US3247144A - Carboxy copolymers prepared in carboxylic acids and/or anhydrides - Google Patents

Carboxy copolymers prepared in carboxylic acids and/or anhydrides Download PDF

Info

Publication number
US3247144A
US3247144A US236728A US23672862A US3247144A US 3247144 A US3247144 A US 3247144A US 236728 A US236728 A US 236728A US 23672862 A US23672862 A US 23672862A US 3247144 A US3247144 A US 3247144A
Authority
US
United States
Prior art keywords
copolymer
anhydride
equivalent
solution
carboxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236728A
Inventor
John E Masters
Darrell D Hicks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Coatings Co
Original Assignee
Celanese Coatings Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Coatings Co filed Critical Celanese Coatings Co
Priority to US236728A priority Critical patent/US3247144A/en
Application granted granted Critical
Publication of US3247144A publication Critical patent/US3247144A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • This invention pertains to the polymerization of unsaturatcd acids and related compounds, with vinyl, vinylene or viuylidene compounds to form carboxy copolymers. It is particularly related to processes for the formation of solutions of carboxy copolymers which are capable of being readily cross-linked, and to methods for preparing molded articles or castings from such polymer solutions.
  • Carboxy copolymers of unsaturated acids or their alcohol esters and difier'ent unsaturated monomers are well known. They are prepared by polymerizing with said different monomer an unsaturated carboxylic acid such as acrylic, crotonic, metha-crylic, itaconic, maleic, the partial esters or partial salts thereof and anhydrides of the polycarboxylic acids by solution or emulsion polymerization techniques well known to those skilled in the art, the amount of carboxy component in the composition being from 1 to 80 weight percent based on the polymer.
  • unsaturated carboxylic acid such as acrylic, crotonic, metha-crylic, itaconic, maleic
  • the partial esters or partial salts thereof and anhydrides of the polycarboxylic acids by solution or emulsion polymerization techniques well known to those skilled in the art, the amount of carboxy component in the composition being from 1 to 80 weight percent based on the polymer.
  • emulsion polymerized carboxy copolymers are generally used as film-forming materials rather than in pottings, castings, and the like.
  • Solution polymerization of acid monomers with other unsaturated monomers to form carboxy copolymers does not lend itself to formation of molded articles because of the difficulty of removing the solvent. Even when a low boiling solvent such as acetone is used, it is ditlicult to form castings free of entrained solvent or of bubbles resulting from solvent liberation. While this invention is not limited thereto, the presence of solvents has prohibited an extensive use of carboxyl containing copolymers in the potting and casting fields. There are, of course, advantages in other fields as well as to not having a volatile solvent to remove.
  • the monomers are polymerized in the presence of a reactive solvent.
  • reactive solvent is meant a non-vo1atile solvent in which the polymer is soluble and which reacts with the polymer and/ or a cross-linking agent for the polymer under curing condition, that is, at curing temperatures and, if necessary, in the presence of a catalyst. It is under stood, however, that under polymerizing conditions, the solvent and the monomers are substantially non-reactive with each other.
  • the polymerization medium is a solvent which does not react with the monomer or the polymer during polymerization, but which reacts with either the polymer or the cross-linking agent or both when the temperature is raised above the polymerization temperature and a catalyst is used.
  • Polymer solutions are thus formed which can be mixed with cross-linking agents to form cured materials without the need for solvent liberation. This not only renders the polymer solutions particularly suitable for pottings, castings and encapsulations, but also provides a convenient reaction medium for making high polymers which otherwire would be of little value in pottings, castings, encapsulations etc. because of their extreme viscosities.
  • Reactive solvents which are employed in accordance with the practice of this invention are saturated carboxylic acids or anhydrides of such acids, alcohols and epoxides, each boiling at C. or above, and each being liquid at the polymerization temperature employed, that is, they have melting points below the polymerization temperature used, generally 60 C. to 150 C. The viscosity of the solvent should not be greater than 13 0 centipoises at the polymerization temperature.
  • monocarboxylic acids, monohydric alcohols, and monoepoxides are suitable but polycarboxylic acids, polyhydric alcohols, and polyepoxides are preferred.
  • Suitable saturated monocarbo-xylic acids including anhydrides, are those which form liquid solutions with the monomers at the reaction temperatures, such as benzoic acid, propionic acid or anhydride, butyric acid or anhydride, Capric acid, caproic acid, myristic acid, and palmitic acid. Particularly preferred are mixtures of acids or anhydides.
  • polycarboxylic compounds are such anhydrides as phthalic, succinic, tetrahydrophthalic, Nadic (endo-cis-bicyclo-(2,2,4 -5-heptene-2,3-dicarboxylic anhydride), Methyl Nadic hexachloroendomethylenetetrahydrophthalic (HET anhydride) and hexahydrophthalic anhydride.
  • polycarboxylic acids include glutaric, sebacic, isosuccinic, malonic, suberic, azelaic, pimcl-ic and dimer acids.
  • liquid eutectic mixtures such as HET and hexahydrophthal'ic anhydrides.
  • Monohydric alcohols which are most advantageously used in accordance with the invention are those which cannot readily be liberated by heating the polymer after it is made, such as capryl alcohol, stearyl alcohol, lauryl alcohol and the like.
  • saturated aliphatic alcohols having over six carbon atoms such as Z-ethyl-hexyl alcohol, nonyl alcohol and those noted hereinbefore will be used.
  • saturated acids and alcohols are usually employed, it is noted that unsaturated alcohols and acids are usable depending on the reactivity of the double bond under polymerization conditions.
  • fatty acids of the drying oil type such as soya and linseed oil and stearic acids as well as long chain alcohols can be used.
  • saturated polyhydric alcohols are preferred. Particularly suitable are the high molecular weight glycols. However, glycerin, sorbitol, trimethylol propane and the like can also be used. Suitable glycols are, for instance, ethylene glycol, propylene glycol, diethylene glycol, 1,5-pentanediol, tripropylene glycol, dipropylene glycol, tetraethylene glycol, triethylene glycol, etc. It is understood that the term glycols as used herein includes both the dihydric alcohols and the dihydric ether alcohols. Thus, the commercially available Garbo-waxes are contemplated. These are mixtures of polyoxyethylene glycols. Those mixtures having average molecular weights of from 200 to 1000 are particularly desirable. The polyoxypropylene glycols are also contemplated.
  • the third class of reactive solvents is saturated monoand poly-epoxides, especially monoand poly-glycidyl ethers and esters of alcohols and acids.
  • monoepoxide solvents are such monoepoxides as styrene oxide, glycidol, phenyl glycidyl ether, glycidyl acetate, glycidyl benzoate, butyl glycidyl ether, and the like.
  • glycidyl polyethers of polyhydric alcohols and polyhydric phenols prepared by reacting the alcohol or phenol with a halohydrinisuch as epichlorohydrin in the presence of an alkali are the well-known ethoxyline resins and are described in such patents as U.S. 2,467,171, U.S. 2,538,072, U.S. 2,582,985, U.S. 2,- 615,007, U.S. 2,698,315, U.S. 2,581,464.
  • epoxy esters are included.
  • Desirable epoxy esters can be made by the epoxidation of unsaturated esters by reaction with a peracid such as peracetic acid or-performic acid, a desirable ester thus prepared eing 3,4-epoxy-6-methyl cyclohexylmethyl-3,4-epoxy-6- methylcyclohexanecarboxylate,
  • epoxides are also included, for example, epoxidized drying oils, acids and esters.
  • the reactive solvent need not be a liquid at room temperature. It is necessary only that it have a viscosity of not more than 130 centipoises at the polymerization temperature. It is a low melting compound which will be liquid at the polymerization temperature.
  • the reactive solvents set forth hereinbefore make excellent reaction media. In some cases upon cooling, crystalline solids result which can be readily liquified on heating. If desired, the solid polymer-diluent compositions can be pulverized for convenience in use.
  • Polymerization is effected by conventional solution polymerization techniques, except that the polymerization medium contemplated herein is used as a solvent rather than one of the conventional volatile media.
  • the amount of polymerization medium employed will depend upon several things; the viscosity of the medium, the molecular weight of the polymer made, and the solubility of the polymer in the medium. Thus, when a low molecular weight monocarboxylic acid, monohydric alcohol, or monoepoxide is employed, less will be required when a more viscous composition, such as a diepoxide or a higher molecular weight alcohol, is used.
  • a low molecular weight polymer is made, not as much medium is required as when a higher molecular weight polymer is prepared. This being the case, it can best be stated that sufficient polymerization medium is used to form, at the reaction temperature, a solution of the resulting carboxy copolymer in the polymerization medium. Generally, the amount of polymerization medium will be 30 to 40 percent with 70 to 60 percent by weight carboxy copolymer. From to 80 parts acid, preferably 10 to 50, are reacted with 95 to 20 parts comonomer, the polymerization reaction being carried out at temperatures of from 60 C. to the reflux temperature, generally 60 C. to 150 C., if desired, at a pressure slightly above atmospheric.
  • the polymerization reaction is, of course, accelerated by the use of heat and other conditions such as a peroxide catalyst e.g. benzoyl peroxide, cumene hydroperoxide, tertiarybutylhydroperoxide, phthalic peroxide, acetyl peroxide, lauroy-l peroxide, ditertiarybutylperoxide, etc.
  • a peroxide catalyst e.g. benzoyl peroxide, cumene hydroperoxide, tertiarybutylhydroperoxide, phthalic peroxide, acetyl peroxide, lauroy-l peroxide, ditertiarybutylperoxide, etc.
  • the carboxyl-containing copolymers prepared accord ing to the present invention are formed by reacting the vinyl vinylidene or vinylene monomer with an alpha-beta ethylenically monounsaturated acid.
  • Contemplated are acrylic, methacrylic, or crotonic, itaconic, citraconic, maleic and fumaric acid, their anhydrides or partial esters, or mixtures thereof.
  • Preferred acids are alphabeta ethylenically monounsaturated monocarboxylic acids of not more than four carbon atoms.
  • Desirable partial esters are half esters of fumaric acid maleic acid or maleic anhydride, the alcohols having not more than 20 carbon atoms, for example, monobutyl maleate, monooctyl fumarate and monocetyl maleate.
  • Preferred acid esters are those formed with alcohols having from 1 to 10 carbon atoms.
  • Polymerized with the alpha-beta unsaturated acid is a monoethylenically unsaturated monomer.
  • vinyl, vinylene, and vinylidene monomers copolymerizable with the alpha-beta unsaturated acid.
  • Particularly important are vinylidene and vinyl aromatic compounds, for instance, styrene, vinyl toluene, alpha-methyl styrene, the halo-styrenes, etc.
  • Suitable monomers are isopropenyl toluene, the various dialkyl styrenes, ortho-, meta-, and para-chloro styrenes, bromo styrenes, fluoro styrenes, cyano'styrenes, vinyl naphthalene, the various alpha-substituted styrenes, e.g., alpha-methyl styrenes, alpha-methyl para-methyl styrenes, as well as various di-, tri-, and tetra-chloro, bromo, and fiuoro styrenes.
  • esters of acrylic, methacrylic, and crotonic esters of saturated alcohols such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, (sec)butyl, amyl, hexyl, heptyl, octyl, decyl, dodecyl, etc. esters of acrylic, methacrylic and crotonic acids, generally alpha-beta unsaturated monocarboxylic acid esters of saturated monohydric alcohols, the acids having not more than four carbon atoms and the alcohols having not more than twenty carbon atoms.
  • carboxylcontaining copolymers As indicated hereinbefore, the preparation of carboxylcontaining copolymers is known. Accordingly, it is unnecessary to set forth all monomers known in the art.
  • monomers so used are vinyl aliphatic cyanides of not more than four carbon atoms, such as acrylonitrile and methacrylonitrile, as well as monovinyl ethers, e.g., ethyl vinyl ether, ethyl methallyl ether, vinyl butyl ether, methyl vinyl ether and others of not over twenty carbon atoms.
  • unsaturated monohydric alcohol esters of saturated monobasic acids wherein the alcohols contain a single vinyl group and the acids have not more than twenty carbon atoms, for instance, vinyl acetate, vinyl stearate, and the allyl, methallyl and crotyl esters of propionic, butyric and other acids.
  • unsaturated monomers themselves, but mixtures of the monomers can be copolymerized with the alpha-beta unsaturated acids to form the carboxylcontaining copolymer.
  • a desirable mixture is a combination of an acrylic or methacrylic ester with styrene or vinyl toluene. Of course, when mixtures are employed a certain degree of selectivity must be exercised.
  • vinyl acetate or similar esters with styrene and the like.
  • monomers and unsaturated acids forming the copolymers.
  • vinyl aromatics e.g., styrene
  • maleic or fumaric or their half esters because of the tendency of such half esters to polymerize in constant proportions with other monomers.
  • maleic acid with a vinyl acetate monomer.
  • a hydroxy compound such as a monohydric alcohol or a glycol
  • acrylonitrile desirably should not be used as a monomer in preparation of the carboxy copolymer.
  • vinyl aromatic monomers it has been found also that vinyl toluene is more compatible in the systems contemplated herein than styrene.
  • the carboxy copolymer is made from crotonic acid and vinyl acetate, it is preferred to start the polymerization without the reactive solvent and to add the solvent during a later stage of polymeriiation. With respect to the re active solvent, it has also been found that decreasing the amount of reactive solvent leads to the formation of longer chain polymers having higher tensile strengths.
  • the composition can be cross linked by heat alone or with the addition of a small amount of catalyst, otherwise any of the known polyfunctional cross-linking compositions which react with the copolymer or the reactive solvent as' the case may be, such as anhydrides, alcohols, epoxides, isocyanates and the like, can be used depending, of course, on the solvent system.
  • cross-linking agents are used such that an epoxy-carboxy system, or preferably a carboxy-epoxy-acid anhydride system results.
  • a carboxylic acid anhydride is used as the reactive solvent
  • a polyepoxide such as a glycidyl polyether of a dihydric phenol is preferred as the cross-linking agent.
  • the reactive solvent is an epoxide
  • a dibasic acid anhydride or polybasic acid anhydride is used as the cross-linking agent.
  • a polyepoxide and an anhydride are preferably both used to form the cross-linking system. If the copolymer has a high carboxyl content, the use of an anhydride is not essential. But in many cases, it will be desirable.
  • the carboxy copolymer and the reactive solvent can be further reacted with each other, as where a polyepoxide is employed as the reactive solvent, or with a third compound such as polyisocyanate, zinc oxide, a caustic alkali, a primary or secondary amine or a polyamine.
  • a polyepoxide employed as the reactive solvent
  • a third compound such as polyisocyanate, zinc oxide, a caustic alkali, a primary or secondary amine or a polyamine.
  • the carboxy-containing copolymer and the polyepoxide are preferably used in a ratio of one carboxyl equivalent of copolymer to one to two epoxide equivalents of polyepoxide and 0.01 to 5 percent of a catalyst such as an amine or potassium hydroxide, BF etc. based on the total composition.
  • the copolymer will have been made using one equivalent epoxide solvent for each carboxyl equivalent ethylenically unsaturated acid.
  • the carboxy copolymer is made in the presence of an acid anhydride, it is preferred to employ a polyepoxide in the formation of the solid objects. In many instances, it will be even more desirable to use a polyepoxide and a polyhydric alcohol.
  • a polycarboxylic acid anhydride makes a desirable cross-linking agent.
  • a combination of the acid anhydride and a polyhydric alcohol also makes a desirable cross-linking system.
  • the reactants are employed in ratios resulting in a cross-linked thermoset composition, usually from 1 to 2 equivalents anhydride to 2 equivalents polyepoxide to 0.2 to 0.8 equivalent copolymer.
  • the anhydride or the polyepoxide as the case may be, can be used as the reactive solvent with the other being subsequently added as a cross-linking agent.
  • all of the required anhydride or polyepoxide need not be used as reactive solvent as any additionally required can be added with the cross-linking agent. However, as a rule, all of the required anhydride or 'epoxide is used as the reactive solvent.
  • the carboxy equivalent of the copolymer depends upon the amount of acid used in its preparation, and the ratios of polycarboxylic acid anhydride and polyepoxide depend upon this carboxy equivalency of the copolymer as set forth in the aforementioned ratio.
