarmple We1ght Percent Imide Irnide Comonomer 4 50.5 dodeeyl imide.-. 39 61% methylmethacrylate. 5 68.8 cetyl imide 55 45% methylmethacrylate. 6 67.2 octodecyl unide... 50 50% methylmethacrylate. 7 88 butyl imide 86 14% methacrylic acid.
  • Example 2 of Graves do not contain sufiicient data for analysis.
  • Example 1 of the Graves patent reports a polymer containing 8.71 percent of nitrogen. The conclusion, reached by Graves from this figure, that the polymer is primarily polymethacrylic acid imide appears incorrect. For example, the polymer is reported to be soluble in dilute ammonia, but polymethacrylic acid imide is known to be insoluble in ammonia. While the nitrogen analysis is probably correct, the product obtained is most likely a copolymer consisting in part of methacrylimide, of methacrylamide, and of ammonium methacrylate.
  • the method of making water-insoluble alkali-resistant polymethacrylimides which are substantially free of carboxy groups and wherein the degree of imidization of said polymethacrylimides is at least 95 percent comprises heating, at a temperature between about 180 C. and 300 C.
  • reaction is performed at a pressure between about 8 atmospheres and about 40 atmospheres.

Description

United States Patent 3,284,425 CONVERSKUN 0F POLYMETHACRYLATE T0 POLYMETHACRYLHMIDE IN AN AQUEOUS SYSTEM Giinter Schriider, Darrnstadt, Germany, and Klaus Tessmar, deceased, late of Darmstadt, Germany, by Ruth Helene Tessmar, widow and sole heir, Darrnstadt, Germany, assignors to Rollin & Haas G.m.b.H., Darmstadt, Germany No Drawing. Filed May 15, 1964, Ser. No. 368,452 Claims priority, application Germany, Mar. 26, 1959, R 25,227 6 Claims. (Cl. 260--89.5)
This application is a continua-tion-in-part of application Serial No. 16,656 filed Mar-ch 22, 1960, now abandoned.
This invention relates to nitrogenous derivatives of polyrnethacrylate, and to methods of making the same, and relates in particular to polymethacrylimide polymers and methods of making the same.
US. Patent 2,146,209 to Graves teaches methods for producing polymethacrylimide materials by the treatment of polymethylmethacrylate with amines and/ or ammonia. The reaction is performed in the presence or absence of organic solvents, and a small amount of water may be employed as a catalyst.
P. J. Flory has statistically analyzed the cyclization reaction occurring in this imide formation in J. Am. Chem. Soc. 61, 1518-1521 (1939), and has shown that a maximum of about 86 percent of the carboxyl (ester) groups of an acrylic (acrylate) polymer will participate in imide formation. As will be pointed out hereinafter, the reactions reported in the Graves patent by way of example experimentally corroborate these calculations.
According to the present invention, polymethacrylate homopolymers and copolymers are treated with dilute aqueous solutions of amines, alone or together with ammonia. Surprisingly, in the presence of relatively large amounts of water, polymethacrylimide products are formed which are substantially free of carboxy or ester groups, i.e. in which the degree of imidization is at least about 95 percent, a figure in excess of both the theoretical calculated maximum and the maximum experimentally found by Graves. Because of the scarcity of carboxy groups in the products prepared by the present invention, the materials are more highly resistant to alkali than those produced by prior art processes.
Although the applicants do not know the cause for this higher degree of imidization, it is possible that, in the presence of large amounts of water and under the reaction conditions prevailing, the imide groups first formed by the reaction of the invention are in dynamic equilibrium with non-cyclic species. That is, rather than being temporally and spatially fixed on the polymer molecule, the imide rings continually open and close and Wander along the polymer until substantially all of the groups capable of imidization have been imidized. Where such an equilibrium is not possible, a single acid or ester group may become isolated between adjacent imide rings, as was envisioned by Flory in the aforementioned article, resulting in a lower overall degree of imidization.
Aqueous solutions of aliphatic, heterocyclic, and araliphatic amines having two hydrogen atoms on the amine nitrogen atom can be used in practicing the present invention. Exemplary of such materials are amines such 3,284,425 Patented Nov. 8, 1966 ice as n-decyl amine, n-dodecyl amine, n-cetyl amine, and n-octadecyl amine.
The amines are employed as aqueous solutions containing between about 1 percent by weight and 30 percent by weight of amine. If aqueous ammoniacal solutions of the amines are used, the solutions may additionally contain up to about 10 percent by weight of ammonia. Suitably, sumcient solution is used so that an amount of amine, or of amine and ammonia, is present which is at least equivalent to the imide forming groups of the polymer being treated.
The polymers being treated are heated with these aqueous solutions at temperatures of between 180 C. and 300 C. The reaction is commonly carried out in an autoclave under autogenous pressure which varies with the temperature used and the amount and concentration of amine present. In general, pressures between about 8 and about atmospheres, suitably from about 8 to 40 atmospheres, are preferred during treatment, but the pressures are not critical. The treatment may vary in duration from /2 hour to 7 hours, depending on the degree of conversion desired, the temperature used, and the amount and concentration of amine, for example. Such considerations are common to all chemical reactions and are within the skill of the art.
The invention is particularly useful when applied to homopolymers of methylmethacrylate, but copolymers of methylmetlracrylate with methacrylic acid and/or with one or more methacrylic acid derivatives such as methacrylonitrile, methacrylamide, Nlower alkyl methacrylamides such as N-methyl, N-ethyl, N-propyl, and N-butyl methacrylamides, methacrylic acid chloride, or ammonium methacrylate can also be treated. These comonomeric materials, present in a copolyrner with methylmethacrylate, will imidize under the reaction conditions to form the polymethacrylimide polymers of the invention. One or more of these comonomeric materials may be present, with methylmethacrylate, in amounts up to percent by weight of the polymer treated. Particularly convenient starting materials are homopolymers of meth ylmethacrylate, as mentioned, or copolymers of this material with from about 10 up to about 50 percent by weight of one or more of the comonomers mentioned earlier.
The treatment of methylmethacrylate homopolymers and copolymers with an aqueous solution of a primary amine gives products which, in contrast to the products obtained in the prior art, are extremely difiicult to hydrolyze. When hydrolysis is accomplished under strenuous conditions such as high temperature and strongly alkaline media, the products obtained, when used as soil conditioners, are characterized by an especially high persistence and an eifectiveness extending for a period of several years.
