US3245910A - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
US3245910A
US3245910A US324241A US32424163A US3245910A US 3245910 A US3245910 A US 3245910A US 324241 A US324241 A US 324241A US 32424163 A US32424163 A US 32424163A US 3245910 A US3245910 A US 3245910A
Authority
US
United States
Prior art keywords
corrosion
lubricating
lubricating oil
compositions
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US324241A
Inventor
Lowe Warren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Priority to US324241A priority Critical patent/US3245910A/en
Application granted granted Critical
Publication of US3245910A publication Critical patent/US3245910A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/142Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • This invention relates to novel lubricating compositions. More particularly, it relates to lubricant compositions having superior non-corrosive and non-deposit forming properties.
  • Lubricating oils under normal operating conditions, generally undergo oxidative deterioration resulting in the production of substances highly corrosive to metal parts of modern engine and like machinery. Particularly susceptible to such corrosion are the alloy metal (usually copper-lead) bearings employed in todays internal combustion engines.
  • phthalic acids especially isophthalic and terephthalic acids as corrosion inhibiting components of lubricant compositions
  • These compounds represent highly effective corrosion inhibitors possessing many desirable characteristics such as the ability to be used in combination with numerous classes of both lubricating oil bases and lubricant additives of various types.
  • a decrease in detergent activity often results.
  • their use in this commercially important class of detergent lubricant compositions results in an increase in the amount of varnish and other carbonaceous materials deposited upon piston valves and skirts and in piston ring grooves. These deposits are deleterious to engine operation and their elimination is a highly desirable objective evidenced by numerous advances recently made in producing better detergent-type additives.
  • a new and superior lubricating composition having excellent non-corrosive and non-deposit forming characteristics can be prepared from a major proportion of an oil of lubricating viscosity in combination with a high molecular Weight nitrogen-containing detergent type additive, said combination being corrosive to metal surfaces in normal use, and a minor portion sufiicient to inhibit corrosion of p-phenylene diacetic acid.
  • novel lubricating compositions of this invention are characterized by remarkable corrosion inhibiting properties over extended operational periods and by greatly improved lubricating of bearings and other sliding surfaces.
  • An outstanding advantage of the particular inhibitor lies in the fact that its addition results in no increase in the deposit-forming characteristics of the compositions, a result common with the inhibitors of the prior art.
  • of particular advantage is the ability of these compositions to provide superior lubrication for particular bearings such as silver-containing bearings without the usually concommitant tendency to form underhead deposits in such heavy duty diesel service.
  • the corrosion inhibiting characteristics of p-phenylene diacetic acid are obtained in particular in combination with recently developed nitrogen-containing non-metallic ashless detergents in lubricating oil compositions.
  • detergents are those derived from alkenyl succinic anhydrides having 30 or more carbon atoms in the alkenyl group and amine compounds, such as tetraethylene pentamine, N-aminoethyl piperazine, dimethylaminopropylamine, etc.
  • the detergent additive is obtained by heating an alkenyl succinic anhydride with at least 0.5 mole of an amine.
  • the substituted succinic anhydrides contemplated as reactants in the process can be readily obtained by heating maleic anhydride with a high molecular Weight olefin or with a chlorinated high molecular weight olefin at a temperature from about -200 C.
  • Typical high molecular weight olefins which can be employed are polyethylene, polypropylene, polyisobutylene, etc. Polyisobutylene is preferred.
  • Suitable polyamine reactants are ethylenediamine, diethylene triamine, tetraethylene pentamine, and the like. Tetraethylene pentamine is a preferred polyamine reactant.
  • a preferred embodiment of the detergent additive is the product obtained by heating one mole of a polyisobutenyl succinic anhydride having about 65 carbon atoms in the olefin chain with 0.9 mole of tetraethylene pentamine.
  • the detergent additive is employed in the lubricant composition in an amount sufiicient to impart detergency. Generally, amounts from 0.1 to 10% by Weight are preferred.