  • a preferred system is a carboxy copolymer-polycarboxylic acid anhydride-polyepoxide-polyhydric alcohol system
  • the composition can be further thinned With an alcohol or the copolymer can be made in the presence of an anhydride or epoxide-alcohol mixture. It is preferred to start the copolymer reaction in the alcohol medium and then add anhydride or epoxide if necessary to control the viscosity.
  • 1 equivalent polyepoxide is employed for each carboxy equivalent copolymer and the anhydride, polyepoxide, and polyhydric alcohol are employed in amounts of 2 equivalents anhydride to 2 equivalents epoxide to 0.4 to 1.6 equivalents alcohol.
  • the total ratio when a polyhydric alcohol is used is, therefore, 1 equiva lent carboxy copolymer to 3 polyepoxide equivalents, to 2 anhydride equivalents to 0.4 to 1.6 equivalents polyhydric alcohol.
  • the ratio will be 2 equivalents polyepoxide to l carboxyl equivalent copolymer to 1 carboxyl equivalent acid.
  • a monoepoxide can be employed as the reactive solvent and polyepoxide used later as at least part of the cross-linking agent. At least fifteen percent of the total epoxide should be polyepoxide.
  • an epoxide, anhydride, hydroxyl or carboxyl equivalent is meant the gram equivalent weight based on the particular group, in other words, the weight in grams per epoxide, anhydride, hydroxyl or carboxyl group.
  • a catalyst in the carboxy-epoxy curing system, a catalyst can be employed if desired.
  • any of the known catalysts which are activators for epoxy-carboxy reactions can be used to increase the rate of cross-linking, for example, inorganic and organic bases, erg. amines, quaternary ammonium hydroxides and alkali metal or alkaline earth metal hydroxides, examples are sodium hydroxide, calcium hydroxide, dimethylamino phenol, benzyl dimethylamine and the like.
  • Particularly desirable catalyst are quaternary ammonium salts such as benzyl trimethylammonium acetate and benzyl trimethylammonium chloride, etc.
  • activators are employed in catalytic quantities, say from 0.01 percent to 5 percent based on the total compositions.
  • Curing conditions will, of course, vary with the particular application.
  • the :carboxy-epoxy composition with or without the anhydride and alcohol is heated at C. to 200 C., generally 180 C. to form a cross-linked infusible resin if no catalyst is used.
  • the copolymer-solvent composition is cured at a temperature of from 125 C. to 200 C., the period depending upon the size of the casting, varying from one to four hours with a catalyst and three to twelve hours when no catalyst is used.
  • the Epoxide 190 and polyethylene glycol are heated to 125 C.
  • the vinyl toluene, methyl acrylate, methacrylic acid and catalyst are heated with agitation until complete solution results.
  • This monomer-catalyst solution is then introduced into the flask containing the preheated epoxide-glycol diluent by means of the dropping funnel. During the addition of this monomer-catalyst solution, a period of one and one-half hours, the temperature of the flask contents is held below 125 C.
  • the flask contents are held at 125 C. until reflux ceases, whereupon the flask is fitted for vacuum distillation and any excess monomer is distilled off at 15 mm. Hg and 117 C.
  • the resulting product is a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in a 50/50 mixture, by weight, of Epoxide 190 and a polyethylene glycol having a molecular weight of 300.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxyl equivalent of 860, epoxide equivalent of 760 and hydroxyl equivalent of 600.
  • the casting obtained has the following physical properties:
  • EXAMPLE 2 A. Copolymer preparation Material Units Weight (g Methyl Alcohol 8.0 24.0 Maleic Anhydride 24. 5 73. 5 Methyl Acrylate 67. 5 202. 5 Benzoyl Peroxide 2.0 6.0 Polyethylene Glycol (Molecular Weight 300) 200. 0
  • monomethyl maleate in a one liter, threenecked, round-bottom flask, the methyl alcohol and maleic anhydride are heated at C. for one hour. The flask contents are cooled to room temperature and the methyl acrylate and benzoyl peroxide are combined with the monomethyl maleate to make a monomer-catalyst mixture. These proportions represent (based on the total weight of the reactants) 32.5 weight percent of monomethyl maleate and 67.5 weight percent of methyl acrylate. In another one liter, three-necked, round-bottomed flask fitted with an agitator, thermometer, condenser and dropping funnel, the polyethylene glycol is heated to 125 C.
  • the addition of the monomer-catalyst solution is started by means of the dropping funnel at a fast drop rate.
  • the reaction temperature is maintained below the reflux temperature.
  • the reaction is held at C. to C. for an additional hour after which it is cooled to room temperature.
  • the flask is fitted for vacuum distillation and any excess monomer is distilled off at 15 mm. Hg and 120 C., in this case only a few drops.
  • the flask contents are cooled and the 60 percent carboxy copolymer solution in polyethylene glycol is poured into a suitable container.
  • the copolymer portion of the composition has a theoretical carboxy equivalent of 400, while the total copolymer solution has a carboxyl equivalent of 667 and a hydroxyl equivalent of 240.
  • the hexahydrophthalic anhydride is dis solved by heating in polyethylene glycol (molecular The monomer-catalyst mixture is held at reflux until the solution becomes highly viscous (about three and one-half hours) at which time the diluent mixture is added to the flask contents through the dropping funnel at a moderate dropwise rate over a period of about i one hour. As the amount of diluent present increases, the
  • EXAMPLE 4 A. Copolymer preparation Material Units Weight (grams) Vinyl Toluene 60.0 120.0 Methyl Acrylate.. 20. 40. 0 Methacrylic Acid. 20. 0 40. 0 Benzoyl Peroxide 2.0 4. 0 Dimerized Soya Fatty Acids 1 200. 0
  • Dimerized soya fatty acid is a commercial form of a dimeric poly-mer consisting essentially of dilinoleic acid. The method used in its preparation is set forth in the Journal of American Oil Chemists Society, March gram of dimethylaminomethyl phenol.
  • dimerized soya fatty acids Into a one liter, round-bottomed, three-necked flask fitted with a thermometer, agitator, dropping funnel and reflux condenser are charged the dimerized soya fatty acids. While in a separate container, a monomer-catalyst solution is prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid and benzoyl peroxide. These proportions of monomers in the monomer-catalyst solution represent (based on the total weight of the three reactants) weight percent of vinyl toluene, 20 weight percent of methyl acrylate, and 20 weight percent of methacrylic acid. The dimerized soya fatty acids are heated to C.
  • the reaction temperature is held under C.
  • the reaction mixture is heated at slow reflux to a temperature of C. over a period of an hour after which heating is discontinued and the resulting 50 percent carboxy copolymer solution is poured into a suitable container.
  • the copolymer portion of the composition has a theoretical weight per carboxyl group of 430 while the diluent has a weight per carboxyl group of 306.
  • the total copolymer solution has a carboxyl equivalent of 357.
  • the monomer-catalyst solution made up of vinyl toluene, methyl arcylate, methacrylic acid and catalyst is then added to the preheated epoxide diluent.
  • the temperature of the flask contents is held below 125 C.
  • the flask contents are held at 125 C. until reflux ceases, producing a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in Epoxide 200.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 whilethe total copolymer solution has a theoretical carboxyl equivalent of 860.
  • a monomer-catalyst solution is prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid, and benzoyl peroxide in a flask.
  • the hexahydrophthalic anhydride is then heated in a one liter flask to 125 C. and the monomer-catalyst mixture is added to the contents of the flask through a dropping funnel at a fast dropwise rate over a period of about one hour.
  • the reaction mixture is heated at slow reflux to a temperature of 150 C. forming a 50 percent carboxy copolymer solution.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxy equivalent of 860 and anhydride equivalent of 154.
  • Example 3 the tetrahydrophthalic anhydride and the HET anhydride are heated together in a one liter flask to 120 C.
  • the monomer-catalyst solution having been prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid and benzoyl peroxide, is added to the anhydride solution through a dropping funnel at a fast dropwise rate over a period of about one and one-half hours.
  • the temperature of the reaction mixture is increased to 150 C. and maintained there for a period of 45 minutes.
  • the resulting product is a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in a 50/50 tetrahydrophthalic/HET anhydride mixture.
  • the copolymer portion of the composition has a carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 860 and an anhydride equivalent of 251.
  • EXAMPLE 8 A. Copolymer preparation Material Units Weight (grams) Styrene- 60. 0 120. 0 Methacrylic Acid 40. 0 80. 0 Benzoyl Peroxide 2. 0 4. 0 Polypropylene Glycol (Molecular Weight 1,200)- 200. 0
  • Example 1 the polypropylene glycol is heated to C. in a one liter flask. At this temperature, the monomer-catalyst solution, prepared by mixing together the styrene, methacrylic acid, and benzoyl peroxide, is added to the preheated glycol diluent by means of a dropping funnel at a fast dropwise rate, over a period of about one hour. After the addition is complete, the flask contents are held at C. until reflux ceases, forming a viscous, 50 percent solution of a 60/40 styrene/methacrylic acid copolymer in polypropylene glycol. The copolymer portion of the composition, which appears clear, has a theoretical carboxyl equivalent of 215 while the total copolymer solution has a theoretical carboxyl equivalent of 430 and hydroxyl equivalent of 1198.
  • the monomer-catalyst solution prepared by mixing together the styrene, methacrylic acid, and benzoyl
  • the polypropylene glycol is heated in a one liter flask to 125 C.
  • the monomer-catalyst solution prepared by mixing together the vinyl toluene, methacrylic acid, and catalyst, is then introduced into the flask containing the preheated glycol diluent at a fast dropwise rate.
  • the flask contents are held at 135 C. until reflux ceases.
  • the resulting product is a 50 percent solution of a 60/40 vinyl toluene/methacrylic acid copolymer in polypropylene glycol.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 215 while the total copolymer solution has a theoretical equivalent of 430 and hydroxyl equivalent of 750.
  • the polypropylene glycol is added by means of a dropping funnel at a moderate dropwise rate. After the addition is complete, the reaction mixture is held at reflux (135 C.) for twenty minutes.
  • the resulting product is a 50 percent solution of an 80/20 vinyl acetate/crotonic acid copolymer in polypropylene glycol.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 While the total copolymer solution has a theoretical carboxyl equivalent of 862 and hydroxyl equivalent of 1200.
  • composition A Copolymer preparation Material Units Weight (grams) Vinyl Acetate 80.0 240. crotonic Acid 20. 0 60. 0 Benzoyl Peroxide 4.0 12. 0 Polypropylene Glycol (Molecular Weight 750) 300. 0
  • the vinyl acetate, crotonic acid, and benzoyl peroxide are heated in a one liter flask to reflux (78 C. to 80 C.).
  • a monomer-catalyst solution is added 300 grams of polypropylene glycol in 50 gram increments, the frequency of the additions depending on the viscosity of the solution.
  • the flask contents are held at reflux until the reflux temperature reaches 125 C. to 130 C.
  • the resulting product is a 50 percent solution of an 80/20 vinyl acetate/crotonic acid copolymer in polypropylene glycol.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxyl equivalent of 860 and hydroxyl equivalent of 750.
  • EXAMPLE 12 A. Copolymer preparation Material Units Weight (grams) Vinyl Acetate 80. 0 80. 0 Crotonic Acid 20. 0 20. 0 Benzoyl Peroxide 4.0 '4. 0 Epoxide 177 100.0
  • the vinyl acetate, crotonic acid, and benzoyl peroxide are heated in a 500 milliliter flask to reflux (78 C. to 80 C.).
  • the monomer-catalyst mixture is held at reflux until the solution becomes highly viscous (about one and one-half hours) at which time 50 grams of the diluent, diglycidyl ether of trimethylol propane, are added to the flask contents. After approximately thirty minutes, another 50 grams of the diluent are added to the flask contents.
  • the reaction rnixture is held at reflux until the reflux temperature reaches C.
  • the resulting product is a 50 percent solution of an 80/ 20 vinyl acetate/crotonic acid copolymer in Epoxide 177.
  • the copolymer portion of the composition has a carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 862 and epoxide equivalent of 354.
  • the vinyl acetate, crotonic acid, and benzoyl peroxide are heated together in a 500 milliliter flask to reflux (78 C. to 80 C.). After this monomer-catalyst solution has refluxed for approximately one and one-half hours, the Epoxide 155 is added to the solution. Reflux of the reaction mixture is continued until the temperature reaches 90 C. to C. The resulting product is a 50 percent solution of an 80/ 20 vinyl acetate/crotonic acid copolymer in Epoxide 155.
  • the copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 862 and an epoxide equivalent of 300.
  • the copolymer is identified as 60/20/20 VT/MA/MAA. This is a terpolymer of 60 parts by weight vinyl toluene, parts by weight methyl tions are explained in the footnotes to the table.
  • the column headed Reactive Diluentf includes only diluents such as acids or alcohols which are not in one of the other ratio columns. If part of all of the diluent is an epoxide or an anhydride, that portion is included in the anhydride or epoxide column.
  • PEG 300, 600, etc. as used in the table represents a mixture of polyethylene glycols having an average molecular weight of 300, 600, etc., as the case may be. All of the products whose properties are set forth in the following table were cured for one hour at 100 C. and then post-cured for two hours at 150 C. using one percent dimethylaminomethyl phenol as "a acrylate, and 20 parts methacrylic acid. Other designa- 15 catalyst.
  • VIVin vl Toluene MAMetl1yl Acrylate. MAAMethaerylic Acid. SIYStyrene. MMM-Monomethyl Maleate. MB M-Monobutyl Maleate. MM-Meth yl Methacrylate.
  • Example 14 To a 500 milliliter flask equipped with reflux condenser, stirrer and thermometer are weighed 30 grams of vinyl toluene, 10 grams of ethyl acrylate, 10 grams of methacrylic acid, 1 gram of benzoyl peroxide and 50 grams of N-adic anhydride (M.P. 164165). Heat is applied to raise the temperature to 95 C. over a thirty minute period. At this time all the Nadic anhydride is dissolved, a clear solution being obtained. The temperature is then raised to 120 C. in thirty minutes. The polymerization temperature is held at 120 C. to 130" C. for three and one-half hours.
  • M.P. 164165 N-adic anhydride
  • the polymerization is complete .as evidenced by lack of reflux and by no further change in the viscosity of the solution.
  • the solution At the reaction temperature (120 C.) the solution is light amber in color and viscous.
  • the reaction product Upon cooling, the reaction product hardens to a white, opaque, brittle, solid, that can be pulverized to a fine powder.
  • a process for the preparation of a carboxy copolymer solution devoid of solvent boiling below 150 C. and capable of being readily cross-linked which comprises polymerizing, at a temperature of from 60 C. to about 150 C., a solution comprising (A) an afi-ethylenically unsaturated carboxylic acid containing not more than four carbon atoms,
  • (C) as the sole polymerization solvent a member selected from the group consisting of a car'boxylic acid, a carboxylic acid anhydride, and mixtures thereof,
  • said (C) (1) being a solvent for and non-reactive with said '(A), said (B) and said carboxy copolymer under the polymerization conditions used,
  • (C) hexahydrophthalic anhydride said polyhydric alcohol is a polyethylene glycol having a molecular weight of 300 and said polyepoxide is the diglycidyl ether of 2,2-bis(4-hydroxyphenyDpropane.
  • said polyhydric alcohol is a polyethylene glycol having a 20 molecular weight of 300 and said polyepoxide is the diglycidyl'ether of 2,2 bis(4-hydroxyphenyl)propane.
  • a process for the preparation of a cross-linked carboxy copolymer which comprises adding a polyepoxide to an uncrosslinked carboxy copolymer solution prepared as described in claim 1 wherein said (C) is a polycarboxylic acid anhydride to form a polycarboxylic acid anhydride polyepoxide uncross-linked carboxy co polymer system having the ratio of 1--2 equivalents of said polycarboxylic acid anhydride to 2 equivalents of said polyepoxide to 0.2-0.8 equivalent of said uncross-linked carboxy copolymer, and heat-curing the resulting composition.
  • a process for the preparation of a cross-linked carboxy copolymer which comprises adding a polyhydric alcohol and a polyepoxide to an uncross-linked carboxy copolymer solution prepared as described in claim 1 wherein said -(C) is a polycarboxylic acid anhydride to form a polycarboxylic acid anhydn'dezpolyhydric alcohol: polyepoxide:uncross-linked carboxy copolymer system having the ratio of 2 equivalents of said polycarboxylic acid anhydride to 0.41.6 equivalents of said polyhydric alcohol to 3 equivalents of said polyepoxide to 1 equivalent of said uncrosslinked carboxy copolymer, and heatcuring the resulting composition.