The products obtained by treating methylmethacrylate homopolymers and copolymers with an aqueous solution of primary amines according to the invention are waterinsoluble and alkali-resistant, but can be dissolved in suitable solvents, for example in a mixture of dimethyl formamide and formic acid, and can then be used for the production of polymer films according to methods known to the art. As another possibility, dried products obtained according to the process can be pressed. The films, as Well as the pressed products, are characterized by a high resistance to deformation by heat even at temperatures higher than 200 C., and notably exceed the behavior of the polymethylmethacrylate starting products in thisrespect.
In accordance with a preferred embodiment of the invention, products which are particularly readily susceptible to filtration are obtained when polymethylmethacrylate is treated with primary and/or secondary amines in an aqueous solution of an electrolyte, for example, calcium chloride or ammonium sulfate.
The advantages and utility of the method of the invention will be further apparent from the following examples which illustrate typical specific methods within the scope of the invention and set forth the best modes now contemplated of practicing the invention. It is to be understood that these examples are illustrative only and that numerous changes can be made in the materials, preparations and conditions described without departing from the invention. The parts are by weight unless specified otherwise.
Example 1 120 grams of rough milled polymethylmethacrylate were heated for 7 hours at 230 C. in a tubular autoclave with 192 grams of a 33 /3 percent aqueous solution of methylamine and 780 grams of water. A pressure between about 30 atmospheres and 36 atmospheres was maintained. The reaction product comprised a watery phase and a polymer phase insoluble in water, aqueous ammonia, and most organic solvents. The solid product had a nitrogen content of 8.4 percent and a OCH content of 0.2 percent. The product is extraordinarily resistant to aqueous alkali. For example, it is not attacked by immersion at 90 C. in a percent sodium hydroxide solution for a period of 8 hours.
Example 2 120 grams of granulated polymethylmethacrylate were heated at 270 C., with stirring, for 7 hours in a stainless steel autoclave with 149 grams of butyl amine and 910 grams of water. A maximum pressure of 55 atmospheres was attained.
After cooling, a solid, yellow-white mass insoluble in water and in dilute ammonia was obtained. This mass was dissolved in dimethyl formamide. By drying the solution, a glass-clear colorless film of poly-N-butyl methacrylimide was obtained. By analysis, the polymer had a methoxy group content of 0.3 percent, which corresponds with 1 percent by weight of unreacted methylmethacrylate units. Determination of the acid number gave a carboxyl group content of 0.6 percent.
Elemental analysis gave the following values:
250 grams of a coarsely divided copolymer containing 60 percent by weight of methylmethacrylate and 40 percent by weight of N-methylmet-hacrylamide were heated with stirring in a stainless steel autoclave for 4 hours at 250 C. with 500 grams of a 6 percent aqueous solution of methyl amine. The reaction product is a yellow-white water-insoluble mass which, after drying, was pressed into a test plate. The resistance of this material to deformation by heat according to the method of Vicat was 173 C. The nitrogen content was 8.4 percent (the calculated value for poly-N-methylmethacrylimide is 8.4 percent).
A determination of the acid number indicated 1.2 percent by weight of methacrylic acid units. Based on the methoxyl content, 1 percent by weight of methylmethacrylate units had not reacted.
4;- Example 4 1 gram of a copolymer comprising 71.3 mol percent of methylmethacrylate and 28.7 mol percent of methacrylonitrile were heated for 7 hours at 270 C. in an autoclave with 0.75 gram of methyl amine and 5 grams of water. The reaction product had the same properties and gave the same elementary analysis as did the poly-N-methylmethacrylimide of the previous example.
Example 5 35 grams of a copolymer comprising 55 mol percent of methylmethacrylate and 45 mol percent of N-isopropyl methacrylamide were heated for 4 hours in an autoclave at 270 C. with 500 grams of a 2 percent aqueous solution of isopropyl amine. The reaction product is a yellowwhite mass insoluble in water and aqueous ammonia.
A methoxy group determination indicated the presence of 0.02 percent by weight of unreacted methylmethacrylate units. Determination of the acid number indicated 1.8 percent by weight of methacrylic acid units. The nitrogen content of the reaction product amounted to 7.0 percent (the calculated value for pure poly-N-isopropyl methacrylimide is 7.3 percent).
Example 6 TABLE Corresponding Mol Percent Exlarmple We1ght Percent Imide Irnide Comonomer 4 50.5 dodeeyl imide.-. 39 61% methylmethacrylate. 5 68.8 cetyl imide 55 45% methylmethacrylate. 6 67.2 octodecyl unide... 50 50% methylmethacrylate. 7 88 butyl imide 86 14% methacrylic acid.
9 86.5 dodecyl imide 81 19% methylmethacrylate.
Examples 2, 3, and 8 of Graves do not contain sufiicient data for analysis. Example 1 of the Graves patent reports a polymer containing 8.71 percent of nitrogen. The conclusion, reached by Graves from this figure, that the polymer is primarily polymethacrylic acid imide appears incorrect. For example, the polymer is reported to be soluble in dilute ammonia, but polymethacrylic acid imide is known to be insoluble in ammonia. While the nitrogen analysis is probably correct, the product obtained is most likely a copolymer consisting in part of methacrylimide, of methacrylamide, and of ammonium methacrylate.
What is claimed is:
1. The method of making water-insoluble alkali-resistant polymethacrylimides which are substantially free of carboxy groups and wherein the degree of imidization of said polymethacrylimides is at least 95 percent, which method comprises heating, at a temperature between about 180 C. and 300 C. and at a pressure of about 8 to about 85 atmospheres, a member selected from the group consisting of homopolymers of methyl methacrylate and copolymers of methyl methacrylate with up to percent by weight of a comonomer selected from the group consisting of methacrylic acid, Inethacrylonitrile, methacrylamide, methacrylamides of primary lower alkyl monoamines having 1 to 4 carbon atoms, methacrylic acid chloride, and ammonium methacrylate, with an aqueous solution containing from about 1 to about 30 percent, by weight of said solution, of a primary aliphatic monoamine, sufiicient solution being used so that an amount of monoamine at least equivalent to the imideforming groups of the polymer being treated is present.
2. The method as in claim 1 wherein the reaction is performed at a pressure between about 8 atmospheres and about 40 atmospheres.
3. The method as in claim 1 wherein a homopolymer of methylrnethacrylate is treated.
4. The method as in claim 1 wherein a copolymer of methylmethacrylate is treated.
5. The method as in claim 1 wherein said primary aliphatic monoamine is a lower alkyl amine.
6. The method as in claim 1 wherein said solution additionally contains up to 10 percent, by weight of said solution, of ammonia.
References Cited by the Examiner UNITED STATES PATENTS 2/1939 Graves 260-72 8/1957 Roth 260-80.3 12/1957 Shearer 26080.3 7/1958 Melamed 260-86.1 12/1959 Ayers 260-89.5 5/1962 Rauch et al. 26089.5
FOREIGN PATENTS 8/ 1959 Great Britain.
15 H. WONG,
Assistant Examiner.

