US3257801A - Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder - Google Patents

Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder Download PDF

Info

Publication number
US3257801A
US3257801A US208573A US20857362A US3257801A US 3257801 A US3257801 A US 3257801A US 208573 A US208573 A US 208573A US 20857362 A US20857362 A US 20857362A US 3257801 A US3257801 A US 3257801A
Authority
US
United States
Prior art keywords
boron
composition
aluminum
additive
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US208573A
Inventor
Charles H Martinez
Carl R Fingerhood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North American Aviation Corp
Original Assignee
North American Aviation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North American Aviation Corp filed Critical North American Aviation Corp
Priority to US208573A priority Critical patent/US3257801A/en
Application granted granted Critical
Publication of US3257801A publication Critical patent/US3257801A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/06Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being an inorganic oxygen-halogen salt
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/02Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with an organic non-explosive or an organic non-thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters

Definitions

  • the present invention deals with a new and improved pyrotechnic composition and the use of such composition. More particularly, the invention isdirected to a propellant or pyrotechnic composition employing an oxidizer material and a combination of particular metal additives.
  • An object of this invention is to provide an igniter composition having a high heat output per unit weight.
  • a further object of this invention is to provide a composition having superior ignition properties.
  • a still further object of this invention is to provide an ignition composition of generally high density which is of particular importance in space vehicle applications where high weight per unit volume is desired.
  • An additional object of this invention is to provide a propellant composition with a relatively high strength and stable burning qualities which is simple to prepare and uses readily available ingredients.
  • a pyrotechnic composition which comprises from 50 to about 80 percent by weight of a mixture of boron powder and aluminum powder, such that from about 27 to 72 percent of the mixture is aluminum, from about 15 to 30 percent by Weight of a solid oxidizer, and from about 5 to about 15 percent by weight of a decomposable organic polymeric binder.
  • the composition of this invention comprises from about 20 to about 30 percent by weight aluminum and from about to 55 percent by weight boron.
  • the mixture of boron and aluminum powders the
  • composition of this invention may contain from about 0 to about 5 percent additional miscellaneous additives which are described in detail hereinafter.
  • the igniter composition of this invention can be used as the fuel or grain in a ramjet' engine.
  • This particular application is seen in detail in Figs. 1-2 on page 2 of the book, Rocket Propulsion Elements, by George P. Sutton, Second Edition, published by John Wiley and Sons, Inc., New York, New York.
  • a squib which is electrically ignited in turn ignites the grain which is made of the composition of this invention.
  • the burning of this grain creates gaseous products which are ejected from the combustion chamber to produce usable thrust.
  • the present invention is predicated on the presence of certain specific percentages of aluminum powder and boron powder in theigniter or pyrotechnic While, in general, from 50 to percent by weight of the composition is the combination of a'uminum and boron, it is preferred to employ from 60 to 70 percent of the mixture of aluminum and boron, since very may be either naturally occurring, modified materials occurring in nature, or synthetically prepared.
  • thermoplastic materials which may be employed as binders are-polymers and copolymers of monoolefinic .hydrocarbons having at least two carbon atoms.
  • the polymers and copolymers of ethylene, propylene, various butenes, pentenes, and hexenes, as well as the halogenated counterparts of these olefins may be employed in the practice of this invention.
  • the thermosetting polymeric materials which may be employed are those plastics and resins which cure to a solid upon the application of heat with or without a chemical curing agent.
  • this class of material examples include the polyurethane resins, epoxide resins, polyester materials, and di-(thioalkoxy) methylene polymers (polysulfide polymers).
  • elastomers such as the natural and synthetic rubbers, may be practicably and profitably employed in the practice of this invention.
  • the synthetic rubbers are ordinary polymers and copolymers of a diolefin (as a major constituent) with other olefin constituents and which are subject to vulcanization with sulfur subsequent to polymerization to cross-link the polymer through any remaining carbon to-carbon double bonds.
  • organic polymers derived fromnitrate, cellulose acetate, cellulose acetate-butyrate, ethylcellulose, and the cellulose others such as methyl carboxymethyl, hydroxyethyl, cyanoethyl and benzyl cellulose.
  • Applicable linear addition polymers include natural and vulcanized rubbers such as gutta-percha, balata, and chicle, cyclized or isomerized rubber, rubber hydrochloride, polybutadiene rubbers including Gr-S and nitrile rubber, polychloroprene and its copolymers, polysulphide rubbers, polyisobutylene and the butylrubbers, the various polyethylenes including chlorosulphonated polyethylene rubbers, polytetrafluorethylene, polystyrene, polyvinylcarbazole and polyacenaphthylene, indene and coumaroneindene resins, polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl formal, polyvinyl acetal, and polyvinyl butyral, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers polyacrylonitrile, vinyl chloride-acrylonitrile copo
  • Cross-linking polymer binders applicable to the present invention include cross-linking type polyester resins, various epoxy resins, polymerized drying oils, aniline formaldehyde resins, sulphonamide-formaldehyde resins, ureaformaldehyde resins, melamine-formaldehyde resins, and the various phenol-formaldehyde condensation resins.
  • plasticizers may be of the general type, inert plasticizers and explosive plasticizers.
  • inert plasticizers include triacetin, the various phthalates such as diethyl phthalate, dibutyl phthalate, dioctyl phthalate, di-( methoxyethyl) phthalate, methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate and butyl phthalyl butyl glycolate, sebacates such as dibutyl and dicotyl sebacates, adipates such as dioctyl adipate and di(3,5,5-trimethylhexyl)adipate, glycol esters of higher fatty acids, organic phosphate esters such as tributoxyethyl phosphate, and the like.
  • the explosive plasticizers include nitroglycer
  • the oxidizing agents employed in the composition of this invention can be compounds such as metal perchlorates and metal nitrates.