  • the additives are a class of chemical compounds recognized in the art as possessing the ablity to enable a lubricating oil medium to maintain oxidation products, resins, and other insoluble material in suspension or dispersed in the medium.
  • Compositions in Which these additives are employed are normally rendered more corrosive probably due to the removal of naturally formed protective films from bearings and other sliding surfaces. Thus the use of a compatible and efiicient corrosion inhibitor with these types of compounds is especially desirable.
  • the corrosion inhibitor of this invention is employed in an amount suflicient to inhibit corrosion. In general, amounts up to about 1.0% by weight are sufiicient.
  • lubricant compositions are from about 0.01 to about 0.5% by weight.
  • any of the well-known types of lubricating oils can be used as the base oils for the compositions of this invention. These oils are corrosive to metal surfaces under normal operating conditions.
  • base oils are naphthenic base, paraflin base, and mixed base mineral oils; synthetic oils, for example, alkylene polymers, such as polymers of propylene, butylene, etc., and mixtures thereof; alkylene oxide type polymers; dicarboxylic acid esters; phosphorous esters; silicon esters such as silicates and polysiloxanes; and alkyl aromatic hydrocarbons.
  • the corrosion inhibitor of this invention is effective in lubricant compositions containing additional conventional additives such as oxidation inhibitors, detergents or dispersants, sluge inhibitors, 7 pour depressants, V.I. improvers, antifoaming agents, rust
  • additional conventional additives such as oxidation inhibitors, detergents or dispersants, sluge inhibitors, 7 pour depressants, V.I. improvers, antifoaming agents, rust
  • I.-Preparatin of p-phenylene-diacetonitrile 800 cc. of methanol and 200 cc. of H 0 were charged to a flask equipped with a condenser, thermometer, stirrer and a heating mantle. 100 g. (1.54 moles) of potassium cyanide was added and the mixture was stirred at 60 to 65 C. for a period of one hour.
  • Example II --Prcparati0n 0f p-phenylenediacetic acid for one hour at a temperature of 120 to 130 C.
  • Example Ill 0.15% by weight of p-phenylenediacetic acid prepared by the method of Example II was added to a lubricating composition comprising 3.0% by weight of a polybutenyl succinimide detergent type additive in a lubricating oil base which was a solvent-refined paraffinic neutral oil of SAE 30 grade.
  • the detergent was prepared by heating 1 mole of polybutenyl succinic anhydride having about 65 carbon atoms in the alkenyl chain with 0.9 moles of tetraethylene pentamine.
  • the lubricant composition prepared in Example III was subjected to the L-4 Engine Test and compared with a sample of base oil containing the same detergent and with a sample containing 0.15% by weight of terephthalic acid as a corrosion inhibitor.
  • the corrosion characteristics of a lubricant composition is determined in a Chevrolet standard 6-cylinder engine. Weighed copper-lead test bearings and new piston rings are installed. The test is run at a constant engine speed at about 3000 rpm. under a load of 30 brake horsepower for a period of 36 hours after a run-in period of 8 hours. The outlet temperature of the jacket coolant is about 200 F. and the oil sump temperature about 280 F. At the conclusion of the test the engine is disassembled and the pistons are removed and inspected for varnish deposits and rated for cleanliness on a basis of 0 to 10, 10 being perfectly clean. The bearings are weighed to determine total weight loss due to corrosion. Table I describes the results of tests performed comparing the additive of this invention with terephthalic acid.
  • p-phenylenediacetic acid compares favorably with terephthalic acid in its ability to reduce bearing corrosion with this type of lubricant composition.
  • its great superiority lies in the fact that it does not contribute to lowering the varnish rating of the engine as does the terephthalic acid.
  • p-phenylenediacetic acid provides excellent corrosion inhibition under actual engine operation and aids in maintaining extremely high engine cleanliness ratings.
  • a lubricant composition comprising a major portion of an oil of lubricating viscosity in combination with a minor portion of an alkenyl succinimide lubricating oil detergent sufficient to impart detergency, said combination being corrosive to metal surfaces in normal use and a minor portion sufficient to inhibit corrosion, of pphenylenediacetic acid.
  • the detergent additive is a polybutenyl succinimide prepared from a polybutenyl succinic anhydride having about 65 carbon atoms in the alkenyl chain and tebraalkylcne pentarnine, said detergent additive being present in an amount of from 0.1% to 10% by weight.