Description

United States Patent r 3,247,144 CARBOXY COPOLYMERS PREPARED IN CARBOX- YLIC ACIDS AND/0R ANHYDRIDES John E. Masters and Darrell D. Hicks, Louisville, Ky., assiguors, by mesne assignments, to Celanese Coatings Company, New York, N.Y., a corporation of Delaware No Drawing. Filed Nov. 9, 1962, Ser. No. 236,728
17 Claims. (Cl. 26023) This application is a continuation-in-part of our copending US. patent application Serial No. 788,046, filed lanuary 21, 1959, now abandoned.
This invention pertains to the polymerization of unsaturatcd acids and related compounds, with vinyl, vinylene or viuylidene compounds to form carboxy copolymers. It is particularly related to processes for the formation of solutions of carboxy copolymers which are capable of being readily cross-linked, and to methods for preparing molded articles or castings from such polymer solutions.
Carboxy copolymers of unsaturated acids or their alcohol esters and difier'ent unsaturated monomers are well known. They are prepared by polymerizing with said different monomer an unsaturated carboxylic acid such as acrylic, crotonic, metha-crylic, itaconic, maleic, the partial esters or partial salts thereof and anhydrides of the polycarboxylic acids by solution or emulsion polymerization techniques well known to those skilled in the art, the amount of carboxy component in the composition being from 1 to 80 weight percent based on the polymer.
In emulsion polymerization the drying of the coagulum is ditficult because of the great tendency of the polymer to coalesce. Subsequent mastication with cross-linking agents is difiicult. Accordingly, emulsion polymerized carboxy copolymers are generally used as film-forming materials rather than in pottings, castings, and the like.
Solution polymerization of acid monomers with other unsaturated monomers to form carboxy copolymers does not lend itself to formation of molded articles because of the difficulty of removing the solvent. Even when a low boiling solvent such as acetone is used, it is ditlicult to form castings free of entrained solvent or of bubbles resulting from solvent liberation. While this invention is not limited thereto, the presence of solvents has prohibited an extensive use of carboxyl containing copolymers in the potting and casting fields. There are, of course, advantages in other fields as well as to not having a volatile solvent to remove.
By the practice of this invention, a process is provided for the preparation of solutions of carboxyl polymers for applications heretofore not practical through the use of polymer solutions. In accordance with this invention, the monomers are polymerized in the presence of a reactive solvent. By reactive solvent is meant a non-vo1atile solvent in which the polymer is soluble and which reacts with the polymer and/ or a cross-linking agent for the polymer under curing condition, that is, at curing temperatures and, if necessary, in the presence of a catalyst. It is under stood, however, that under polymerizing conditions, the solvent and the monomers are substantially non-reactive with each other. In other words, the polymerization medium is a solvent which does not react with the monomer or the polymer during polymerization, but which reacts with either the polymer or the cross-linking agent or both when the temperature is raised above the polymerization temperature and a catalyst is used.
"ice
Polymer solutions are thus formed which can be mixed with cross-linking agents to form cured materials without the need for solvent liberation. This not only renders the polymer solutions particularly suitable for pottings, castings and encapsulations, but also provides a convenient reaction medium for making high polymers which otherwire would be of little value in pottings, castings, encapsulations etc. because of their extreme viscosities.
Reactive solvents which are employed in accordance with the practice of this invention are saturated carboxylic acids or anhydrides of such acids, alcohols and epoxides, each boiling at C. or above, and each being liquid at the polymerization temperature employed, that is, they have melting points below the polymerization temperature used, generally 60 C. to 150 C. The viscosity of the solvent should not be greater than 13 0 centipoises at the polymerization temperature. Of acids, alcohols and epoxides serving as reactive solvents herein, monocarboxylic acids, monohydric alcohols, and monoepoxides are suitable but polycarboxylic acids, polyhydric alcohols, and polyepoxides are preferred.
Suitable saturated monocarbo-xylic acids, including anhydrides, are those which form liquid solutions with the monomers at the reaction temperatures, such as benzoic acid, propionic acid or anhydride, butyric acid or anhydride, Capric acid, caproic acid, myristic acid, and palmitic acid. Particularly preferred are mixtures of acids or anhydides. Examples of polycarboxylic compounds are such anhydrides as phthalic, succinic, tetrahydrophthalic, Nadic (endo-cis-bicyclo-(2,2,4 -5-heptene-2,3-dicarboxylic anhydride), Methyl Nadic hexachloroendomethylenetetrahydrophthalic (HET anhydride) and hexahydrophthalic anhydride.
Included among the polycarboxylic acids are glutaric, sebacic, isosuccinic, malonic, suberic, azelaic, pimcl-ic and dimer acids. Especially preferred are liquid eutectic mixtures such as HET and hexahydrophthal'ic anhydrides.
Monohydric alcohols which are most advantageously used in accordance with the invention are those which cannot readily be liberated by heating the polymer after it is made, such as capryl alcohol, stearyl alcohol, lauryl alcohol and the like. Generally saturated aliphatic alcohols having over six carbon atoms such as Z-ethyl-hexyl alcohol, nonyl alcohol and those noted hereinbefore will be used. While saturated acids and alcohols are usually employed, it is noted that unsaturated alcohols and acids are usable depending on the reactivity of the double bond under polymerization conditions. Thus, fatty acids of the drying oil type such as soya and linseed oil and stearic acids as well as long chain alcohols can be used.
Of the alcohols, saturated polyhydric alcohols are preferred. Particularly suitable are the high molecular weight glycols. However, glycerin, sorbitol, trimethylol propane and the like can also be used. Suitable glycols are, for instance, ethylene glycol, propylene glycol, diethylene glycol, 1,5-pentanediol, tripropylene glycol, dipropylene glycol, tetraethylene glycol, triethylene glycol, etc. It is understood that the term glycols as used herein includes both the dihydric alcohols and the dihydric ether alcohols. Thus, the commercially available Garbo-waxes are contemplated. These are mixtures of polyoxyethylene glycols. Those mixtures having average molecular weights of from 200 to 1000 are particularly desirable. The polyoxypropylene glycols are also contemplated.
The third class of reactive solvents is saturated monoand poly-epoxides, especially monoand poly-glycidyl ethers and esters of alcohols and acids. Examples of monoepoxide solvents are such monoepoxides as styrene oxide, glycidol, phenyl glycidyl ether, glycidyl acetate, glycidyl benzoate, butyl glycidyl ether, and the like.
Among the polyepoxides which can be used as reactive solvents are glycidyl polyethers of polyhydric alcohols and polyhydric phenols prepared by reacting the alcohol or phenol with a halohydrinisuch as epichlorohydrin in the presence of an alkali. These are the well-known ethoxyline resins and are described in such patents as U.S. 2,467,171, U.S. 2,538,072, U.S. 2,582,985, U.S. 2,- 615,007, U.S. 2,698,315, U.S. 2,581,464. In addition to glycidyl ethers, epoxy esters are included. Desirable epoxy esters can be made by the epoxidation of unsaturated esters by reaction with a peracid such as peracetic acid or-performic acid, a desirable ester thus prepared eing 3,4-epoxy-6-methyl cyclohexylmethyl-3,4-epoxy-6- methylcyclohexanecarboxylate,
ll C HZO-C O O CH3 CH3- Other epoxides are also included, for example, epoxidized drying oils, acids and esters. It is noted that the reactive solvent need not be a liquid at room temperature. It is necessary only that it have a viscosity of not more than 130 centipoises at the polymerization temperature. It is a low melting compound which will be liquid at the polymerization temperature. The reactive solvents set forth hereinbefore make excellent reaction media. In some cases upon cooling, crystalline solids result which can be readily liquified on heating. If desired, the solid polymer-diluent compositions can be pulverized for convenience in use.
Methods of polymerizing the alpha-beta unsaturated acids with various comonomers are well known. Polymerization is effected by conventional solution polymerization techniques, except that the polymerization medium contemplated herein is used as a solvent rather than one of the conventional volatile media. The amount of polymerization medium employed will depend upon several things; the viscosity of the medium, the molecular weight of the polymer made, and the solubility of the polymer in the medium. Thus, when a low molecular weight monocarboxylic acid, monohydric alcohol, or monoepoxide is employed, less will be required when a more viscous composition, such as a diepoxide or a higher molecular weight alcohol, is used. In addition, if a low molecular weight polymer is made, not as much medium is required as when a higher molecular weight polymer is prepared. This being the case, it can best be stated that sufficient polymerization medium is used to form, at the reaction temperature, a solution of the resulting carboxy copolymer in the polymerization medium. Generally, the amount of polymerization medium will be 30 to 40 percent with 70 to 60 percent by weight carboxy copolymer. From to 80 parts acid, preferably 10 to 50, are reacted with 95 to 20 parts comonomer, the polymerization reaction being carried out at temperatures of from 60 C. to the reflux temperature, generally 60 C. to 150 C., if desired, at a pressure slightly above atmospheric. The polymerization reaction, is, of course, accelerated by the use of heat and other conditions such as a peroxide catalyst e.g. benzoyl peroxide, cumene hydroperoxide, tertiarybutylhydroperoxide, phthalic peroxide, acetyl peroxide, lauroy-l peroxide, ditertiarybutylperoxide, etc.
The carboxyl-containing copolymers prepared accord ing to the present invention are formed by reacting the vinyl vinylidene or vinylene monomer with an alpha-beta ethylenically monounsaturated acid. Contemplated are acrylic, methacrylic, or crotonic, itaconic, citraconic, maleic and fumaric acid, their anhydrides or partial esters, or mixtures thereof. Preferred acids are alphabeta ethylenically monounsaturated monocarboxylic acids of not more than four carbon atoms. Desirable partial esters are half esters of fumaric acid maleic acid or maleic anhydride, the alcohols having not more than 20 carbon atoms, for example, monobutyl maleate, monooctyl fumarate and monocetyl maleate. Preferred acid esters are those formed with alcohols having from 1 to 10 carbon atoms.
Polymerized with the alpha-beta unsaturated acid is a monoethylenically unsaturated monomer. By a monoethylenically unsaturated monomer is intended an organic compound containing a single CH=CH- group, or more especially a CH =C group. Included are vinyl, vinylene, and vinylidene monomers copolymerizable with the alpha-beta unsaturated acid. Particularly important are vinylidene and vinyl aromatic compounds, for instance, styrene, vinyl toluene, alpha-methyl styrene, the halo-styrenes, etc. having a single vinyl group and free of other substituents capable of reacting with an unsaturated acid, in other words, a monounsaturated vinyl aromatic compound. Other suitable monomers are isopropenyl toluene, the various dialkyl styrenes, ortho-, meta-, and para-chloro styrenes, bromo styrenes, fluoro styrenes, cyano'styrenes, vinyl naphthalene, the various alpha-substituted styrenes, e.g., alpha-methyl styrenes, alpha-methyl para-methyl styrenes, as well as various di-, tri-, and tetra-chloro, bromo, and fiuoro styrenes. Also valuable are acrylic, methacrylic, and crotonic esters of saturated alcohols, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, (sec)butyl, amyl, hexyl, heptyl, octyl, decyl, dodecyl, etc. esters of acrylic, methacrylic and crotonic acids, generally alpha-beta unsaturated monocarboxylic acid esters of saturated monohydric alcohols, the acids having not more than four carbon atoms and the alcohols having not more than twenty carbon atoms.
As indicated hereinbefore, the preparation of carboxylcontaining copolymers is known. Accordingly, it is unnecessary to set forth all monomers known in the art. For example, other monomers so used are vinyl aliphatic cyanides of not more than four carbon atoms, such as acrylonitrile and methacrylonitrile, as well as monovinyl ethers, e.g., ethyl vinyl ether, ethyl methallyl ether, vinyl butyl ether, methyl vinyl ether and others of not over twenty carbon atoms. Included also are unsaturated monohydric alcohol esters of saturated monobasic acids wherein the alcohols contain a single vinyl group and the acids have not more than twenty carbon atoms, for instance, vinyl acetate, vinyl stearate, and the allyl, methallyl and crotyl esters of propionic, butyric and other acids. Not only the unsaturated monomers themselves, but mixtures of the monomers can be copolymerized with the alpha-beta unsaturated acids to form the carboxylcontaining copolymer. A desirable mixture is a combination of an acrylic or methacrylic ester with styrene or vinyl toluene. Of course, when mixtures are employed a certain degree of selectivity must be exercised. Thus, it is preferred not to use vinyl acetate or similar esters with styrene and the like. Likewise, there will be certain preferred combinations of monomers and unsaturated acids forming the copolymers. For instance, it is undesirable to use vinyl aromatics, e.g., styrene, with maleic or fumaric or their half esters, because of the tendency of such half esters to polymerize in constant proportions with other monomers. In addition, it is desirable not to use maleic acid with a vinyl acetate monomer.