Claims (1)

1. THE METHOD OF MAKING WATER-INSOLUBLE ALKALI-RESISTANT POLYMETACRYLIMIDES WHICH ARE SUBSTANTIALLY FREE OF CARBOXY GROUPS AND WHEREIN THE DEGREE OF IMIDIZATION OF SAID POLYMETHACRYLIMIDES IS AT LEAST 95 PERCENT, WHICH METHOD COMPRISES HEATING, AT A TEMPERATURE BETWEEN ABOUT 1800*C AND 300*C. AND AT A PRESSURE OF ABOUT 8 TO ABOUT 85 ATMOSPHERES, A MEMBER SELECTED FROM THE GROUP CONSISTING OF HOMOPOLYMERS OF METHYL METHACRYLATE AND COPOLYMERS OF METHYL METHACRYLATE WITH UP TO 90 PERCENT BY WEIGHT OF A COMONOMER SELECTED FROM THE GROUP CONSISTING OF METHARCRYLIC ACID,METHACRYLONITRILE, METHACRYLAMIDE, METHACRYLAMIDES ACID, METHACRYLONTRILE, MONOAMINES HAVING 1 TO 4 CARBON ATOMS, METHACRYLIC ACID CHLORIDE, AND AMMONIUM METHACRYLATE, WITH AN AQUEOUS SOLUTION CONTAINING FROM ABOUT 1 TO ABOUT 30 PERCENT, BY WEIGHT OF SAID SOLUTION, OF A PIMARY ALIPHATIC MONOAMINE, SUFFICIENT SOLUTION BEING USED SO THAT AN FORMIN GROUPS OF THE POLYMER BENG TREATED IS PRESENT. FORMING GROUPS OF THE POLYMER BEING TREATED IS PRESENT.
US368452A 1958-03-22 1964-05-15 Conversion of polymethacrylate to polymethacrylimide in an aqueous system Expired - Lifetime US3284425A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DER22969A DE1077872B (en) 1958-03-22 1958-03-22 Process for the preparation of nitrogen-containing derivatives of polymethacrylic acid
DER25227A DE1088231B (en) 1958-03-22 1959-03-26 Process for the preparation of nitrogen-containing derivatives of polymethacrylic acid

Publications (1)

Publication Number Publication Date
US3284425A true US3284425A (en) 1966-11-08

Family

ID=25991216

Family Applications (1)

Application Number Title Priority Date Filing Date
US368452A Expired - Lifetime US3284425A (en) 1958-03-22 1964-05-15 Conversion of polymethacrylate to polymethacrylimide in an aqueous system

Country Status (2)