  • the metal perchlorates employed as oxidizing agents or oxygen carriers in the compositions are anhydrous and have the general formula M(ClO wherein M is NH, or a metal and x is the valence of M, and ordinarily has a value of 1 or 2. Since the propellant composition is required to withstand high temperature storage, it is preferable that the melting point and the decomposition temperatures of the oxidizer be as high as possible.
  • the perchlorates of the Group LA, Group LB, and Group II-A metals are found to have the required high temperature stability and are employed in the preparation of propellant compositions by the process of this invention.
  • the metal perchlorates used in the preparation of the propellant compositions include lithium perchlorate, sodium perchlorate, potassium perchlorate, rubidium perchlorate, and cesium perchlorate which are the perchlorates of the metals of Group I-A of the Periodic Table of Elements; silver perchlorate which is a perchlorate of the Group I-B metal; and magnesium perchlorate, calcium perchlorate, strontium perchlorate, and barium perchlorate which are the perchlorates of the Group ILA metals.
  • the compound ammonium perchlorate finds extensive use in propellant compositons.
  • nitrates of the Group IA, and LB and II-B which are employed in preparing propellant compositions by the process of this invention are compounds such as lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, barium nitrate, strontium nitrate, etc. Ammonium nitrate is also used.
  • the ratio of total solids-to-polymeric binder material in a propellant falls in the range of from about 1:1 to about 9:1 with an optimum ratio of about 8.5: 1.5.
  • burning catalysts well known in propellant compositions. These are composed of one or a mixture of two or more metal oxide powders in amounts sufiicient to improve the burning rate of the composition. The amounts usually range from about 0.01 to about 3 weight percent, based on the Weight of the oxidizer employed. The particle size of the powders can range from about 10 to about 250 microns in diameter.
  • metals that serve as burning catalysts are copper, vanadium, chromium, silver, molybednum, zirconium, antimony, manganese, iron, cobalt, and nickel.
  • metal oxide burning catalysts are ferric oxide, aluminum oxide, copper oxide, chromic oxide, as well as the oxides of the other metals mentioned above.
  • Curing catalysts are often added in minor amounts to cure the polymer in the performance of the process of this invention.
  • Non-limiting examples of catalysts used for this purpose are aluminum chloride, tristrimethylsilyl borate, benzoyl peroxide, and other catalysts well known in the curing of plastics, resins, polymers, and rubbers. Examples of various catalysts may be found in text books such as Synthetic Rubber, by G. S. Whitley, pp. 892- 933, 1954 Ed, published by John Wiley and Sons, Inc., New York.
  • the curing catalysts are added in amounts of from 0.1 to about 10 weight percent based on the weight of the polymer, resin or elastomer. The particular catalyst and amount employed depend on the state of cure desired and the nature of the polymeric material employed in the composition.
  • Example I A typical pyrotechnic igniter composition of this invention was prepared from aluminum and boron powders, po-
  • tassium perchlorate as the oxidizing agent
  • ethyl cellulose as the binder
  • 22 weight percent aluminum powder, 38 weight percent boron powder, 15 weight percent ethyl cellulose, and 25 weight percent potassim perchlorate were added to a mechanical mixer and blended until a uniform composition was obtained.
  • Propellant grains were prepared by compressing portions of the mixture in a die at pressures of lbs. per square inch, 25,000 lbs. per square inch, 2,000 lbs. per square inch and 10,000 lbs. per square inch. The die in which the mixture was placed was heated to 95 C. during the preparation of the grain.
  • Example II Another pyrotechnic composition of this invention is prepared by blending 370 parts by weight of boron powder, parts of aluminum powder, parts of a polyurethane liquid monomer, and 250 parts of potassium perchlorate. The mixed fluid ingredients were poured in a mold to form the propellant grain and cured at a tempera ture of 60 C. for 36 hours.
  • the aluminum powder employed should generally have a particle size of from 200 mesh to 325 mesh; preferably cent to 72 weight percent of said additive being aluminum, the remainder of said additive being boron, and a binder for binding said oxidizer and metal additive together.
  • a pyrotechnic composition comprising from about 15 to 25 weight percent of solid oxidizer, 8 to 15 Weight percent of a binder, and 50 to 80 weight percent of a metal additive consisting of boron and aluminum, approximately 27 to 72 weight percent of said additive being aluminum, the remainder of said additive being boron.
  • the overall composition comprises from about 15 to 30 percent solid oxidizer, to weight percent aluminum powder, to weight percent boron powder, and 5 to 15 percent plastic or elastomeric binder.
  • Other additives of from 0 to 5 percent, discussed above, may also be employed to control the particular physical properties of the resultant composition.
  • the igniter composition of this invention may be used in igniting either solid or liquid propellants.
  • the igniter material will ordinarily be in grain form adjacent to the solid propellant to be ignited.
  • a suitable electrically actuated squib is provided in juxtaposed position in order to set off the igniter material which When ignited ejects its combustion products into direct contact with the particular solid propellant.
  • a conventional ignitor having the composition of this invention therein is ignited by a conventionally operated squib and the combustion products of the igniter composition distributed over the face of an injector plate from which issues, under pressure, streams of liquid oxidizer and fuel which are ignited by the gaseous products beingejected trom the igniter composition.
  • the composition of this invention has applicability as a propellant composition itself wherein the propellant composition is burned in a conventional combustion chamber and the gaseous products from the reaction or combustion are ejected downstream from the combustion chamber through a nozzle to develop usable thrust.
  • a pyrotechnic composition comprising a solid oxidizer, 50 to 80 weight percent of metal additive consisting of boron and aluminum, approximately 27 per- 3.
  • the method of igniting solid and liquid propellants comprising ejecting into contact with said propellants the combustion products of a compound comprising a solid oxidizer, a binder,- and 50 to 80 weight percent of a metal additive of aluminum and boron, said aluminum being in the amount of 27 to 72 weight percent of said metal additive, the remainder of said metal additive being boron.
  • a readily ignitible composition comprising potassium perchlorate, 50 weight percent to 80 weight percent of metal additive consisting of boron and aluminum, approximately 27 weight percent to 72 weight percent of said additive being aluminum, the remainder of said additive being boron, and an ethyl cellulose binder.