It is understood that while many monomers can be used in the preparation of the copolymer and that while a wide variety of reactive solvents can be used, all these combinations cannot necessarily be used with equivalent results. There are necessarily certain preferences and some combinations of monomers and solvents which will give better results than certain other combinations. Thus where the polymer is a copolymer of styrene or vinyl toluene and acrylic or methacrylic acid, hexahydrophthalic acid anhydride is a preferred reactive solvent rather than phthalic anhydride which is not as suitable. On the other hand if a hydroxy compound such as a monohydric alcohol or a glycol is used as the reactive solvent, acrylonitrile desirably should not be used as a monomer in preparation of the carboxy copolymer. In the case of vinyl aromatic monomers, it has been found also that vinyl toluene is more compatible in the systems contemplated herein than styrene. In addition if the carboxy copolymer is made from crotonic acid and vinyl acetate, it is preferred to start the polymerization without the reactive solvent and to add the solvent during a later stage of polymeriiation. With respect to the re active solvent, it has also been found that decreasing the amount of reactive solvent leads to the formation of longer chain polymers having higher tensile strengths.
In forming cross-linked compositions from the carboxycopolymer solutions of this invention, if the diluent is a polyepoxide, the composition can be cross linked by heat alone or with the addition of a small amount of catalyst, otherwise any of the known polyfunctional cross-linking compositions which react with the copolymer or the reactive solvent as' the case may be, such as anhydrides, alcohols, epoxides, isocyanates and the like, can be used depending, of course, on the solvent system. However, in our preferred embodiment, cross-linking agents are used such that an epoxy-carboxy system, or preferably a carboxy-epoxy-acid anhydride system results. Thus, if a carboxylic acid anhydride is used as the reactive solvent, a polyepoxide such as a glycidyl polyether of a dihydric phenol is preferred as the cross-linking agent. If the reactive solvent is an epoxide, a dibasic acid anhydride or polybasic acid anhydride is used as the cross-linking agent. In the case of glycols, monoepoxides or monocarboxylic acids as reactive solvents, a polyepoxide and an anhydride are preferably both used to form the cross-linking system. If the copolymer has a high carboxyl content, the use of an anhydride is not essential. But in many cases, it will be desirable.
In making moldings, castings and the like by the teachings of this invention, the carboxy copolymer and the reactive solvent can be further reacted with each other, as where a polyepoxide is employed as the reactive solvent, or with a third compound such as polyisocyanate, zinc oxide, a caustic alkali, a primary or secondary amine or a polyamine. In such a system, the carboxy-containing copolymer and the polyepoxide are preferably used in a ratio of one carboxyl equivalent of copolymer to one to two epoxide equivalents of polyepoxide and 0.01 to 5 percent of a catalyst such as an amine or potassium hydroxide, BF etc. based on the total composition. The copolymer will have been made using one equivalent epoxide solvent for each carboxyl equivalent ethylenically unsaturated acid. However, it is desirable to have a carboxy-epoxy-polycarboxylic acid anhydride system, and preferably a carboxy-epoxy-alcohol-polycarboxylic acid anhydride system. Thus if the carboxy copolymer is made in the presence of an acid anhydride, it is preferred to employ a polyepoxide in the formation of the solid objects. In many instances, it will be even more desirable to use a polyepoxide and a polyhydric alcohol. If the carboxy copolymer is made with a polyepoxide as the reactive solvent, a polycarboxylic acid anhydride makes a desirable cross-linking agent. A combination of the acid anhydride and a polyhydric alcohol also makes a desirable cross-linking system.
In the formation of a carboxy-epoxy-polycarboxylic acid anhydride system, the reactants are employed in ratios resulting in a cross-linked thermoset composition, usually from 1 to 2 equivalents anhydride to 2 equivalents polyepoxide to 0.2 to 0.8 equivalent copolymer. And either the anhydride or the polyepoxide as the case may be, can be used as the reactive solvent with the other being subsequently added as a cross-linking agent. Moreover, all of the required anhydride or polyepoxide need not be used as reactive solvent as any additionally required can be added with the cross-linking agent. However, as a rule, all of the required anhydride or 'epoxide is used as the reactive solvent. It is understood that the carboxy equivalent of the copolymer depends upon the amount of acid used in its preparation, and the ratios of polycarboxylic acid anhydride and polyepoxide depend upon this carboxy equivalency of the copolymer as set forth in the aforementioned ratio.
Since a preferred system is a carboxy copolymer-polycarboxylic acid anhydride-polyepoxide-polyhydric alcohol system, if the copolymer becomes too viscous when either the anhydride, or the polyepoxide alone is used, the composition can be further thinned With an alcohol or the copolymer can be made in the presence of an anhydride or epoxide-alcohol mixture. It is preferred to start the copolymer reaction in the alcohol medium and then add anhydride or epoxide if necessary to control the viscosity. In such a system, 1 equivalent polyepoxide is employed for each carboxy equivalent copolymer and the anhydride, polyepoxide, and polyhydric alcohol are employed in amounts of 2 equivalents anhydride to 2 equivalents epoxide to 0.4 to 1.6 equivalents alcohol. The total ratio when a polyhydric alcohol is used is, therefore, 1 equiva lent carboxy copolymer to 3 polyepoxide equivalents, to 2 anhydride equivalents to 0.4 to 1.6 equivalents polyhydric alcohol.
If a polycarboxylic acid is employed as the solvent, and a polyepoxide as the cross-linking agent, the ratio will be 2 equivalents polyepoxide to l carboxyl equivalent copolymer to 1 carboxyl equivalent acid. In an anhydride, copolymer, epoxide, carboxylic acid system, the ratio of reactants is 1 equivalent copolymer to 3 equivalents epoxide, to 2y equivalents anhydride, to y equivalents carboxylic acid where y=0.1 to 0.8. Since the epoxide equivalent includes both monoepoxides and polyepoxides, it should be pointed out that polyepoxide must be used if a cross-linked final composition is to be obtained. A monoepoxide can be employed as the reactive solvent and polyepoxide used later as at least part of the cross-linking agent. At least fifteen percent of the total epoxide should be polyepoxide.
By an epoxide, anhydride, hydroxyl or carboxyl equivalent is meant the gram equivalent weight based on the particular group, in other words, the weight in grams per epoxide, anhydride, hydroxyl or carboxyl group.
It is understood that in the carboxy-epoxy curing system, a catalyst can be employed if desired. Generally speaking, any of the known catalysts which are activators for epoxy-carboxy reactions can be used to increase the rate of cross-linking, for example, inorganic and organic bases, erg. amines, quaternary ammonium hydroxides and alkali metal or alkaline earth metal hydroxides, examples are sodium hydroxide, calcium hydroxide, dimethylamino phenol, benzyl dimethylamine and the like. Particularly desirable catalyst are quaternary ammonium salts such as benzyl trimethylammonium acetate and benzyl trimethylammonium chloride, etc. These activators are employed in catalytic quantities, say from 0.01 percent to 5 percent based on the total compositions. Curing conditions will, of course, vary with the particular application. In general, the :carboxy-epoxy composition with or without the anhydride and alcohol is heated at C. to 200 C., generally 180 C. to form a cross-linked infusible resin if no catalyst is used. If a catalyst is employed, the copolymer-solvent composition is cured at a temperature of from 125 C. to 200 C., the period depending upon the size of the casting, varying from one to four hours with a catalyst and three to twelve hours when no catalyst is used.
In order more fully to illustrate the invention, the following examples are included.- The examples are for the purpose of illustration only, and it is intended that no undue limitation be read into the invention by referring to the examples, the tables, or the discussion thereof. The
7 epoxides employed were made by the well-known method described hereinbefore. The following table gives the ratio of epichlorohydrin to polyhydric compound used to prepare the resins. The polyhydric compound reacted with the epichlorohydrin and the epoxide equivalent of the epoxy compound is also given.
M01 Ratio Hydroxy Compound Epoxide Equivalent Epichloro- Hydroxy hydrin Compound 10 1 Bisphenol 190 2 1 Polyethylene Glycol 200 (m.\v. 200). 2 1 Timethylolpropane 177 3 1 Glycerol 155 EXAMPLE 1 A. Copolymer preparation Material Units Weight (grams) Vinyl Toluene 60. 120. 0 Methyl Acryl ate 20. 0 40. 0 Methacrylic Acid 20. 0 40. 0 Benzoyl Peroxide 2. 0 4. 0 Epoxide 190 100. 0 Polyethylene Glycol (Molecular Weight 300) 100.0
In a one liter, three-necked, round-bottomed flask fitted with an agitator, thermometer, condenser and dropping funnel, the Epoxide 190 and polyethylene glycol are heated to 125 C. In an Erlenmeyer flask, the vinyl toluene, methyl acrylate, methacrylic acid and catalyst are heated with agitation until complete solution results. This monomer-catalyst solution is then introduced into the flask containing the preheated epoxide-glycol diluent by means of the dropping funnel. During the addition of this monomer-catalyst solution, a period of one and one-half hours, the temperature of the flask contents is held below 125 C. After the addition is complete, the flask contents are held at 125 C. until reflux ceases, whereupon the flask is fitted for vacuum distillation and any excess monomer is distilled off at 15 mm. Hg and 117 C. The resulting product is a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in a 50/50 mixture, by weight, of Epoxide 190 and a polyethylene glycol having a molecular weight of 300. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxyl equivalent of 860, epoxide equivalent of 760 and hydroxyl equivalent of 600.
B. Cured composition In a suitable container, 94.4 grams of the copolymer solution of this example (0.108 carboxyl equivalent of copolymer 0.124 epoxide equivalent of Epoxide 190 and 0.156 hydroxyl equivalent of polyethylene glycol) are combined with 57.2 grams (0.300 epoxide equivalent) of Epoxide 190 and 48.4 grams (0.628 anhydride equinalen-t) of hexahydrophthalic anhydride. The mixture is heated with stirring at 50 C. to 70 C. until a clear solution results. To the solution is added with stirring, 0.25 gram of dimethylaminomethyl phenol. The resulting blend is cast between glass plates and is baked at 150 C. for
8 thirty minutes in a circulating oven followed by a two and one-half hour bake at 180 C. The casting obtained has the following physical properties:
Tensile strength 9,300 lb./sq. in. Flexural strength 15,600 lb./sq. in. Elongation 4.5 percent. Impact strength 0.43 ft. 1b./in. notch. Hardness (Rockwell M) 88. Water absorption 0.3 percent.
EXAMPLE 2 A. Copolymer preparation Material Units Weight (g Methyl Alcohol 8.0 24.0 Maleic Anhydride 24. 5 73. 5 Methyl Acrylate 67. 5 202. 5 Benzoyl Peroxide 2.0 6.0 Polyethylene Glycol (Molecular Weight 300) 200. 0
To prepare monomethyl maleate, in a one liter, threenecked, round-bottom flask, the methyl alcohol and maleic anhydride are heated at C. for one hour. The flask contents are cooled to room temperature and the methyl acrylate and benzoyl peroxide are combined with the monomethyl maleate to make a monomer-catalyst mixture. These proportions represent (based on the total weight of the reactants) 32.5 weight percent of monomethyl maleate and 67.5 weight percent of methyl acrylate. In another one liter, three-necked, round-bottomed flask fitted with an agitator, thermometer, condenser and dropping funnel, the polyethylene glycol is heated to 125 C. at which time the addition of the monomer-catalyst solution is started by means of the dropping funnel at a fast drop rate. During the addition, two hours and twenty minutes, the reaction temperature is maintained below the reflux temperature. When the addition is comlete, the reaction is held at C. to C. for an additional hour after which it is cooled to room temperature. The flask is fitted for vacuum distillation and any excess monomer is distilled off at 15 mm. Hg and 120 C., in this case only a few drops. The flask contents are cooled and the 60 percent carboxy copolymer solution in polyethylene glycol is poured into a suitable container. The copolymer portion of the composition has a theoretical carboxy equivalent of 400, while the total copolymer solution has a carboxyl equivalent of 667 and a hydroxyl equivalent of 240.
B. Cured Composition In a suitable container, 64.0 grams of the copolymer solution of this example (0.096 carboxyl equivalent of copolymer and 0.172 hydroxyl equivalent of the glycol) are combined with 52.8 grams (0.684 anhydride equivalent) of hexahydrophthalic anhydride and 83.2 grams (0.436 epoxide equivalent) of Epoxide 190. The mixture is heated with stirring at 80 C. to 100 C. until solution occurs. To the solution is added with stirring 0.25 gram dimethylaminomethyl phenol. The mixture is cast between glass plates, and is heated at 100 C. for one hour followed by a bake of two hours at C. The resulting clear casting has these physical properties:
Tensile strength 2000 lbs/sq. in. Elongation 150 percent.
Impact strength 0.55 ft. lb./in. notch. Hardness (Shore D) 66.
Water absorption 0.6 percent.