Country Link
US (1) US3284425A (en)
DE (1) DE1088231B (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2652118A1 (en) * 1975-11-19 1977-06-02 Rohm & Haas IMIDE-CONTAINING POLYMERIZES AND PROCESS FOR THEIR PRODUCTION
US4246374A (en) * 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
EP0076691A1 (en) 1981-10-07 1983-04-13 Rohm And Haas Company Anhydride polymers and imide polymers and processes for preparing them
EP0155567A2 (en) * 1984-03-02 1985-09-25 Mitsubishi Rayon Co., Ltd. Light-transmitting fiber
EP0200530A2 (en) * 1985-05-01 1986-11-05 Mitsubishi Rayon Co., Ltd. Process for preparing methacrylimide-containing polymers
EP0216505A2 (en) * 1985-08-27 1987-04-01 Rohm And Haas Company Polyimides, preparation of polyimides and blends of polyimides
EP0234726A2 (en) * 1986-01-23 1987-09-02 Mitsubishi Rayon Co., Ltd. Methacrylate resin composition and process for its preparation
EP0331052A2 (en) * 1988-02-25 1989-09-06 ELF ATOCHEM ITALIA S.r.l. Process for the preparation of imidized acrylic polymers
US4927893A (en) * 1988-10-31 1990-05-22 Mitsubishi Rayon Co., Ltd. Process for producing methacrylimide group-containing polymer
EP0373610A2 (en) * 1988-12-13 1990-06-20 Mitsubishi Rayon Co., Ltd. Methacrylimide-containing polymer and thermoplastic resin composition comprising this polymer
EP0376750A2 (en) * 1988-12-29 1990-07-04 Mitsubishi Rayon Co., Ltd. Methacrylimide containing polymer
US4954574A (en) * 1985-08-27 1990-09-04 Rohm And Haas Company Imide polymers
US4954575A (en) * 1988-12-29 1990-09-04 Mitsubishi Rayon Company, Limited Methacrylimide containing polymer
US5004777A (en) * 1985-08-27 1991-04-02 Rohm And Haas Company Imide polymers
US5006609A (en) * 1989-01-27 1991-04-09 Basf Aktiengesellschaft Preparation of cyano-containing copolymers based on ethylene
US5023302A (en) * 1988-08-30 1991-06-11 Mitsubishi Rayon Company, Ltd. Process for preparation of methacrylimide group containing polymer and light-transmitting fiber comprising polymer made by the process
WO1991009886A1 (en) * 1989-12-29 1991-07-11 Lucky, Ltd. A process for the preparation of heat resistant and transparent acrylic resin
US5096976A (en) * 1988-12-29 1992-03-17 Mitsubishi Rayon Co., Ltd. Methacrylimide-containing polymer
US5135985A (en) * 1990-05-11 1992-08-04 Rohm Gmbh Homogeneous mixture of polymethacrylimide polymers
EP0548657A1 (en) * 1991-12-21 1993-06-30 BASF Aktiengesellschaft Poly(meth)acrylimides having different N-substituents
EP0549922A1 (en) * 1991-12-21 1993-07-07 BASF Aktiengesellschaft N-Aryl substituted poly(meth)acrylimide
US5264483A (en) * 1985-08-27 1993-11-23 Rohm And Haas Company Imide polymers
EP0591025A1 (en) * 1992-10-02 1994-04-06 Elf Atochem S.A. Process for the manufacture of glutarimide copolymers and intermediate compounds thereof
US5360872A (en) * 1992-04-13 1994-11-01 The Geon Company Method for enhancing the miscibility of halogenated polymers with immiscible polymers
US5416142A (en) * 1991-12-17 1995-05-16 Oatey Company Method of bonding and bonding compositions
US5530071A (en) * 1992-08-04 1996-06-25 Elf Atochem S.A. Preparation of imide-modified methyl methacrylate (MMA) polymer/copolymers
US5604278A (en) * 1992-12-23 1997-02-18 The B. F. Goodrich Company CPVC compounds and articles made therefrom for design stress rating above 180° F.
US6303260B1 (en) 2000-03-31 2001-10-16 Microchem Corp. Dissolution rate modifiers for lift-off resists
US6395449B1 (en) 2000-03-31 2002-05-28 Microchem Corp. Poly-hydroxy aromatic dissolution modifiers for lift-off resists
US6586560B1 (en) 2001-09-18 2003-07-01 Microchem Corp. Alkaline soluble maleimide-containing polymers
WO2004083281A1 (en) 2003-03-17 2004-09-30 Lg Chem, Ltd. A process for preparation of polyglutarimide resin using a fluid of super critical condition
US20060252865A1 (en) * 2005-05-06 2006-11-09 Bush Charles N Universal solvent cement
US20080318072A1 (en) * 2003-12-02 2008-12-25 Kaneka Corporation Imide Resin, Production Method of Imide Resin, and Usage of Imide Resin
WO2012047972A1 (en) 2010-10-08 2012-04-12 E. I. Du Pont De Nemours And Company Ionomers modified with imidized acrylic resins
US8445089B1 (en) 2011-11-29 2013-05-21 E I Du Pont De Nemours And Company Polyoxymethylene modified with imidized acrylic resins
US20160159995A1 (en) * 2013-07-10 2016-06-09 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
DE112012004979B4 (en) 2011-11-29 2019-03-07 E.I. Du Pont De Nemours And Company Thermoplastic composition, article comprising the composition and use of the composition
US11459484B2 (en) 2019-04-30 2022-10-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Chemistries for biocompatible additive nanolithography

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1242369B (en) * 1960-12-17 1967-06-15 Roehm & Haas Gmbh Process for the preparation of N-alkylated polymethacrylic acid imides
DE1165861B (en) * 1960-12-17 1964-03-19 Roehm & Haas Gmbh Process for the preparation of N-alkylated polymethacrylic acid imides
DE19544479A1 (en) 1995-11-29 1997-06-05 Roehm Gmbh Process for the preparation of an imidized polymer of alkyl esters
DE102007005428A1 (en) 2007-01-30 2008-07-31 Evonik Röhm Gmbh Molding material useful for making shaped products comprises a (meth)acrylimide (co)polymer and ceramic beads