Description

United States Patent 3,245,910 LUBRICATING OIL COMPOSITION Warren Lowe, Berkeley, Calif., assignor to Chevron Research Company, a corporation of Delaware No Drawing. Filed Nov. 18, 1963, Ser. No. 324,241 3 Claims. (Cl. 252-515) This invention relates to novel lubricating compositions. More particularly, it relates to lubricant compositions having superior non-corrosive and non-deposit forming properties.
Lubricating oils, under normal operating conditions, generally undergo oxidative deterioration resulting in the production of substances highly corrosive to metal parts of modern engine and like machinery. Particularly susceptible to such corrosion are the alloy metal (usually copper-lead) bearings employed in todays internal combustion engines.
Therefore, it is necessary to add to the lubricating oils substances which act to reduce the corrosive effect upon the metal surfaces. Corrosion inhibitors which have been employed in the past have not been completely satisfactory. A number of additives have been employed that were not highly effective, thus allowing corrosion of the parts sought to be protected. Others, while quite effective initially, are used up rapidly in service and lose their effectiveness.
Another problem of many prior art anti-co-rrosants has been the fact that they could not be combined success fully in compositions with additives commonly used to effect wear inhibition, sludge inhibition, pour point depression, detergency, etc. Thus, a desirable inhibitor may be combined with these types of additives without adversely affecting the properties of either the anticorrosant or the other additives.
Furthermore, many known corrosion inhibitors contain active sulfur and are thus undesirable for use with bearings containing silver and similar metals. The use of silver-containing bearings has greatly increased in such classes of engines as marine and locomotive diesels. Thus non-sulfur-containing lubricants possessing anticorrosant pro erties are especially desirable.
The use of phthalic acids, especially isophthalic and terephthalic acids as corrosion inhibiting components of lubricant compositions is described in Stewart et al. US. Patent 2,809,160. These compounds represent highly effective corrosion inhibitors possessing many desirable characteristics such as the ability to be used in combination with numerous classes of both lubricating oil bases and lubricant additives of various types. However, in some applications, when these compounds are combined in lubricating compositions with certain nitrogen-containing detergents, while excellent anticorrosant properties are displayed, a decrease in detergent activity often results. Thus their use in this commercially important class of detergent lubricant compositions results in an increase in the amount of varnish and other carbonaceous materials deposited upon piston valves and skirts and in piston ring grooves. These deposits are deleterious to engine operation and their elimination is a highly desirable objective evidenced by numerous advances recently made in producing better detergent-type additives.
It has now been found that a new and superior lubricating composition having excellent non-corrosive and non-deposit forming characteristics can be prepared from a major proportion of an oil of lubricating viscosity in combination with a high molecular Weight nitrogen-containing detergent type additive, said combination being corrosive to metal surfaces in normal use, and a minor portion sufiicient to inhibit corrosion of p-phenylene diacetic acid.
The novel lubricating compositions of this invention are characterized by remarkable corrosion inhibiting properties over extended operational periods and by greatly improved lubricating of bearings and other sliding surfaces. An outstanding advantage of the particular inhibitor lies in the fact that its addition results in no increase in the deposit-forming characteristics of the compositions, a result common with the inhibitors of the prior art. As noted above, of particular advantage is the ability of these compositions to provide superior lubrication for particular bearings such as silver-containing bearings without the usually concommitant tendency to form underhead deposits in such heavy duty diesel service.
The corrosion inhibiting characteristics of p-phenylene diacetic acid are obtained in particular in combination with recently developed nitrogen-containing non-metallic ashless detergents in lubricating oil compositions. Examples of such detergents are those derived from alkenyl succinic anhydrides having 30 or more carbon atoms in the alkenyl group and amine compounds, such as tetraethylene pentamine, N-aminoethyl piperazine, dimethylaminopropylamine, etc.
The detergent additive is obtained by heating an alkenyl succinic anhydride with at least 0.5 mole of an amine.
The substituted succinic anhydrides contemplated as reactants in the process can be readily obtained by heating maleic anhydride with a high molecular Weight olefin or with a chlorinated high molecular weight olefin at a temperature from about -200 C. Typical high molecular weight olefins which can be employed are polyethylene, polypropylene, polyisobutylene, etc. Polyisobutylene is preferred.
Examples of suitable polyamine reactants are ethylenediamine, diethylene triamine, tetraethylene pentamine, and the like. Tetraethylene pentamine is a preferred polyamine reactant.
A preferred embodiment of the detergent additive is the product obtained by heating one mole of a polyisobutenyl succinic anhydride having about 65 carbon atoms in the olefin chain with 0.9 mole of tetraethylene pentamine.
The detergent additive is employed in the lubricant composition in an amount sufiicient to impart detergency. Generally, amounts from 0.1 to 10% by Weight are preferred.
The additives are a class of chemical compounds recognized in the art as possessing the ablity to enable a lubricating oil medium to maintain oxidation products, resins, and other insoluble material in suspension or dispersed in the medium. Compositions in Which these additives are employed are normally rendered more corrosive probably due to the removal of naturally formed protective films from bearings and other sliding surfaces. Thus the use of a compatible and efiicient corrosion inhibitor with these types of compounds is especially desirable.