Description

United States Patent 3,257,801 PYROTECHNIC COMPOSITION CDMPRISING SOLID OXIDIZER, BORON AND ALUMINUM ADDITIVE AND BINDER Charles H. Martinez, Canoga Park, and Carl R. Fingerhood, Northridge, Calif., assignors to North American Aviation, Inc. No Drawing. Filed July 9, 1962, Ser. No. 208,573 6 Claims. (Cl. 6035.4)
The present invention deals with a new and improved pyrotechnic composition and the use of such composition. More particularly, the invention isdirected to a propellant or pyrotechnic composition employing an oxidizer material and a combination of particular metal additives.
Pyrotechnic compositions are used for igniting flares, for ignition purposes in liquid and solid rockets, as solid propellants themselves, as gas generators, and for ramjet fuels Known compositions generally employ an amount of oxidizer which approaches or exceeds a stoichiometric amount necessary to complete the combustion of the igniter compositions. In general, compositions which have a low amount of oxidizer of the order of less than 50 percent of the calculated stoichiometric ratio are difiicult to ignite and once ignited have a low heat out-put per unit of weight.
An object of this invention is to provide an igniter composition having a high heat output per unit weight.
A further object of this invention is to provide a composition having superior ignition properties.
A still further object of this invention is to provide an ignition composition of generally high density which is of particular importance in space vehicle applications where high weight per unit volume is desired.
An additional object of this invention is to provide a propellant composition with a relatively high strength and stable burning qualities which is simple to prepare and uses readily available ingredients.
The above objects as well as other objects of this invention will be apparent from the accompanying specification.
The objects of this invention are accomplished by a pyrotechnic composition which comprises from 50 to about 80 percent by weight of a mixture of boron powder and aluminum powder, such that from about 27 to 72 percent of the mixture is aluminum, from about 15 to 30 percent by Weight of a solid oxidizer, and from about 5 to about 15 percent by weight of a decomposable organic polymeric binder. Stated in terms of the overall composition, the composition of this invention comprises from about 20 to about 30 percent by weight aluminum and from about to 55 percent by weight boron. In addition to the mixture of boron and aluminum powders, the
oxidizer, and the hinder, the composition of this invention may contain from about 0 to about 5 percent additional miscellaneous additives which are described in detail hereinafter.
Although the elements, aluminum and boron have been used individually in preparing various propellant and pyrotechnic formulations, and although these elements have been used as their metal powders individually, and as compounds in such formulations, it has now been found that the presence of both aluminum powder and boron powder in a specific range of ratios results in a vastly improved composition.- Thus, the overall properties of a propellant, igniter, or pyrotechnic composition are such that a highly synergistic effect of greater heat output is produced by the composition of this invention. A unique feature of the composition of this invention is its ready ignitibility. This is a surprising property since the percent of oxidizer is much less than the stoichiometric quantity necessary for the oxidation of the powdered metals. A
composition.
3,257,801 Patented June 28, 1966 necessary for ignition. Furthermore, for the same amount of weight or volume, one will obtain much greater heat output with the improved composition.
The igniter composition of this invention can be used as the fuel or grain in a ramjet' engine. This particular application is seen in detail in Figs. 1-2 on page 2 of the book, Rocket Propulsion Elements, by George P. Sutton, Second Edition, published by John Wiley and Sons, Inc., New York, New York. In this publication a squib which is electrically ignited in turn ignites the grain which is made of the composition of this invention. The burning of this grain creates gaseous products which are ejected from the combustion chamber to produce usable thrust.
As noted above, the present invention is predicated on the presence of certain specific percentages of aluminum powder and boron powder in theigniter or pyrotechnic While, in general, from 50 to percent by weight of the composition is the combination of a'uminum and boron, it is preferred to employ from 60 to 70 percent of the mixture of aluminum and boron, since very may be either naturally occurring, modified materials occurring in nature, or synthetically prepared.
Among the thermoplastic materials which may be employed as binders are-polymers and copolymers of monoolefinic .hydrocarbons having at least two carbon atoms. Thus, the polymers and copolymers of ethylene, propylene, various butenes, pentenes, and hexenes, as well as the halogenated counterparts of these olefins may be employed in the practice of this invention. Amongv the thermosetting polymeric materials which may be employed are those plastics and resins which cure to a solid upon the application of heat with or without a chemical curing agent. Illustrative examples of this class of material include the polyurethane resins, epoxide resins, polyester materials, and di-(thioalkoxy) methylene polymers (polysulfide polymers). In addition, elastomers, such as the natural and synthetic rubbers, may be practicably and profitably employed in the practice of this invention. The synthetic rubbers are ordinary polymers and copolymers of a diolefin (as a major constituent) with other olefin constituents and which are subject to vulcanization with sulfur subsequent to polymerization to cross-link the polymer through any remaining carbon to-carbon double bonds.