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146209A (en) * 1936-07-31 1939-02-07 Du Pont Preparation of resinous imides of substituted acrylic acids
US2801985A (en) * 1956-05-18 1957-08-06 American Cyanamid Co Soil stabilization
US2816083A (en) * 1954-04-29 1957-12-10 Eastman Kodak Co Method of conditioning soils and conditioning agents therefor
US2845408A (en) * 1954-08-04 1958-07-29 Rohm & Haas Linear polymeric amides and methods of making them
GB818249A (en) * 1956-07-23 1959-08-12 Roehm & Haas Gmbh Modified polymers
US2915481A (en) * 1951-12-04 1959-12-01 Pure Oil Co Acrylic resins modified with alkanolamines
US3033782A (en) * 1957-01-28 1962-05-08 Roehm & Haas Gmbh Polymeric agglomerating agents

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146209A (en) * 1936-07-31 1939-02-07 Du Pont Preparation of resinous imides of substituted acrylic acids
US2915481A (en) * 1951-12-04 1959-12-01 Pure Oil Co Acrylic resins modified with alkanolamines
US2816083A (en) * 1954-04-29 1957-12-10 Eastman Kodak Co Method of conditioning soils and conditioning agents therefor
US2845408A (en) * 1954-08-04 1958-07-29 Rohm & Haas Linear polymeric amides and methods of making them
US2801985A (en) * 1956-05-18 1957-08-06 American Cyanamid Co Soil stabilization
GB818249A (en) * 1956-07-23 1959-08-12 Roehm & Haas Gmbh Modified polymers
US3033782A (en) * 1957-01-28 1962-05-08 Roehm & Haas Gmbh Polymeric agglomerating agents