Another casting is prepared and cured as above from 64.8 grams of the copolymer solution of this example (0.096 carboxyl equivalent of the copolymer and 0.172 hydroxyl equivalent of the glycol) combined with 84.0 grams (0.440 epoxide equivalent) of Epoxide 190, 51.2 grams (0.692 anhydride equivalent) of phthalic anhydride weight=300).
9 and 0.25 gram of dimethyl aminomethyl phenol. The casting has these physical properties:
In a -500- ml. round-bottomed, three-necked flask equipped with an agitator, thermometer, reflux condenser and dropping funnel, the vinyl acetate, crotonic acid and benzoyl peroxide are heated to reflux (78 C. to 80 C.). These proportions represent (based on the total weight of the two reactants) 80.0 weight percent of vinyl acetate and 20.0 weight percent of crotonic acid. In an Erlenmeyer flask, the hexahydrophthalic anhydride is dis solved by heating in polyethylene glycol (molecular The monomer-catalyst mixture is held at reflux until the solution becomes highly viscous (about three and one-half hours) at which time the diluent mixture is added to the flask contents through the dropping funnel at a moderate dropwise rate over a period of about i one hour. As the amount of diluent present increases, the
reflux temperature increases, however, the reaction tem perature is not allowed to exceed 135 C. and when all of the diluent is added, the reaction mixture is maintained at this temperature until reflux ceases. The 39.5 percent carboxy copolymer solution in a 32.8 percent/ 67.2 percent mixture of glycol and anhydride is allowed to cool to room temperature. The copolymer portion of the composition has a carboxyl equivalent of 430 grams while the total copolymer solution has a carboxyl equivalent of 1088, a hydroxyl equivalent of 756 and an anhydride equivalent of 189.
B. Cured composition With stirring 130.0 grams (0.112 carboxyl equivalent of copolymer, 0.156 hydroxyl equivalent of glycol and 0.632 anyhydride equivalent of anhydride) of the copolymer solution of this example and 80.0 grams (0.420 epoxide equivalent) of Epoxide 190 are heated at 80 C. to 100 C. until homogeneous solution results. Into the mixture is blended, with stirring, 0.25 gram of dimethylaminomethyl phenol. The mixture is cast between glass plates and is baked at 100 C. for one hour followed by a two hour bake at 150C. The resulting clear casting exhibits the following physical properties:
Tensile strength 2500 lbs/sq. in. Elongation 90 percent. Impact strength 0.45 ft. lb./in. notch. Hardness (Rockwell M) 30. Water absorption 0.6 percent.
EXAMPLE 4 A. Copolymer preparation Material Units Weight (grams) Vinyl Toluene 60.0 120.0 Methyl Acrylate.. 20. 40. 0 Methacrylic Acid. 20. 0 40. 0 Benzoyl Peroxide 2.0 4. 0 Dimerized Soya Fatty Acids 1 200. 0
1 Dimerized soya fatty acid is a commercial form of a dimeric poly-mer consisting essentially of dilinoleic acid. The method used in its preparation is set forth in the Journal of American Oil Chemists Society, March gram of dimethylaminomethyl phenol.
Into a one liter, round-bottomed, three-necked flask fitted with a thermometer, agitator, dropping funnel and reflux condenser are charged the dimerized soya fatty acids. While in a separate container, a monomer-catalyst solution is prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid and benzoyl peroxide. These proportions of monomers in the monomer-catalyst solution represent (based on the total weight of the three reactants) weight percent of vinyl toluene, 20 weight percent of methyl acrylate, and 20 weight percent of methacrylic acid. The dimerized soya fatty acids are heated to C. with agitation after which the monomercatalyst solution is slowly introduced into the flask by means of the dropping funnel over a period of about one and one-half hours. During this addition, the reaction temperature is held under C. After all of the monomer-catalyst solution is added, the reaction mixture is heated at slow reflux to a temperature of C. over a period of an hour after which heating is discontinued and the resulting 50 percent carboxy copolymer solution is poured into a suitable container. The copolymer portion of the composition has a theoretical weight per carboxyl group of 430 while the diluent has a weight per carboxyl group of 306. The total copolymer solution has a carboxyl equivalent of 357.
B. Cured composition 'In a suitable container, 79.6 grams of the 50 percent copolymer solution of this example (0.092 carboxyl equivalent of copolymer and 0.128 carboxyl equivalent of diluent) are combined with 80.0 grams (0.420 epoxide equivalent) of Epoxide 190 and 40.8 grams (0.528 anhydride equivalent) of hexahydrophthalic anhydride and are heated to 50 C. to 80 C. with agitation until solution occurs. Into this solution is blended with stirring 0.25 The mixture is cast'between glass plates and is heated in a circulating oven at 150 C. for thirty minutes followed by a C. bake for two hours. The clear casting obtained has these In accordance with Example 1, the Epoxide 200 is heated to 125 C. The monomer-catalyst solution made up of vinyl toluene, methyl arcylate, methacrylic acid and catalyst is then added to the preheated epoxide diluent. During the addition of the monomer-catalyst solution, a period of one and one-half hours, the temperature of the flask contents is held below 125 C. After the addition is complete, the flask contents are held at 125 C. until reflux ceases, producing a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in Epoxide 200. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 whilethe total copolymer solution has a theoretical carboxyl equivalent of 860.
A monomer-catalyst solution is prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid, and benzoyl peroxide in a flask. The hexahydrophthalic anhydride is then heated in a one liter flask to 125 C. and the monomer-catalyst mixture is added to the contents of the flask through a dropping funnel at a fast dropwise rate over a period of about one hour. After all of the monomer-catalyst solution is added, the reaction mixture is heated at slow reflux to a temperature of 150 C. forming a 50 percent carboxy copolymer solution. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxy equivalent of 860 and anhydride equivalent of 154.
B. Cured composition As outlined in Part B of Example 1, 96 grams of the copolymer solution (.223 carboxyl equivalent of copolymer and .624 anhydride equivalent of hexahydrophthalic anhydride) are combined with 80.8 grams (.425 epoxide equivalent) of Epoxide 190 and 23.6 grams (.157 hydroxyl equivalent) of polyethylene glycol. The mixture is heated with stirring at 80 C. to 110 C. To the solution is added with stirring 0.25 gram of dimethylaminomethyl phenol. The resulting blend is cast and baked as described in Example 1, producing a hard, infusible, insoluble product.
In the manner described in Example 3, the tetrahydrophthalic anhydride and the HET anhydride are heated together in a one liter flask to 120 C. At this temperature, the monomer-catalyst solution, having been prepared by combining the vinyl toluene, methyl acrylate, methacrylic acid and benzoyl peroxide, is added to the anhydride solution through a dropping funnel at a fast dropwise rate over a period of about one and one-half hours. When all of the monomer-catalyst solution has been added, the temperature of the reaction mixture is increased to 150 C. and maintained there for a period of 45 minutes. The resulting product is a 50 percent solution of a 60/20/20 vinyl toluene/methyl acrylate/methacrylic acid polymer in a 50/50 tetrahydrophthalic/HET anhydride mixture. The copolymer portion of the composition has a carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 860 and an anhydride equivalent of 251.
B. Cured composition dride equivalent of tetrahydrophthalic and HET anhydrides) of the copolymer solution, 72.8 grams (.384 epoxide equivalent) of Epoxide 190, and 19.2 grams (.128 hydroxyl equivalent) of polyethylene glycol are heated with stirring at C. to C. until the mixture has melted. Into the mixture is added, with stirring, 0.25 gram of dimethylaminomethyl phenol, The mixture is cured as in Part B ofv Example 1, producing avery hard casting having very good toughness'and flexibility properties.
EXAMPLE 8 A. Copolymer preparation Material Units Weight (grams) Styrene- 60. 0 120. 0 Methacrylic Acid 40. 0 80. 0 Benzoyl Peroxide 2. 0 4. 0 Polypropylene Glycol (Molecular Weight 1,200)- 200. 0
In the manner described in Example 1, the polypropylene glycol is heated to C. in a one liter flask. At this temperature, the monomer-catalyst solution, prepared by mixing together the styrene, methacrylic acid, and benzoyl peroxide, is added to the preheated glycol diluent by means of a dropping funnel at a fast dropwise rate, over a period of about one hour. After the addition is complete, the flask contents are held at C. until reflux ceases, forming a viscous, 50 percent solution of a 60/40 styrene/methacrylic acid copolymer in polypropylene glycol. The copolymer portion of the composition, which appears clear, has a theoretical carboxyl equivalent of 215 while the total copolymer solution has a theoretical carboxyl equivalent of 430 and hydroxyl equivalent of 1198.
B. Cured composition In accordance with Part B of Example 2, 99.6 grams (.464 carboxyl equivalent of copolymer and .835 hydroxyl equivalent of polypropylene glycol) of the copolymer solution, 75.6 grams (.398 epoxide equivalent) of Epoxide 190, and 25.2 grams (.327 anhydride equivalent) of hexa hydrophthalic anhydride are heated with stirring at 80 C. to 100 C. Into the mixture is added, with stirring, 0.25 gram dimethylaminomethyl phenol. In the manner described in Part B of Example 2, the mixture is cured by heating at 100 C. for one hour followed by a C. bake for two hours, producing a casting which is very hard and quite tough and flexible.
Following the procedure of Example 1, the polypropylene glycol is heated in a one liter flask to 125 C. The monomer-catalyst solution, prepared by mixing together the vinyl toluene, methacrylic acid, and catalyst, is then introduced into the flask containing the preheated glycol diluent at a fast dropwise rate. After the addition of the monomer-catalyst solution, a period of about one-half hour, the flask contents are held at 135 C. until reflux ceases. The resulting product is a 50 percent solution of a 60/40 vinyl toluene/methacrylic acid copolymer in polypropylene glycol. The copolymer portion of the composition has a theoretical carboxyl equivalent of 215 while the total copolymer solution has a theoretical equivalent of 430 and hydroxyl equivalent of 750.
B. Cured composition As described in Part B of Example 2, 84.4 grams (.392 carboxyl equivalent of copolymer and .112 hydroxyl equivalent of polypropylene glycol) of the copolymer solution, 80.0 grams (.420.epoxide equivalent) of Epoxide 190, and 35.6 grams (.508 anhydride equivalent) of hexahydrophthalic anhydride are heated at 80 C. to 100 C. with stirring. To this mixture is added 0.25 gram of dimethylarninomethyl phenol. The mixture is cured as in In accordance with the preceding examples, the vinyl acetate, crotonic acid, and benzoyl peroxide are heated to reflux (75 :C. to 77 C.) in a 500 milliliter flask.
When the viscosity of the flask contents reaches the point where more agitation is needed, the polypropylene glycol is added by means of a dropping funnel at a moderate dropwise rate. After the addition is complete, the reaction mixture is held at reflux (135 C.) for twenty minutes. The resulting product is a 50 percent solution of an 80/20 vinyl acetate/crotonic acid copolymer in polypropylene glycol. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 While the total copolymer solution has a theoretical carboxyl equivalent of 862 and hydroxyl equivalent of 1200.
B. Cured composition A. Copolymer preparation Material Units Weight (grams) Vinyl Acetate 80.0 240. crotonic Acid 20. 0 60. 0 Benzoyl Peroxide 4.0 12. 0 Polypropylene Glycol (Molecular Weight 750) 300. 0
According to the preceding examples, the vinyl acetate, crotonic acid, and benzoyl peroxide are heated in a one liter flask to reflux (78 C. to 80 C.). To this monomer-catalyst solution is added 300 grams of polypropylene glycol in 50 gram increments, the frequency of the additions depending on the viscosity of the solution. After the addition is complete, the flask contents are held at reflux until the reflux temperature reaches 125 C. to 130 C. The resulting product is a 50 percent solution of an 80/20 vinyl acetate/crotonic acid copolymer in polypropylene glycol. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a theoretical carboxyl equivalent of 860 and hydroxyl equivalent of 750.
14 -B. Cured composition Following Part B of Example 2, 84.4 grams (.196 carboxyl equivalent of copolymer and .112 hydroxyl equivalent of polypropylene glycol) of the copolymer solution, 72.4 grams (.381 epoxide equivalent) of Epoxide 190, and 43.6 grams (.565 anhydride equivalent) of hexahydrophthalic anhydride are heated together at C. to 100 C. To this solution is added 0.12 gram of dimethylaminomethyl phenol. The resulting blend is cured as described in Part B of Example 2, producing 'a casting having excellent hardness, toughness, and flexibility properties.
EXAMPLE 12 A. Copolymer preparation Material Units Weight (grams) Vinyl Acetate 80. 0 80. 0 Crotonic Acid 20. 0 20. 0 Benzoyl Peroxide 4.0 '4. 0 Epoxide 177 100.0
In accordance with Example '3, the vinyl acetate, crotonic acid, and benzoyl peroxide are heated in a 500 milliliter flask to reflux (78 C. to 80 C.). The monomer-catalyst mixture is held at reflux until the solution becomes highly viscous (about one and one-half hours) at which time 50 grams of the diluent, diglycidyl ether of trimethylol propane, are added to the flask contents. After approximately thirty minutes, another 50 grams of the diluent are added to the flask contents. The reaction rnixture is held at reflux until the reflux temperature reaches C. The resulting product is a 50 percent solution of an 80/ 20 vinyl acetate/crotonic acid copolymer in Epoxide 177. The copolymer portion of the composition has a carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 862 and epoxide equivalent of 354.