In addition to the above, organic polymers derived fromnitrate, cellulose acetate, cellulose acetate-butyrate, ethylcellulose, and the cellulose others such as methyl carboxymethyl, hydroxyethyl, cyanoethyl and benzyl cellulose.
Examples of the amino-acid condensation polymers are regenerated proteins such as casein and vegetable globulins. Synthetic linear condensation polymers which may be employed in the practice of this invention include the polyamides such as nylon, and polyurethane resins, polyesters such as the alkyd and fiber-forming types, polyester and polyesteramide rubbers.
Applicable linear addition polymers include natural and vulcanized rubbers such as gutta-percha, balata, and chicle, cyclized or isomerized rubber, rubber hydrochloride, polybutadiene rubbers including Gr-S and nitrile rubber, polychloroprene and its copolymers, polysulphide rubbers, polyisobutylene and the butylrubbers, the various polyethylenes including chlorosulphonated polyethylene rubbers, polytetrafluorethylene, polystyrene, polyvinylcarbazole and polyacenaphthylene, indene and coumaroneindene resins, polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl formal, polyvinyl acetal, and polyvinyl butyral, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers polyacrylonitrile, vinyl chloride-acrylonitrile copoly-rners, polyvinylidene chloride and its cpolymers, polymethyl methacrylate and related polyacrylates, ketone aldehyde polymers and polyacrylate rubbers.
Cross-linking polymer binders applicable to the present invention include cross-linking type polyester resins, various epoxy resins, polymerized drying oils, aniline formaldehyde resins, sulphonamide-formaldehyde resins, ureaformaldehyde resins, melamine-formaldehyde resins, and the various phenol-formaldehyde condensation resins.
Furthermore, organic polymers containing elements other than carbon, hydrogen, oxygen, and nitrogen may be employed. For example, silicon-containing polymeric materials are advantageously adapted to the practice of this invention. The silicon-containing polymers fall into two general classes; that is, those having direct silicon-tocarbon bonds (the silanes) and those having silicon-bonded to carbon through oxygen (the siloxanes). The siliconcontaining materials often have a halogen in the molecule.
It is often advisable to employ plasticizers in the preparation and utilization of the polymeric and pastimeric materials employed in the invention. These plasticizers may be of the general type, inert plasticizers and explosive plasticizers. Examples of inert plasticizers include triacetin, the various phthalates such as diethyl phthalate, dibutyl phthalate, dioctyl phthalate, di-( methoxyethyl) phthalate, methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate and butyl phthalyl butyl glycolate, sebacates such as dibutyl and dicotyl sebacates, adipates such as dioctyl adipate and di(3,5,5-trimethylhexyl)adipate, glycol esters of higher fatty acids, organic phosphate esters such as tributoxyethyl phosphate, and the like. The explosive plasticizers include nitroglycerin, butane triol trinitrate, diglycol dinitrate, ethylene glycol dinitrate, and the like.
The oxidizing agents employed in the composition of this invention can be compounds such as metal perchlorates and metal nitrates. The metal perchlorates employed as oxidizing agents or oxygen carriers in the compositions are anhydrous and have the general formula M(ClO wherein M is NH, or a metal and x is the valence of M, and ordinarily has a value of 1 or 2. Since the propellant composition is required to withstand high temperature storage, it is preferable that the melting point and the decomposition temperatures of the oxidizer be as high as possible. The perchlorates of the Group LA, Group LB, and Group II-A metals are found to have the required high temperature stability and are employed in the preparation of propellant compositions by the process of this invention. Hence, the metal perchlorates used in the preparation of the propellant compositions include lithium perchlorate, sodium perchlorate, potassium perchlorate, rubidium perchlorate, and cesium perchlorate which are the perchlorates of the metals of Group I-A of the Periodic Table of Elements; silver perchlorate which is a perchlorate of the Group I-B metal; and magnesium perchlorate, calcium perchlorate, strontium perchlorate, and barium perchlorate which are the perchlorates of the Group ILA metals. In addition to the metal perchlorates, the compound ammonium perchlorate finds extensive use in propellant compositons. Examples of the nitrates of the Group IA, and LB and II-B which are employed in preparing propellant compositions by the process of this invention are compounds such as lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, barium nitrate, strontium nitrate, etc. Ammonium nitrate is also used.
The ratio of total solids-to-polymeric binder material in a propellant falls in the range of from about 1:1 to about 9:1 with an optimum ratio of about 8.5: 1.5.
Other substances which are employed in the preparation of propellants of this invention include minor amounts of burning catalysts, well known in propellant compositions. These are composed of one or a mixture of two or more metal oxide powders in amounts sufiicient to improve the burning rate of the composition. The amounts usually range from about 0.01 to about 3 weight percent, based on the Weight of the oxidizer employed. The particle size of the powders can range from about 10 to about 250 microns in diameter. Non-limiting examples of metals that serve as burning catalysts are copper, vanadium, chromium, silver, molybednum, zirconium, antimony, manganese, iron, cobalt, and nickel. Examples of metal oxide burning catalysts are ferric oxide, aluminum oxide, copper oxide, chromic oxide, as well as the oxides of the other metals mentioned above.