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2652118A1 (en) * 1975-11-19 1977-06-02 Rohm & Haas IMIDE-CONTAINING POLYMERIZES AND PROCESS FOR THEIR PRODUCTION
US4246374A (en) * 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
EP0076691A1 (en) 1981-10-07 1983-04-13 Rohm And Haas Company Anhydride polymers and imide polymers and processes for preparing them
EP0076691B2 (en) 1981-10-07 1993-11-18 Rohm And Haas Company Anhydride polymers and imide polymers and processes for preparing them
EP0155567A2 (en) * 1984-03-02 1985-09-25 Mitsubishi Rayon Co., Ltd. Light-transmitting fiber
EP0155567A3 (en) * 1984-03-02 1989-05-24 Mitsubishi Rayon Co. Ltd. Light-transmitting fiber
US4816524A (en) * 1985-05-01 1989-03-28 Mitsubishi Rayon Company Limited Process for preparing methacrylimide-containing polymers
EP0200530A2 (en) * 1985-05-01 1986-11-05 Mitsubishi Rayon Co., Ltd. Process for preparing methacrylimide-containing polymers
EP0200530A3 (en) * 1985-05-01 1987-01-07 Mitsubishi Rayon Co. Ltd. Process for preparing methacrylimide-containing polymers
EP0216505A2 (en) * 1985-08-27 1987-04-01 Rohm And Haas Company Polyimides, preparation of polyimides and blends of polyimides
US5264483A (en) * 1985-08-27 1993-11-23 Rohm And Haas Company Imide polymers
US5004777A (en) * 1985-08-27 1991-04-02 Rohm And Haas Company Imide polymers
JPH0541643B2 (en) * 1985-08-27 1993-06-24 Rohm & Haas
US4954574A (en) * 1985-08-27 1990-09-04 Rohm And Haas Company Imide polymers
EP0216505A3 (en) * 1985-08-27 1989-07-19 Rohm And Haas Company Polyimides, preparation of polyimides and blends of polyimides
JPS6289705A (en) * 1985-08-27 1987-04-24 ロ−ム・アンド・ハ−ス・カンパニ− Imide polymer
AU593835B2 (en) * 1985-08-27 1990-02-22 Rohm And Haas Company Polyimides,preparation of polyimides and blends of polyimides
US4727117A (en) * 1985-08-27 1988-02-23 Rohm And Haas Company Imide polymers
EP0234726A2 (en) * 1986-01-23 1987-09-02 Mitsubishi Rayon Co., Ltd. Methacrylate resin composition and process for its preparation
EP0234726A3 (en) * 1986-01-23 1987-12-02 Mitsubishi Rayon Co. Ltd. Methacrylate resin composition and process for its preparation
US4745159A (en) * 1986-01-23 1988-05-17 Mitsubishi Rayon Co., Ltd. Methacrylate resin composition and process for its preparation
EP0331052A2 (en) * 1988-02-25 1989-09-06 ELF ATOCHEM ITALIA S.r.l. Process for the preparation of imidized acrylic polymers
EP0331052A3 (en) * 1988-02-25 1991-01-09 ELF ATOCHEM ITALIA S.r.l. Process for the preparation of imidized acrylic polymers
US5146535A (en) * 1988-08-30 1992-09-08 Mitsubishi Rayon Company Ltd. Light-transmitting fiber
US5023302A (en) * 1988-08-30 1991-06-11 Mitsubishi Rayon Company, Ltd. Process for preparation of methacrylimide group containing polymer and light-transmitting fiber comprising polymer made by the process
US4927893A (en) * 1988-10-31 1990-05-22 Mitsubishi Rayon Co., Ltd. Process for producing methacrylimide group-containing polymer
US5132371A (en) * 1988-12-13 1992-07-21 Mitsubishi Rayon Company Ltd. Methacrylimide-containing polymer and thermoplastic resin composition comprising this polymer
EP0373610A3 (en) * 1988-12-13 1992-01-15 Mitsubishi Rayon Co., Ltd. Methacrylimide-containing polymer and thermoplastic resin composition comprising this polymer
EP0373610A2 (en) * 1988-12-13 1990-06-20 Mitsubishi Rayon Co., Ltd. Methacrylimide-containing polymer and thermoplastic resin composition comprising this polymer
US5073606A (en) * 1988-12-29 1991-12-17 Mitsubishi Rayon Company, Limited Methacrylimide containing polymer
US5096976A (en) * 1988-12-29 1992-03-17 Mitsubishi Rayon Co., Ltd. Methacrylimide-containing polymer
EP0376750A3 (en) * 1988-12-29 1991-01-02 Mitsubishi Rayon Co., Ltd. Methacrylimide containing polymer