B. Cured composition EXAMPLE 13 A. Copolymer preparation Material Units Weight Vinyl Acetate- 80. O 80. 0 Crotonic Acid 20.0 20. 0 Benzoyl Peroxi 4.0 4.0 Epoxide 155 100.0
In accordance with the preceding examples, the vinyl acetate, crotonic acid, and benzoyl peroxide are heated together in a 500 milliliter flask to reflux (78 C. to 80 C.). After this monomer-catalyst solution has refluxed for approximately one and one-half hours, the Epoxide 155 is added to the solution. Reflux of the reaction mixture is continued until the temperature reaches 90 C. to C. The resulting product is a 50 percent solution of an 80/ 20 vinyl acetate/crotonic acid copolymer in Epoxide 155. The copolymer portion of the composition has a theoretical carboxyl equivalent of 430 while the total copolymer solution has a carboxyl equivalent of 862 and an epoxide equivalent of 300.
B. Cured composition In the manner described in Part B of Example 1, 200 grams (.465 carboxyl equivalent of copolymer and .666 epoxide equivalent of Epoxide 155) of the copolymer solution is heated at 80 C. to 100 C. To this solution is added 0.1 gram of dimethylaminomethyl phenol with stirring. As described in Part B of Example 12, the resulting mixture is cured to produce an infusible insoluble resin which is very flexible and quite soft.
The following table illustrates other compositions of the invention. In the table, the copolymer is identified as 60/20/20 VT/MA/MAA. This is a terpolymer of 60 parts by weight vinyl toluene, parts by weight methyl tions are explained in the footnotes to the table. In the equivalent ratio portion of the table, the column headed Reactive Diluentf includes only diluents such as acids or alcohols which are not in one of the other ratio columns. If part of all of the diluent is an epoxide or an anhydride, that portion is included in the anhydride or epoxide column. PEG 300, 600, etc., as used in the table represents a mixture of polyethylene glycols having an average molecular weight of 300, 600, etc., as the case may be. All of the products whose properties are set forth in the following table were cured for one hour at 100 C. and then post-cured for two hours at 150 C. using one percent dimethylaminomethyl phenol as "a acrylate, and 20 parts methacrylic acid. Other designa- 15 catalyst.
TABLE I Copol- Copol- Equivalent Ratios ymer ymer N0. Copolymer Conoen- Car- Reactive Diluent Copolymer-Drluent tration, boxyl Appearance Copol- Dil- Anhy- Epox. Percent Equivymer uent drlde 1 m alent 60/20/20 VT/MA/MAA 50 430 PE G 300 Slight haze, non- 1.0 2. 87 5. 48 7, 75
ow. 6/020/20 VT/MA/MAA 50 430 PEG 600 Clear, non-flow-.- 1. 0 1. 43 2. 88 3, 3 60/20/20 VT/MA/MAA 50 430 50% Epox. 190, 50% PEG 300- .do 1.0 1. 42 2. 86 3 60/20/20 VT/MA/MAA 50 430 50% 2ET Hexanol, 50% PE G Clear, flows 1. 0 3.09 12. 4 13, 4
300. 60/20/20 VT/MA/MAA 50 430 D-4 SliIght haze, mm- .1. 0 2. 21 17. 75 13 g ow. 60/20/20 VT/MA/MAA 50 430 Dimer Acids Clear, non-flow. 1. 0 1. 405 2. 84 4, 51 60/20/20 VT/MA/MAA 33% 430 50%I1I)Ii 1rier Acids, 50% Clear, flows 1.0 1. 408 2.80 4, 53 60/20/20 VT/MA/MAA 430 DIirXer Acids, 50% Infiompatible, non- 1. 0 1. 408 2. 80 4, 53
. ow. 60/20/20 VT/MA/MAA 50 430 31% grogo Fatty Acids, 69% ---d0 1. 0 1. 43 2.87 3.38 60/20/20 STY/lVLA/MAA-.. 33% 430 50% Dlifier Acids, 50% Incompatible, flows. 1. 0 1. 07 2. 90 3. 78
HH 60/20/20 sTY/MA/MAA 50 430 PEG 600 Slight haze, non- 1. 0 638 1.056 2.
0W. 80/20 STY/MA 33% 430 soi'llglirxer Acids, 50% Hazy, flows 1.0 1- 408 2. 80 4. 53 80/20 MA/MAA 50 430 PEG 600 Clear, flows 1. 0 1. 43 2. 87 3. 88 /40 MA/MAA- 50 215 PE G GO0 Clear. non-flows- 1. 0 72 1. 44 2, 43 60/40 VT/MAA 33% 215 50i71vI1II'1i1Xer Acids, 50% Infiompetible, mm- 1. 0 704 l. 395 2. 76
I ow. 84/16 MA/MMM 66% 800 PE G 300 Clear, flows 1. 0 3. 56 3. 15 8.10 84/16 MA/MMM 66% 800 PE G 3 --d0 1. 0 3. 56 2 7. 10 8, 07 84/16 MA/MMM 66% 800 33% PE G 300. 67% HHPA 1. 0 1. 178 3. 95 4. 95 84/16 MA/MMM 66% 800 33% PEG 300, 67% HHPA 1.0 1. 16 5. 82 6. 79 68/32 MA/MMM 60 400 PE G 300 1. 0 1. 77 3.04 4, 02 68/32 MA/MMM" 60 400 PE G 300 1.0 1. 78 1 3.01 4. 57/43 MA/MBM 60 400 33% PE G 300, 67% HHPA 1.0 605 2. 94 3, 92 57/43 MA/MBM 60 400 33% PE G 300, 67% HHPA.. 1. 0 583 1. 938 2. 93 28.5/28.5/43 MA/MM/MBM.-. 60 400 33% PEG 300, 67% HHPA 1.0 605 2.94 3. 92 78/22 MA/MBM 42. 9 800 16% PE G 300, 84% HHPA 1. 0 1.16 5. 82 6, 79 78/22 MAIMBM 60 800 33%PE G 300, 67% HHPA.. 1. 0 1. 178 3. 95 4. 95
78/22 MA/MBM 60 800 33% PE G 300, 67% HHPA-... 1.0 1. 16 5. 82 6. 79 34/23/43 MM/MA/MBM 50 400 33% PE G 300, 67% HHPA 1.0 875 4. 38 5. 36 40/17/43 MM/MA/MBM. 50 400 33% PEG 300, 67% HHPA. 1.0 875 4.38 5. 36 71/29 MA/MEHM" 60 800 33% PEG 300, 67% HHPA-- 1. 0 1.178 3. 95 4. 95 71/29 MA/MEHM 60 800 33% PE G 300, 67% HHPA 1. 0 1. 16 5.82 6. 79 43/57 MA/MEHM 60 400 33% PEG 300, 67% HHPA do 1.0 595 2. 95' 7. 57 42/20/38 MA/VT/MEI-IM- 50 600 33% PEG 300. 67% HHPA Clear, slight flow- 1.0 1.32 6. 56 7. 56 31/31/38 MA/VT/MEHM. 50 600 33% PEG 300, 67% HHPA Clear, n0nfi0W 1.0 1. 33 3. 29 4. 28 31/31/38 MA/VT/MEIIM 50 600 33 1.0 1. 32 6. 56 7. 56 31/31/38 MM/VT/MEHM 50 600 33% PEG 300, 67% HHPA 1.0 1. 32 6. 56 7. 56 20/42/38 MA/VT/MEHM 50 600 33% PE G 300, 67% HHPA. 1.0 1. 32 6. 56 7. 56 69/31 MA/MD M 60 600 33 1. 0 83 2.90 3. 92 69/31 MA/MD M 60 600 33 1. 0 875 4. 38 5. 40 51/49 MA/MD M 50 600 33% PEG 300, 67% HHPA- 1. 0 1. 32 3. 26 4. 26 0 VAc/CA 50 430 PE 1. 0 2. 866 5. 76 6.73 80/20 VAe/CA 66% 430 PE G 300 1. 0 1. 45 2.87 3. 85 80/20 VAc/CA. 39A 430 33% PEG 300, 67% HHPA- 1. 0 1. 45 2. 86 3. 81 80/20 VAC/0A.. 50 430 33% PE G 300, 67% HHPA (10 1. 0 .945 1. 859 2. 72 8 20 VAc/CA 50 430 PE G 600 Clear, flows 1. 0 1. 467 2. 90 3.88 80/20 VAc/CA 50 430 PE G 600 o 1. 0 1. 43 2 2. 98 3. 87 80/20 VAC/CA 33% 430 50% PEG 750. 50% HHPA- 1.0 1.148 2. 79 3. 84 80/26 VAc/CA 33% 430 50% PEG 750, 50% HHPA 1.0 1. 3. 80 4. 80 80/20 VAc/CA" 33% 430 50% PEG 750, 50% HHPA do 1.0 1.145 5. 75 6.75
1 Hexahydrophthalic Anhydride unless otherwise specified. Phthalie Anhydride.
3 MRockwel1 M Scale; other letters refer to Shore.
4 Average of several duplicates.
VIVin vl Toluene. MAMetl1yl Acrylate. MAAMethaerylic Acid. SIYStyrene. MMM-Monomethyl Maleate. MB M-Monobutyl Maleate. MM-Meth yl Methacrylate.
MEHM-Mono-2-Ethyl Hexyl Maleate. MD. MMonoethylene glycol-p-tert-butylphenyl ether maleate. MD MMonoma1eate ester of Propylene Glycol Methylether. CACrotonie Acid. VAc-Vinyl Acetate. HHPA-Anhydride of Example 4. D-4-Ethylene Glycol-p-tert-butylphenyl Ether, M01. Wt. 194.3. Dimer Acids-Those acids of Ex. 1. r 0000 Fatty Acids-A mixture of fatty acids, a major portion of which is lauric acid, obtained by double distillation of coconut oil and available commercially. I I
TABLE IContinued Tensile Flexure Percent No. Percent Impact Hardness 3 Water Elongation (Notched) Absorption Ult. Md. 10 Ult. M0d.X10
4 7,000 18 78M 3 4 900 55D 1. 3 9, 300 21 88M 3 9, 800 24 95M 1 9,800 24 102M 09 6, 900 18 81M 1 4 3, 500 09 55M 1 300 07 36M 1 3, 400 06 74D 1. 1 2, 600 80D 1 5, 300 19 90M 1 4, 600 11 56M 1 900 44D 2. 2
3, 000 75D 1. 3 6, 200 13 89M 1 4, 400 09 801) 4 9, 500 19 83 D 4 3,000 07 781) 4 8, 000 15 85M 2 2,000 12 66D 6 4 4, 500 76D 6 4, 500 81D 3 1, 400 67D 4 400 79M 2 4 6, 200 13 78M 2 4 2, s00 o4 71D .4 6, 900 14 84D 2 9, 600 89M 1 4 9,300 15 86D .2 1, 700 72D 3 4, 600 00 60M 42 3, 300 78D 2 8, 900 .23 01M 1 2, 300 05 76D 3 8,900 23 92M 1 9, 100 23 95M 1 4 9 600 .20 88M 1 2: 000 69D 5 5, 400 11 71M 2 1, 500 66D 4 3, 100 05 791) 5 5, 300 l4 84D .5 2, 500 05 1 45 M 6 4 2, 900 11 .40 56M .6 500 No Break 38D 2. 5 1, 300 No Break 53D 2.1
500 07 .3. 0 85A 56 1, 550 '12 1 1. 3 65D 40 3,900 12 1 44 80D 22 See footnotes on previous page.
Example 14 To a 500 milliliter flask equipped with reflux condenser, stirrer and thermometer are weighed 30 grams of vinyl toluene, 10 grams of ethyl acrylate, 10 grams of methacrylic acid, 1 gram of benzoyl peroxide and 50 grams of N-adic anhydride (M.P. 164165). Heat is applied to raise the temperature to 95 C. over a thirty minute period. At this time all the Nadic anhydride is dissolved, a clear solution being obtained. The temperature is then raised to 120 C. in thirty minutes. The polymerization temperature is held at 120 C. to 130" C. for three and one-half hours. At the end of this time, the polymerization is complete .as evidenced by lack of reflux and by no further change in the viscosity of the solution. At the reaction temperature (120 C.) the solution is light amber in color and viscous. Upon cooling, the reaction product hardens to a white, opaque, brittle, solid, that can be pulverized to a fine powder.
The foregoing examples show that by the practice of this invention, it is not only possible to incorporate the copolyrners into casting compositions, but products containing up to 25 to 30 percent copolymer are prepared having physical properties comparable to many epoxy systems. It is understood that properties of castings will vary not only with the monomers and the carboxy equivalent of the copolymer, but with the various cross-linking agents. Hence, a wide variation of operation and products is possible within the spirit of this invention. Such variations and modifications are deemed to be within the scope of this invention.
What is claimed is:
1. A process for the preparation of a carboxy copolymer solution devoid of solvent boiling below 150 C. and capable of being readily cross-linked which comprises polymerizing, at a temperature of from 60 C. to about 150 C., a solution comprising (A) an afi-ethylenically unsaturated carboxylic acid containing not more than four carbon atoms,
(B) a diflierent monoethylenically unsaturated monorner copolymerizable with said (A), and
(C) as the sole polymerization solvent, a member selected from the group consisting of a car'boxylic acid, a carboxylic acid anhydride, and mixtures thereof,
said (C) (1) being a solvent for and non-reactive with said '(A), said (B) and said carboxy copolymer under the polymerization conditions used,
(2) being present in an amount sufiicient to dissolve said (A), said (B) and said carboxy copolymer,
(3) being saturated or containing unsaturation which is non-reactive under the polymerization conditions used,
(4) having a melting point below the polymerization temperature,
(5) having a boiling point of at least 150 C.,
(6) having a viscosity not exceeding centipoises at the polymerization temperature, and
(7) being capable of entering the curing reaction when said carboxy copolymer is cured.
2. A process as described in claim 1 wherein polym erization is etfected using a vinyl polymerization catalyst.
3. A process as described in claim 1 wherein said (A) is methacrylic acid.
4. A process as described in claim 1 wherein said (B) is styrene.
5. A process as described in claim 1 wherein said (B) is vinyl toluene.
6. A process as described in claim 1 wherein said (B) is methyl acrylate.
7. A process as described in claim 1 wherein said (B) is a mixture of styrene and methyl acrylate.
'8. A process as described in claim 1 wherein said (B) is a mixture of vinyl toluene and methyl acrylate.
9. A process as described in claim 1 wherein said (A) is methacrylic acid and said (3) is a mixture of vinyl toluene and methyl acrylate. p
10. A process as described in claim 1 wherein said (C) is a liquid eutectic mixture of dicarboxylic acid anhydrides.
11. A process as described in claim 1 wherein said (C) is a liquid eutectic mixture of hexachloroendomethylenetetrahydrophthalic anhydride and hexahydrophthalic anhydride.
12. A process as described in claim 1 wherein said (C) is dimerized soya fatty acids.
13. A process as described in claim 1 wherein said (C) is a mixture of dimer acids and dimerized soya fatty acids.
14. A process as described in claim 17 wherein said uncrosslinked carboxy copolymer solution is prepared by polymerizing (A) 20 percent of methacrylic acid,
(B) a mixture of 60 percent of vinyl toluene and 20 percent of methyl acrylate, and
(C) hexahydrophthalic anhydride, said polyhydric alcohol is a polyethylene glycol having a molecular weight of 300 and said polyepoxide is the diglycidyl ether of 2,2-bis(4-hydroxyphenyDpropane.
15. A process as described in claim 17 wherein said uncrosslinked carboxy copolymer solution is prepared by polymerizing (A) 20 percent of methacrylic acid,
(B) a mixture of 60 percent of vinyl toluene and 20 percent of methyl acrylate, and
(C) a mixture of tetrahydrophthalic anhydride and hexachloroendomethylenetetrahydrophthalic a n 11 y dlldfi,
said polyhydric alcohol is a polyethylene glycol having a 20 molecular weight of 300 and said polyepoxide is the diglycidyl'ether of 2,2 bis(4-hydroxyphenyl)propane. m
16. A process for the preparation of a cross-linked carboxy copolymer which comprises adding a polyepoxide to an uncrosslinked carboxy copolymer solution prepared as described in claim 1 wherein said (C) is a polycarboxylic acid anhydride to form a polycarboxylic acid anhydride polyepoxide uncross-linked carboxy co polymer system having the ratio of 1--2 equivalents of said polycarboxylic acid anhydride to 2 equivalents of said polyepoxide to 0.2-0.8 equivalent of said uncross-linked carboxy copolymer, and heat-curing the resulting composition.
17. A process for the preparation of a cross-linked carboxy copolymer which comprises adding a polyhydric alcohol and a polyepoxide to an uncross-linked carboxy copolymer solution prepared as described in claim 1 wherein said -(C) is a polycarboxylic acid anhydride to form a polycarboxylic acid anhydn'dezpolyhydric alcohol: polyepoxide:uncross-linked carboxy copolymer system having the ratio of 2 equivalents of said polycarboxylic acid anhydride to 0.41.6 equivalents of said polyhydric alcohol to 3 equivalents of said polyepoxide to 1 equivalent of said uncrosslinked carboxy copolymer, and heatcuring the resulting composition.
References Cited by the Examiner UNITED STATES PATENTS 7/1962 Muskat 260-837 OTHER REFERENCES Lee et al.: Epoxy Resins, McGraw-Hill, N.Y., 1957 (pages -140 relied on).