The corrosion inhibitor of this invention is employed in an amount suflicient to inhibit corrosion. In general, amounts up to about 1.0% by weight are sufiicient. A
preferred range for most lubricant compositions is from about 0.01 to about 0.5% by weight.
Any of the well-known types of lubricating oils can be used as the base oils for the compositions of this invention. These oils are corrosive to metal surfaces under normal operating conditions. Examples of such base oils are naphthenic base, paraflin base, and mixed base mineral oils; synthetic oils, for example, alkylene polymers, such as polymers of propylene, butylene, etc., and mixtures thereof; alkylene oxide type polymers; dicarboxylic acid esters; phosphorous esters; silicon esters such as silicates and polysiloxanes; and alkyl aromatic hydrocarbons.
As previously mentioned, the corrosion inhibitor of this invention is effective in lubricant compositions containing additional conventional additives such as oxidation inhibitors, detergents or dispersants, sluge inhibitors, 7 pour depressants, V.I. improvers, antifoaming agents, rust Example I.-Preparatin of p-phenylene-diacetonitrile 800 cc. of methanol and 200 cc. of H 0 were charged to a flask equipped with a condenser, thermometer, stirrer and a heating mantle. 100 g. (1.54 moles) of potassium cyanide was added and the mixture was stirred at 60 to 65 C. for a period of one hour.
176 g. (0.66 moles) of p-xylylene dibromide was added slowly (20% every 20 minutes). The mixture was stirred at 60 to 65 C. for 6 hours. The mixture was then poured into 1000 cc. of ice water and the resulting slurry was boiled upon a hot plate with 500 cc. of acetone and 500 cc. of water. The mixture was filtered and the solid redissolved in acetone and water, boiled again and refiltered. The crude product was recrystallized from acetone yielding 49.8 g. or a 48% yield of p-phenylene-diacetonitrile.
Example II.--Prcparati0n 0f p-phenylenediacetic acid for one hour at a temperature of 120 to 130 C. and
then poured into 1000 cc. of ice water. The recovered acid was filtered, washed 3 times with ice water and dried in a vacuum oven. The yield was 45.8 grams (97.2% of theoretical).
Example Ill 0.15% by weight of p-phenylenediacetic acid prepared by the method of Example II was added to a lubricating composition comprising 3.0% by weight of a polybutenyl succinimide detergent type additive in a lubricating oil base which was a solvent-refined paraffinic neutral oil of SAE 30 grade. The detergent was prepared by heating 1 mole of polybutenyl succinic anhydride having about 65 carbon atoms in the alkenyl chain with 0.9 moles of tetraethylene pentamine.
In order to demonstrate the effectiveness of p-phenylenediacetic acid as a non-deposit forming anticorrosant, the lubricant composition prepared in Example III was subjected to the L-4 Engine Test and compared with a sample of base oil containing the same detergent and with a sample containing 0.15% by weight of terephthalic acid as a corrosion inhibitor.
In the L4 test, the corrosion characteristics of a lubricant composition is determined in a Chevrolet standard 6-cylinder engine. Weighed copper-lead test bearings and new piston rings are installed. The test is run at a constant engine speed at about 3000 rpm. under a load of 30 brake horsepower for a period of 36 hours after a run-in period of 8 hours. The outlet temperature of the jacket coolant is about 200 F. and the oil sump temperature about 280 F. At the conclusion of the test the engine is disassembled and the pistons are removed and inspected for varnish deposits and rated for cleanliness on a basis of 0 to 10, 10 being perfectly clean. The bearings are weighed to determine total weight loss due to corrosion. Table I describes the results of tests performed comparing the additive of this invention with terephthalic acid.
TABLE I.L-4 ENGINE TEST Bearing Piston Inhibitor Weight Varnish Loss (mg) Rating None 3, 512 10.0 Terephthalic acid 282 8. 6 p-Phenylencdiaeetic acid 228 10. 0
As shown by the above data, p-phenylenediacetic acid compares favorably with terephthalic acid in its ability to reduce bearing corrosion with this type of lubricant composition. However, its great superiority lies in the fact that it does not contribute to lowering the varnish rating of the engine as does the terephthalic acid. Thus, p-phenylenediacetic acid provides excellent corrosion inhibition under actual engine operation and aids in maintaining extremely high engine cleanliness ratings.
The L-4 Engine Test is more fully described in the CRC Handbook, 1946 Edition, Coordinating Research Council, New York, New York.
I claim:
1. A lubricant composition comprising a major portion of an oil of lubricating viscosity in combination with a minor portion of an alkenyl succinimide lubricating oil detergent sufficient to impart detergency, said combination being corrosive to metal surfaces in normal use and a minor portion sufficient to inhibit corrosion, of pphenylenediacetic acid.
2. The lubricant composition of claim 1 wherein the oil of lubricating viscosity is a mineral lubricating oil.
3. The lubricant composition of claim 1 wherein the detergent additive is a polybutenyl succinimide prepared from a polybutenyl succinic anhydride having about 65 carbon atoms in the alkenyl chain and tebraalkylcne pentarnine, said detergent additive being present in an amount of from 0.1% to 10% by weight.
References Cited by the Examiner UNITED STATES PATENTS 1,854,898 4/1932 Gill et al 25257 2,194,478 3/1940 Moser et al 25257 2,366,074 12/1944 Wasson et al 25257 X 2,434,978 1/1948 Zisman et al. 25257 X 2,715,108 8/1955 Francis 25257 X 2,776,917 1/ 1957 Shnitzler 25257 X 2,809,160 10/1957 Stewart et al. 25257 X 2,991,251 7/1961 Rudel et al. 25257 X FOREIGN PATENTS 612,775 11/1948 Great Britain.
815,050 6/1959 Great Britain.
922,831 4/ 1963 Great Britain. 1,254,094 1/ 1961 France.
DANIEL E. VVYMAN, Primary Examiner.
P. P. GARVIN, Assistant Examiner.