Curing catalysts are often added in minor amounts to cure the polymer in the performance of the process of this invention. Non-limiting examples of catalysts used for this purpose are aluminum chloride, tristrimethylsilyl borate, benzoyl peroxide, and other catalysts well known in the curing of plastics, resins, polymers, and rubbers. Examples of various catalysts may be found in text books such as Synthetic Rubber, by G. S. Whitley, pp. 892- 933, 1954 Ed, published by John Wiley and Sons, Inc., New York. The curing catalysts are added in amounts of from 0.1 to about 10 weight percent based on the weight of the polymer, resin or elastomer. The particular catalyst and amount employed depend on the state of cure desired and the nature of the polymeric material employed in the composition.
Example I A typical pyrotechnic igniter composition of this invention was prepared from aluminum and boron powders, po-
tassium perchlorate as the oxidizing agent, and ethyl cellulose as the binder. In terms of the overall composition, 22 weight percent aluminum powder, 38 weight percent boron powder, 15 weight percent ethyl cellulose, and 25 weight percent potassim perchlorate were added to a mechanical mixer and blended until a uniform composition was obtained. Propellant grains were prepared by compressing portions of the mixture in a die at pressures of lbs. per square inch, 25,000 lbs. per square inch, 2,000 lbs. per square inch and 10,000 lbs. per square inch. The die in which the mixture was placed was heated to 95 C. during the preparation of the grain.
Example II Another pyrotechnic composition of this invention is prepared by blending 370 parts by weight of boron powder, parts of aluminum powder, parts of a polyurethane liquid monomer, and 250 parts of potassium perchlorate. The mixed fluid ingredients were poured in a mold to form the propellant grain and cured at a tempera ture of 60 C. for 36 hours.
The aluminum powder employed should generally have a particle size of from 200 mesh to 325 mesh; preferably cent to 72 weight percent of said additive being aluminum, the remainder of said additive being boron, and a binder for binding said oxidizer and metal additive together.
2; A pyrotechnic composition comprising from about 15 to 25 weight percent of solid oxidizer, 8 to 15 Weight percent of a binder, and 50 to 80 weight percent of a metal additive consisting of boron and aluminum, approximately 27 to 72 weight percent of said additive being aluminum, the remainder of said additive being boron.
TABLE I Weight Al 13 Other Run Oxidizer Weight Binder Percent Welght Weight Weight Percent Percent Percent Percent NH4C104. 15 Polyurethane Resin 8 32 44 1 K0104 15 Polyester Resin 15 43 25 2 25 8 18 48 1 25 32 32 1 25 27 28 5 1 Adiprene L-lOO made by E. I. du Pont de Nemours and C0.
2 Laminac made by American Oyanamid Co.
The overall composition comprises from about 15 to 30 percent solid oxidizer, to weight percent aluminum powder, to weight percent boron powder, and 5 to 15 percent plastic or elastomeric binder. Other additives of from 0 to 5 percent, discussed above, may also be employed to control the particular physical properties of the resultant composition.
The igniter composition of this invention may be used in igniting either solid or liquid propellants. In the case of solid propellants, the igniter material will ordinarily be in grain form adjacent to the solid propellant to be ignited. A suitable electrically actuated squib is provided in juxtaposed position in order to set off the igniter material which When ignited ejects its combustion products into direct contact with the particular solid propellant. In the case of liquid propellant rockets a conventional ignitor having the composition of this invention therein is ignited by a conventionally operated squib and the combustion products of the igniter composition distributed over the face of an injector plate from which issues, under pressure, streams of liquid oxidizer and fuel which are ignited by the gaseous products beingejected trom the igniter composition. It can likewise be seen that the composition of this invention has applicability as a propellant composition itself wherein the propellant composition is burned in a conventional combustion chamber and the gaseous products from the reaction or combustion are ejected downstream from the combustion chamber through a nozzle to develop usable thrust.
Although this invention has been described and illustrated in detail, it is to be understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of this invention being governed by the terms of the appended claims.
We claim:
1. A pyrotechnic composition comprising a solid oxidizer, 50 to 80 weight percent of metal additive consisting of boron and aluminum, approximately 27 per- 3. The method of igniting solid and liquid propellants comprising ejecting into contact with said propellants the combustion products of a compound comprising a solid oxidizer, a binder,- and 50 to 80 weight percent of a metal additive of aluminum and boron, said aluminum being in the amount of 27 to 72 weight percent of said metal additive, the remainder of said metal additive being boron.
4. A readily ignitible composition comprising potassium perchlorate, 50 weight percent to 80 weight percent of metal additive consisting of boron and aluminum, approximately 27 weight percent to 72 weight percent of said additive being aluminum, the remainder of said additive being boron, and an ethyl cellulose binder.
5. The invention as set out in claim 4 in which said potassium perchlorate is in the amount of 15 to 30 References Cited by the Examiner UNITED STATES PATENTS 8/1924 ONeill. 2/1961 FOX 149-76 X OTHER REFERENCES Frazier, Proceedings of the 14th Annual Meetings of the Metal Powder Association, April 1958, pp. to 70.
LEON D. ROSDOL, Primary Examiner. L. A. SEBASTIAN, Assistant Examiner.