Claims (1)

1. A PROCESS FOR THE PREPARATION OF A CARBOXY COPOLYMER SOLUTION DEVOID OF SOLVENT BOILING BELOW 150*C. AND CAPABLE OF BEING READILY CROSS-LINKED WHICH COMPRISES POLYMERIZING, AT A TEMPERATURE OF FROM 60*C. TO ABOUT 150*., A SOLUTION COMPRISING (A) AN A,B-ETHYLENICALLY UNSATURATED CARBOXYLIC ACID CONTAINING NOT MORE THAN FOUR CARBON ATOMS, (B) A DIFFERENT MONOETHYLENICALLY UNSATURATED MONOMER COPOLYMERIZABLE WITH SAID (A), AND (C) AS THE SOLE POLYMERIZATION SOLVENT, A MEMBER SELECTED FROM THE GROUP CONSISTING OF A CARBOXYLIC ACID, A CARBOXYLIC ACID ANHYDRIDE, AND MIXTURES THEREOF, SAID (C) (1) BEING A SOLVENT FOR AND NON-REACTIVE WITH SAID (A), SAID (B) AND SAID CARBOXY COPOLYMER UNDER THE POLYERIZATION CONDITIONS USED, (2) BEING PRESENT IN AN AMOUNT SUFFICIET TO DISSOLVE SAID (A), SAID (B) AND SAID CARBOXY COPOLYMER, (3) BEING SATURATED OR CONTAINING UNSATURATION WHICH IS NON-REACTIVE UNDER THE POLYMERIZATION CONDITIONS USED, (4) HAVING A MELTING POINT BELOW THE POLYMERIZATION TEMPERATURE, (5) HAVING A BOILING POINT OF AT LEAST 150*C., (6) HAVING A VISCOSITY NOT EXCEEDING 130 CENTIPOISES AT THE POLYMERIZATION TEMPERATURE, AND (7) BEING CAPABLE OF ENTERING THE CURING REACTION WHEN SAID CARBOXY COPOLYMER IS CURED.
US236728A 1962-11-09 1962-11-09 Carboxy copolymers prepared in carboxylic acids and/or anhydrides Expired - Lifetime US3247144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US236728A US3247144A (en) 1962-11-09 1962-11-09 Carboxy copolymers prepared in carboxylic acids and/or anhydrides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US236728A US3247144A (en) 1962-11-09 1962-11-09 Carboxy copolymers prepared in carboxylic acids and/or anhydrides