Claims (1)

1. A LUBRICANT COMPOSITION COMPRISING A MAJOR PORTION OF AN OIL OF LUBRICATING VISCOSITY IN COMBINATION WITH A MINOR PORTION OF AN ALKENYL SUCCINIMIDE LUBRICATING OIL DETERGENT SUFFICIENT TO IMPART DETERGENCY, SAID COMBINATION BEING CORROSIVE TO METAL SURFACES IN NORMAL USE AND A MINOR PORTION SUFFICIENT TO INHIBIT CORROSION, OR PPHENYLENEDIACETIC ACID.
US324241A 1963-11-18 1963-11-18 Lubricating oil composition Expired - Lifetime US3245910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US324241A US3245910A (en) 1963-11-18 1963-11-18 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US324241A US3245910A (en) 1963-11-18 1963-11-18 Lubricating oil composition

Publications (1)

Publication Number Publication Date
US3245910A true US3245910A (en) 1966-04-12

Family

ID=23262714

Family Applications (1)

Application Number Title Priority Date Filing Date
US324241A Expired - Lifetime US3245910A (en) 1963-11-18 1963-11-18 Lubricating oil composition

Country Status (1)

Country Link
US (1) US3245910A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506463A (en) * 1967-01-04 1970-04-14 Mobil Oil Corp Mold release agent
US4107054A (en) * 1977-06-27 1978-08-15 Continental Oil Company Lubricating oil compositions
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US6043199A (en) * 1997-08-26 2000-03-28 Exxon Research And Engineering Co. Corrosion inhibiting additive combination for turbine oils
US6617287B2 (en) 2001-10-22 2003-09-09 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
US20090093384A1 (en) * 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
US9481841B2 (en) 2004-12-09 2016-11-01 The Lubrizol Corporation Process of preparation of an additive and its use
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854898A (en) * 1930-09-11 1932-04-19 Gulf Production Company Method of protecting an immersed surface from corrosive action
US2194478A (en) * 1936-08-29 1940-03-26 Shell Dev Extreme pressure lubricant
US2366074A (en) * 1942-05-26 1944-12-26 Standard Oil Dev Co Corrosion resistant composition
US2434978A (en) * 1944-04-15 1948-01-27 William A Zisman Anticorrosion additives for synthetic lubricants
GB612775A (en) * 1945-05-12 1948-11-17 Sven Christian Johansson A lubricant, coating disinfectant or like product
US2715108A (en) * 1952-05-06 1955-08-09 Shell Dev Lubricating compositions
US2776917A (en) * 1956-07-10 1957-01-08 Gillette Co Article with corrosion-inhibited surface and composition for coating said surface
US2809160A (en) * 1955-12-29 1957-10-08 California Research Corp Lubricant composition
GB815050A (en) * 1956-04-23 1959-06-17 Ici Ltd Substituted phenoxyacetic acids
FR1254094A (en) * 1960-03-29 1961-02-17 Lubrizol Corp Metal-free additives for lubricants
US2991251A (en) * 1957-09-27 1961-07-04 Exxon Research Engineering Co Corrosion inhibiting lubricating composition
GB922831A (en) * 1959-03-30 1963-04-03 Lubrizol Corp Metal-free lubricant additives