Claims (2)

1. A PYROTECHNIC COMPOSITION COMPRISING A SOLIC OXIDIZER, 50 TO 80 WEIGHT PERCENT OF METAL ADDITIVE CONSISTING OF BORON AND ALUMINUM, APPROXIMATELY 27 PERCENT TO 72 WEIGHT PERCENT OF SAID ADDITIVE BEING ALUMINUM, THE REMAINDER OF SAID ADDITIVE BEING BORON, AND A BINDER FOR BINDING SAID OXIDIZER AND METAL ADDITIVE TOGETHER.
6. THE METHOD OF DEVELOPING THRUST COMPRISING EJECTING FROM A COMBUSTION CHAMBER THE GASEOUS REACTION PRODUCTS PRODUCED BY THE COMBUSTION OF A SOLID OXIDIZER, 50 TO 80 WEIGHT PERCENT OF METAL ADDITIVE CONSISTING OF BORON AND ALUMINUM, APPROXIMATELY 27 TO 72 WEIGHT PERCENT OF SAID ADDITIVE BEING ALUMINUM, THE REMAINDER OF SAID ADDITIVE BEING BORON, AND A BINDER MATERIAL IN THE AMOUNT
US208573A 1962-07-09 1962-07-09 Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder Expired - Lifetime US3257801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US208573A US3257801A (en) 1962-07-09 1962-07-09 Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US208573A US3257801A (en) 1962-07-09 1962-07-09 Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder

Publications (1)

Publication Number Publication Date
US3257801A true US3257801A (en) 1966-06-28

Family

ID=22775098

Family Applications (1)

Application Number Title Priority Date Filing Date
US208573A Expired - Lifetime US3257801A (en) 1962-07-09 1962-07-09 Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder

Country Status (1)