US4954575A (en) * 1988-12-29 1990-09-04 Mitsubishi Rayon Company, Limited Methacrylimide containing polymer
EP0376750A2 (en) * 1988-12-29 1990-07-04 Mitsubishi Rayon Co., Ltd. Methacrylimide containing polymer
US5006609A (en) * 1989-01-27 1991-04-09 Basf Aktiengesellschaft Preparation of cyano-containing copolymers based on ethylene
US5369189A (en) * 1989-12-29 1994-11-29 Lucky, Ltd. Process for the preparation of heat resistant and transparent acrylic resin
WO1991009886A1 (en) * 1989-12-29 1991-07-11 Lucky, Ltd. A process for the preparation of heat resistant and transparent acrylic resin
US5135985A (en) * 1990-05-11 1992-08-04 Rohm Gmbh Homogeneous mixture of polymethacrylimide polymers
US5416142A (en) * 1991-12-17 1995-05-16 Oatey Company Method of bonding and bonding compositions
EP0549922A1 (en) * 1991-12-21 1993-07-07 BASF Aktiengesellschaft N-Aryl substituted poly(meth)acrylimide
US5350808A (en) * 1991-12-21 1994-09-27 Basf Aktiengesellschaft Poly(meth)acrylimides with different n-substitutes
US5378765A (en) * 1991-12-21 1995-01-03 Basf Aktiengesellschaft N-aryl-substituted poly (meth) acrylimides
EP0548657A1 (en) * 1991-12-21 1993-06-30 BASF Aktiengesellschaft Poly(meth)acrylimides having different N-substituents
US5360872A (en) * 1992-04-13 1994-11-01 The Geon Company Method for enhancing the miscibility of halogenated polymers with immiscible polymers
US5530071A (en) * 1992-08-04 1996-06-25 Elf Atochem S.A. Preparation of imide-modified methyl methacrylate (MMA) polymer/copolymers
FR2696469A1 (en) * 1992-10-02 1994-04-08 Atochem Elf Sa Process for the preparation of glutarimide copolymers and useful intermediates
EP0591025A1 (en) * 1992-10-02 1994-04-06 Elf Atochem S.A. Process for the manufacture of glutarimide copolymers and intermediate compounds thereof
US5420209A (en) * 1992-10-02 1995-05-30 Elf Atochem S.A. Preparation of (meth) acrylic/glutarimide copolymers
US5604278A (en) * 1992-12-23 1997-02-18 The B. F. Goodrich Company CPVC compounds and articles made therefrom for design stress rating above 180° F.
US6303260B1 (en) 2000-03-31 2001-10-16 Microchem Corp. Dissolution rate modifiers for lift-off resists
US6395449B1 (en) 2000-03-31 2002-05-28 Microchem Corp. Poly-hydroxy aromatic dissolution modifiers for lift-off resists
US6586560B1 (en) 2001-09-18 2003-07-01 Microchem Corp. Alkaline soluble maleimide-containing polymers
WO2004083281A1 (en) 2003-03-17 2004-09-30 Lg Chem, Ltd. A process for preparation of polyglutarimide resin using a fluid of super critical condition
US20060155075A1 (en) * 2003-03-17 2006-07-13 Park Sang H Process for preparation of polyglutarimide resin using a fluid of super critical condition
US20080318072A1 (en) * 2003-12-02 2008-12-25 Kaneka Corporation Imide Resin, Production Method of Imide Resin, and Usage of Imide Resin
US20060252865A1 (en) * 2005-05-06 2006-11-09 Bush Charles N Universal solvent cement
US7592385B2 (en) 2005-05-06 2009-09-22 Oatey Company Universal solvent cement
WO2012047972A1 (en) 2010-10-08 2012-04-12 E. I. Du Pont De Nemours And Company Ionomers modified with imidized acrylic resins
US8691917B2 (en) 2010-10-08 2014-04-08 E I Du Pont De Nemours And Company Ionomers modified with imidized acrylic resins
US8445089B1 (en) 2011-11-29 2013-05-21 E I Du Pont De Nemours And Company Polyoxymethylene modified with imidized acrylic resins
DE112012004979B4 (en) 2011-11-29 2019-03-07 E.I. Du Pont De Nemours And Company Thermoplastic composition, article comprising the composition and use of the composition
US20160159995A1 (en) * 2013-07-10 2016-06-09 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
US10450431B2 (en) * 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
US11459484B2 (en) 2019-04-30 2022-10-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Chemistries for biocompatible additive nanolithography