Publications (1)

Publication Number Publication Date
US3247144A true US3247144A (en) 1966-04-19

Family

ID=22890702

Family Applications (1)

Application Number Title Priority Date Filing Date
US236728A Expired - Lifetime US3247144A (en) 1962-11-09 1962-11-09 Carboxy copolymers prepared in carboxylic acids and/or anhydrides

Country Status (1)

Country Link
US (1) US3247144A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670047A (en) * 1968-10-08 1972-06-13 Reichhold Albert Chemie Ag Epoxy resins etherified with ethylenically unsaturated alcohols and copolymerized with carboxy containing monomers
USRE28715E (en) * 1964-08-12 1976-02-17 Polyurethanes, reactive solutions and methods and their production
USRE29118E (en) * 1963-02-06 1977-01-18 Method of preparing polyurethanes from liquid, stable, reactive, film-forming polymer/polyol mixtures formed by polymerizing an ethylenically unsaturated monomer in a polyol
US4225476A (en) * 1976-05-14 1980-09-30 E. I. Du Pont De Nemours And Company Adhesive blend of wood rosin and thermoplastic graft copolymer
US4859758A (en) * 1987-11-16 1989-08-22 The Sherwin-Williams Company Acid-functional polymers derived from cellulose ester-unsaturated alcohol copolymers, which are reacted with cyclic anhydrides
US4871806A (en) * 1987-11-16 1989-10-03 The Sherwin-Williams Company Reactive coatings comprising an acid-functional compound, an anhydride-functional compound, an epoxy-functional compound and a hydroxy-functional compound
US5043220A (en) * 1987-11-16 1991-08-27 The Sherwin-Williams Company Substrate coated with a basecoat and/or a clearcoat of an acid-functional compound, an anhydride-functional compound, an epoxy-functional compound and a hydroxy-functional compound
US5411809A (en) * 1987-11-16 1995-05-02 The Sherwin-Williams Company Reactive coatings comprising an acid-functional compound, an anhydride-functional compound and an epoxy-functional compound
US6433097B1 (en) 1996-07-30 2002-08-13 International Coatings Limited Curable polymer compositions and their preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046246A (en) * 1958-01-23 1962-07-24 Texas Butadiene & Chemical Cor Resinous reaction product comprising a copolymer of an unsaturated dicarboxylic acid anhydride and an olefinic compound, and an aliphatic polyhydric alcohol, and a molding composition comprising same and a plasticizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046246A (en) * 1958-01-23 1962-07-24 Texas Butadiene & Chemical Cor Resinous reaction product comprising a copolymer of an unsaturated dicarboxylic acid anhydride and an olefinic compound, and an aliphatic polyhydric alcohol, and a molding composition comprising same and a plasticizer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29118E (en) * 1963-02-06 1977-01-18 Method of preparing polyurethanes from liquid, stable, reactive, film-forming polymer/polyol mixtures formed by polymerizing an ethylenically unsaturated monomer in a polyol
USRE28715E (en) * 1964-08-12 1976-02-17 Polyurethanes, reactive solutions and methods and their production
US3670047A (en) * 1968-10-08 1972-06-13 Reichhold Albert Chemie Ag Epoxy resins etherified with ethylenically unsaturated alcohols and copolymerized with carboxy containing monomers
US4225476A (en) * 1976-05-14 1980-09-30 E. I. Du Pont De Nemours And Company Adhesive blend of wood rosin and thermoplastic graft copolymer
US4859758A (en) * 1987-11-16 1989-08-22 The Sherwin-Williams Company Acid-functional polymers derived from cellulose ester-unsaturated alcohol copolymers, which are reacted with cyclic anhydrides
US4871806A (en) * 1987-11-16 1989-10-03 The Sherwin-Williams Company Reactive coatings comprising an acid-functional compound, an anhydride-functional compound, an epoxy-functional compound and a hydroxy-functional compound
US5043220A (en) * 1987-11-16 1991-08-27 The Sherwin-Williams Company Substrate coated with a basecoat and/or a clearcoat of an acid-functional compound, an anhydride-functional compound, an epoxy-functional compound and a hydroxy-functional compound
US5411809A (en) * 1987-11-16 1995-05-02 The Sherwin-Williams Company Reactive coatings comprising an acid-functional compound, an anhydride-functional compound and an epoxy-functional compound
US5580926A (en) * 1987-11-16 1996-12-03 The Sherwin-Williams Company Reactive coatings comprising an acid-functional compound, an anhydride-functional compound, an epoxy-functional compound and a hydroxy-functional compound
US6433097B1 (en) 1996-07-30 2002-08-13 International Coatings Limited Curable polymer compositions and their preparation

Similar Documents

Publication Publication Date Title
US3377406A (en) Process of esterification of polyepoxides with ethylenically unsaturated monocarboxylic acids in the presence of onium salts of inorganic acids
US3408422A (en) Stabilization of unsaturated polyesters and resulting products
US3466259A (en) Thickened thermosetting vinyl ester resins
US3773856A (en) Process for the preparation of unsaturated epoxy ester compositions
US4197390A (en) Thickenable thermosetting vinyl ester resins
US2781333A (en) Polymerizable compositions containing polyglycidyl esters of polycarboxylic acids
US3732332A (en) Production of low molecular weight polyanhydrides and epoxy compositions derived therefrom
US3247144A (en) Carboxy copolymers prepared in carboxylic acids and/or anhydrides
US3247288A (en) Carboxy copolymers prepared in 1, 2-epoxy compounds
US2859199A (en) Polymerizable mixture of styrene and a polyester reaction product
US2908660A (en) Polyepoxide polyalkylene glycol-anhydride compositions and processes for their preparation
US3845010A (en) Thermoset molding powders employing glycidyl methacrylate functional polymer and dibasic acid crosslinking agent and moldings thereof
US2908663A (en) Epoxide-anhydride-hydroxy polymer compositions and method of making same
US3736289A (en) Stabilization of unsaturated polyesters and resulting products
US2949438A (en) Film-forming compositions comprising carboxy-copolymers and polyepoxides and method of making same
US3247285A (en) Copolymers of unsaturated glycidyl esters with polyepoxide solvent, and heat curing the resulting solution
US3247143A (en) Preparation of glycidyl ester copolymers in alcohols
US2864804A (en) Hydroxy-substituted allylic ethers and derivatives
US3247145A (en) Hydroxy copolymers prepared in carboxylic acids
US3306954A (en) Thermosettable liquid resin system
US3247287A (en) Preparation of solids from carboxyl copolymers without solvent liberation
US3247284A (en) Compositions comprising epoxidized polybutadiene, polycarboxylic anhydride, polyhydric alcohol and a vinyl aromatic monomer
US3270088A (en) Alkyl, hydroxyalkyl maleate monomers and copolymers thereof
US4348506A (en) Process for curing vinyl ester resins and composition useful therein
US3467730A (en) Thermoset carboxy copolymer-amino aldehyde-epoxide resin compositions