Country Link
US (1) US3257801A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309249A (en) * 1965-03-15 1967-03-14 Paul L Allen Thermite-resin binder solid fuel composition
US3411964A (en) * 1967-07-31 1968-11-19 Navy Usa Illuminating flare composition composed of magnesium, sodium nitrate, and a vinyl terminated polysiloxane binder
US3462325A (en) * 1968-10-24 1969-08-19 Us Navy Flare composition comprising magnesium,sodium perchlorate,and a ternary organic binder
US3475237A (en) * 1968-07-01 1969-10-28 Dow Chemical Co Boron fuel-salt smoke-producing compositions
US3498858A (en) * 1967-10-13 1970-03-03 Standard Oil Co Method and a composition comprising silver carbonate and amorphous boron
US3566791A (en) * 1969-03-20 1971-03-02 Us Navy Signal cartridge for providing long duration display
US3613758A (en) * 1968-01-13 1971-10-19 Dynamit Nobel Ag Propagation primer
US3789609A (en) * 1969-03-07 1974-02-05 Us Army Propulsion method using 1-isopropenyl-2-ferrocenoyl-carborane burning rate catalyst
US3862865A (en) * 1971-05-24 1975-01-28 Kilgore Corp Sparkler composition
US3931374A (en) * 1969-10-13 1976-01-06 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Processes for the manufacture of fuel blocks containing a metallic powder and in the corresponding blocks
US3942320A (en) * 1973-04-09 1976-03-09 The United States Of America As Represented By The Secretary Of The Air Force Solid boron fuel burner for ramjet
US3945202A (en) * 1970-08-27 1976-03-23 Universal Propulsion Co. Rocket containing lead oxidizer salt-high density propellant
USRE29142E (en) * 1968-11-21 1977-02-22 Consiglio Nazionale Delle Richerche Combustible compositions for generating aerosols, particularly suitable for cloud modification and weather control and aerosolization process
US4083726A (en) * 1976-05-28 1978-04-11 Ameron, Inc. Magnesium containing protective coating for ferrous metal
US4101352A (en) * 1971-02-08 1978-07-18 The United States Of America As Represented By The Secretary Of The Navy Deflagrative electronic component potting compound
US4302259A (en) * 1979-10-31 1981-11-24 The United States Of America As Represented By The Secretary Of The Army MgH2 and Sr(NO3)2 pyrotechnic composition
US4708913A (en) * 1981-02-02 1987-11-24 Alloy Surfaces Company, Inc. Pyrophoric process and product
US5639984A (en) * 1995-03-14 1997-06-17 Thiokol Corporation Infrared tracer compositions
WO1999005079A1 (en) * 1997-07-22 1999-02-04 Cordant Technologies, Inc. Extrudable igniter compositions
WO1999011587A1 (en) * 1997-09-04 1999-03-11 Cordant Technologies, Inc. Flares having igniters formed from extrudable igniter compositions
US6170399B1 (en) 1997-08-30 2001-01-09 Cordant Technologies Inc. Flares having igniters formed from extrudable igniter compositions
US6521064B1 (en) * 2001-07-02 2003-02-18 The United States Of America As Represented By The Secretary Of The Navy Pyrotechnic burster composition
US6546838B2 (en) 2000-03-21 2003-04-15 Peter D. Zavitsanos Reactive projectiles for exploding unexploded ordnance
US20030070540A1 (en) * 2000-03-21 2003-04-17 Zavitsanos Peter D. Reactive projectiles, delivery devices therefor, and methods for their use in the destruction of unexploded ordnance
EP1386899A1 (en) * 2001-05-10 2004-02-04 Nippon Kayaku Kabushiki Kaisha Igniting agent composition, and igniter using the igniting agent composition
US20110056598A1 (en) * 2008-04-28 2011-03-10 Alan Twomey Improved explosive composition
US8182622B1 (en) * 2011-03-14 2012-05-22 Standard Fusee Corporation No-perchlorate flare composition
US8585838B1 (en) * 2008-04-28 2013-11-19 Blew Chip Holdings Pty Ltd. Explosive composition
EP2468700A3 (en) * 2010-12-08 2017-09-20 Diehl Defence GmbH & Co. KG Pyrotechnic decoy material for infra-red decoys
US9914671B1 (en) * 2012-08-27 2018-03-13 Digital Solid State Propulsion Llc Solid electrically controlled propellants
US10028504B1 (en) * 2016-04-22 2018-07-24 The United States Of America As Represented By The Secretary Of The Army Pyrotechnic iodine smoke generation for counter biological application
RU2732870C1 (en) * 2019-10-14 2020-09-24 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Paste-like fuel composition for ramjet engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1506323A (en) * 1919-12-05 1924-08-26 O'neill John Hugh Method and means of producing heat
US2970898A (en) * 1958-05-15 1961-02-07 Phillips Petroleum Co Process for preparing solid propellant charges

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1506323A (en) * 1919-12-05 1924-08-26 O'neill John Hugh Method and means of producing heat
US2970898A (en) * 1958-05-15 1961-02-07 Phillips Petroleum Co Process for preparing solid propellant charges