Also Published As

Publication number Publication date
DE1088231B (en) 1960-09-01

Similar Documents

Publication Publication Date Title
US3284425A (en) Conversion of polymethacrylate to polymethacrylimide in an aqueous system
US4075183A (en) Preparation of water-soluble high polymers
Tosa et al. Basic studies for continuous production of L-aspartic acid by immobilized Escherichia coli cells
US4138446A (en) Water-soluble high polymers and their preparation
SU1299501A3 (en) Method for producing solutions of acrylamide or methacrylamide
US2978432A (en) Process for producing polymers and copolymers containing methylolether groups
US5297740A (en) Process for the production of polyacrylic acids
US2831841A (en) Treatment of acrylamide polymers
US4902751A (en) Preparation of modified acrylamide polymers
US3948870A (en) Method of preparing hydrophilic copolymers of acrylonitrile
US2959574A (en) Water-soluble reaction composition of hydroxylamine with acrylamide-acrylonitrile copolymer
US4585846A (en) Cyclopolymerizable sulfobetaine monomer
US3200102A (en) Process for the production of hydrolyzed acrylonitrile polymers
EP0225596A2 (en) Method of producing sulfomethyl polyacrylamide polymers and sulfomethylamide unit containing polymers
US2813088A (en) Process for making polymeric nitrogencontaining derivatives of acrylamide or acrylamide and acrylonitrile in a strongly acid aqueous medium
US3380947A (en) Process for the preparation of aqueous solutions of flocculating agents of the polyacrylic amide type having high molecular weight
US3969329A (en) Process for producing high molecular weight acrylamide water-soluble polymers by controlling the viscosity of the polymerization reaction medium with a water-miscible organic solvent
DK172580B1 (en) Process for the preparation of polymers and copolymers of amidosulfonic acid-containing monomers and salts thereof
US3200098A (en) Polymerization of acrylamide monomer in the presence of free ammonia and the resulting polyacrylamide product
CN112063842A (en) Deplating recovery process for electroplating ABS (acrylonitrile butadiene styrene) plastic
JPWO2004090148A1 (en) Method for producing high-quality acrylamide polymer using enzyme
US2944033A (en) Exchange resins from nu-halogenated copolymers
US5004786A (en) Process for producing sulfomethylamide polymers
AU607035B2 (en) Preparation of modified acrylamide polymers
SU673179A3 (en) Method of producing linked ethylene polymerizates