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854898A (en) * 1930-09-11 1932-04-19 Gulf Production Company Method of protecting an immersed surface from corrosive action
US2194478A (en) * 1936-08-29 1940-03-26 Shell Dev Extreme pressure lubricant
US2366074A (en) * 1942-05-26 1944-12-26 Standard Oil Dev Co Corrosion resistant composition
US2434978A (en) * 1944-04-15 1948-01-27 William A Zisman Anticorrosion additives for synthetic lubricants
GB612775A (en) * 1945-05-12 1948-11-17 Sven Christian Johansson A lubricant, coating disinfectant or like product
US2715108A (en) * 1952-05-06 1955-08-09 Shell Dev Lubricating compositions
US2809160A (en) * 1955-12-29 1957-10-08 California Research Corp Lubricant composition
GB815050A (en) * 1956-04-23 1959-06-17 Ici Ltd Substituted phenoxyacetic acids
US2776917A (en) * 1956-07-10 1957-01-08 Gillette Co Article with corrosion-inhibited surface and composition for coating said surface
US2991251A (en) * 1957-09-27 1961-07-04 Exxon Research Engineering Co Corrosion inhibiting lubricating composition
GB922831A (en) * 1959-03-30 1963-04-03 Lubrizol Corp Metal-free lubricant additives
FR1254094A (en) * 1960-03-29 1961-02-17 Lubrizol Corp Metal-free additives for lubricants

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506463A (en) * 1967-01-04 1970-04-14 Mobil Oil Corp Mold release agent
US4107054A (en) * 1977-06-27 1978-08-15 Continental Oil Company Lubricating oil compositions
US5698722A (en) * 1992-12-17 1997-12-16 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5703256A (en) * 1992-12-17 1997-12-30 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5696064A (en) * 1992-12-17 1997-12-09 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5717039A (en) * 1992-12-17 1998-02-10 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US6043199A (en) * 1997-08-26 2000-03-28 Exxon Research And Engineering Co. Corrosion inhibiting additive combination for turbine oils
US6617287B2 (en) 2001-10-22 2003-09-09 The Lubrizol Corporation Manual transmission lubricants with improved synchromesh performance
US9481841B2 (en) 2004-12-09 2016-11-01 The Lubrizol Corporation Process of preparation of an additive and its use
US20090093384A1 (en) * 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
WO2020150123A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids

Similar Documents

Publication Publication Date Title
US3245910A (en) Lubricating oil composition
US2363134A (en) Lubricating oil
US3184474A (en) Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
US3185647A (en) Lubricant composition
US3322670A (en) Detergent-dispersant lubricant additive having anti-rust and anti-wear properties
US3184411A (en) Lubricants for reducing corrosion
US3211652A (en) Phenolic compositions
US3245909A (en) Lubricating composition
USRE23229E (en) Compounded lubricating oil
US3287271A (en) Combined detergent-corrosion inhibitors
US2370943A (en) Hydrocarbon oil
US4292186A (en) Metal complexes of alkylsuccinic compounds as lubricant and fuel additives
US3224975A (en) Lubricating oil compositions
US3245908A (en) Lubricant composition
US2680094A (en) Rust preventive oil composition
US5205945A (en) Multifunctional additives
US2462616A (en) Lubricating oil containing an antioxidant
US4094802A (en) Novel lubricant additives
US3210283A (en) Lubricant containing alkenyl succinimide and hydroxypolyamine
US3185643A (en) Oxidation resistant lubricants
US2366074A (en) Corrosion resistant composition
US3247110A (en) Fuel oil and lubricating oil compositions containing metal salts of the mono-amidesof tetrapropenyl succinic acid
US2628942A (en) Lubricating oils containing metal derivatives of cyclic imides
US4803004A (en) Reaction products of alkenylsuccinic compounds with aromatic amines and hindered alcohols and lubricant compositions thereof
US3537999A (en) Lubricants containing benzothiadiazole