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309249A (en) * 1965-03-15 1967-03-14 Paul L Allen Thermite-resin binder solid fuel composition
US3411964A (en) * 1967-07-31 1968-11-19 Navy Usa Illuminating flare composition composed of magnesium, sodium nitrate, and a vinyl terminated polysiloxane binder
US3498858A (en) * 1967-10-13 1970-03-03 Standard Oil Co Method and a composition comprising silver carbonate and amorphous boron
US3613758A (en) * 1968-01-13 1971-10-19 Dynamit Nobel Ag Propagation primer
US3475237A (en) * 1968-07-01 1969-10-28 Dow Chemical Co Boron fuel-salt smoke-producing compositions
US3462325A (en) * 1968-10-24 1969-08-19 Us Navy Flare composition comprising magnesium,sodium perchlorate,and a ternary organic binder
USRE29142E (en) * 1968-11-21 1977-02-22 Consiglio Nazionale Delle Richerche Combustible compositions for generating aerosols, particularly suitable for cloud modification and weather control and aerosolization process
US3789609A (en) * 1969-03-07 1974-02-05 Us Army Propulsion method using 1-isopropenyl-2-ferrocenoyl-carborane burning rate catalyst
US3566791A (en) * 1969-03-20 1971-03-02 Us Navy Signal cartridge for providing long duration display
US3931374A (en) * 1969-10-13 1976-01-06 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Processes for the manufacture of fuel blocks containing a metallic powder and in the corresponding blocks
US3945202A (en) * 1970-08-27 1976-03-23 Universal Propulsion Co. Rocket containing lead oxidizer salt-high density propellant
US4101352A (en) * 1971-02-08 1978-07-18 The United States Of America As Represented By The Secretary Of The Navy Deflagrative electronic component potting compound
US3862865A (en) * 1971-05-24 1975-01-28 Kilgore Corp Sparkler composition
US3942320A (en) * 1973-04-09 1976-03-09 The United States Of America As Represented By The Secretary Of The Air Force Solid boron fuel burner for ramjet
US4083726A (en) * 1976-05-28 1978-04-11 Ameron, Inc. Magnesium containing protective coating for ferrous metal
US4302259A (en) * 1979-10-31 1981-11-24 The United States Of America As Represented By The Secretary Of The Army MgH2 and Sr(NO3)2 pyrotechnic composition
US4708913A (en) * 1981-02-02 1987-11-24 Alloy Surfaces Company, Inc. Pyrophoric process and product
US5639984A (en) * 1995-03-14 1997-06-17 Thiokol Corporation Infrared tracer compositions
WO1999005079A1 (en) * 1997-07-22 1999-02-04 Cordant Technologies, Inc. Extrudable igniter compositions
US6224099B1 (en) 1997-07-22 2001-05-01 Cordant Technologies Inc. Supplemental-restraint-system gas generating device with water-soluble polymeric binder
US6170399B1 (en) 1997-08-30 2001-01-09 Cordant Technologies Inc. Flares having igniters formed from extrudable igniter compositions
AU750304B2 (en) * 1997-09-04 2002-07-18 Alliant Techsystems Inc. Flares having igniters formed from extrudable igniter compositions
WO1999011587A1 (en) * 1997-09-04 1999-03-11 Cordant Technologies, Inc. Flares having igniters formed from extrudable igniter compositions
US6691622B2 (en) * 2000-03-21 2004-02-17 General Sciences, Inc. Reactive projectiles, delivery devices therefor, and methods for their use in the destruction of unexploded ordnance
US6546838B2 (en) 2000-03-21 2003-04-15 Peter D. Zavitsanos Reactive projectiles for exploding unexploded ordnance
US20030070540A1 (en) * 2000-03-21 2003-04-17 Zavitsanos Peter D. Reactive projectiles, delivery devices therefor, and methods for their use in the destruction of unexploded ordnance
US6679176B1 (en) * 2000-03-21 2004-01-20 Peter D. Zavitsanos Reactive projectiles for exploding unexploded ordnance
EP1386899A4 (en) * 2001-05-10 2008-10-29 Nippon Kayaku Kk Igniting agent composition, and igniter using the igniting agent composition
EP1386899A1 (en) * 2001-05-10 2004-02-04 Nippon Kayaku Kabushiki Kaisha Igniting agent composition, and igniter using the igniting agent composition
CZ305185B6 (en) * 2001-05-10 2015-06-03 Nippon Kayaku Kabushiki Kaisha Igniting agent composition and fuse using such composition
US6521064B1 (en) * 2001-07-02 2003-02-18 The United States Of America As Represented By The Secretary Of The Navy Pyrotechnic burster composition
US20110056598A1 (en) * 2008-04-28 2011-03-10 Alan Twomey Improved explosive composition
US8425701B2 (en) * 2008-04-28 2013-04-23 Blew Chip Holdings Pty Ltd. Explosive composition
US8585838B1 (en) * 2008-04-28 2013-11-19 Blew Chip Holdings Pty Ltd. Explosive composition
EP2468700A3 (en) * 2010-12-08 2017-09-20 Diehl Defence GmbH & Co. KG Pyrotechnic decoy material for infra-red decoys
US8182622B1 (en) * 2011-03-14 2012-05-22 Standard Fusee Corporation No-perchlorate flare composition
US9914671B1 (en) * 2012-08-27 2018-03-13 Digital Solid State Propulsion Llc Solid electrically controlled propellants
US10028504B1 (en) * 2016-04-22 2018-07-24 The United States Of America As Represented By The Secretary Of The Army Pyrotechnic iodine smoke generation for counter biological application
RU2732870C1 (en) * 2019-10-14 2020-09-24 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Paste-like fuel composition for ramjet engine

Similar Documents

Publication Publication Date Title
US3257801A (en) Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder
US3811358A (en) Solid propellants containing reinforcing filament and process of making
US3898112A (en) Solid 5-aminotetrazole nitrate gas generating propellant with block copolymer binder
US3609115A (en) Propellant binder
EP0520104A1 (en) Non-self-deflagrating fuel compositions for high regression rate hybrid rocket motor application
US3841929A (en) Solid propellant containing strontium carbonate-calcium citrate burning rate depressant
US3665862A (en) Caseless rocket containing silane polymer
US3986910A (en) Composite propellants containing critical pressure increasing additives
US3255059A (en) Fluoroalkyl acrylate polymeric propellant compositions
US3613597A (en) Solid propellant grain
US4379007A (en) Catalysts for nitramine propellants
US4420931A (en) Method of generating combustion gases utilizing polynorborene-based combustible compositions
US3923564A (en) Double base propellant with thorium containing ballistic modifier
US5509981A (en) Hybrid rocket fuel
US4416710A (en) Polynorbornene-based combustible compositions and processes for the fabrication thereof
US3726729A (en) Solid propellant compositions having a nitrocellulose-hydroxyl-terminated polybutadiene binder and method of preparing the same
US3017300A (en) Pelleted igniter composition and method of manufacturing same
US3123507A (en) Gas-generating compositions
US3386868A (en) Heat resistant propellants containing organic oxidizers
US3755019A (en) Solid propellant compositions containing plasticized nitrocellulose and aluminum hydride
US3653994A (en) Propellant compositions containing a metal nitrite burning rate catalyst
US3000716A (en) Burning rate catalysts for solid propellant compositions
US4206006A (en) Hybrid rocket propellant with nitroso derivative of hexamethylene tetramine
US3759765A (en) Gas producing compositions
US3000715A (en) Propellant compositions