US3234659A - Low temperature, high humidity method of lumber drying in a kiln - Google Patents

Low temperature, high humidity method of lumber drying in a kiln Download PDF

Info

Publication number
US3234659A
US3234659A US108488A US10848861A US3234659A US 3234659 A US3234659 A US 3234659A US 108488 A US108488 A US 108488A US 10848861 A US10848861 A US 10848861A US 3234659 A US3234659 A US 3234659A
Authority
US
United States
Prior art keywords
lumber
air
drying
building
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US108488A
Inventor
Samuel C Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAN AIR SYSTEMS Inc
Original Assignee
FAN AIR SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAN AIR SYSTEMS Inc filed Critical FAN AIR SYSTEMS Inc
Priority to US108488A priority Critical patent/US3234659A/en
Priority to US440681A priority patent/US3337967A/en
Application granted granted Critical
Publication of US3234659A publication Critical patent/US3234659A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/16Wood, e.g. lumber, timber

Definitions

  • This invention relates to a method for drying green lumber of all types from its original high moisture content down through the preliminarily dried moisture content of approximately 20% to the ultimate nal moisture Content of approximately 7%, required by the industry, at which percentage the lumber is in completely dried condition and ready for use by the industry.
  • the invention contemplates the provision of a special building, which is as nearly air-tight as possible, provided with an interior compartment designed to contain the stacked green lumber, a bank of circulating fans, a forced air heater for the system, exhaust fans and controls therefor.
  • the building is so designed that a continuous circulation of low temperature, humid air is maintained at all times through the building and lumber compartment, the circulation being a forced air fan circulation in which the air is pulled through the lumber stacks at a uniform rate of speed by the bank of twelve circulating air fans.
  • After passage through the lumber stacks t-he circulating air may be conditioned by heated air from the forced air heater. It is then circulated forwardly through the upper portion of the building, over the lumber compartment, past the exhaust fans and is then recirculated through the stacked lumber which is positioned in the lumber compartment in the lower portion of the building.
  • Doors are provided at the forward end of the building for loading and unloading lumber and are preferably as nearly air tight as they can be made. Further, the building is completely insulated over its interior with 2 fiberglass insulation provided with an aluminum foil facing which serves as a vapor barrier.
  • the overall dimensions of the building are preferably 80 feet in length, by 40 feet in width, by 25 feet in height and the lumber stacking and drying compartment thereof is 40 feet in width, 50 feet in depth and l5 feet in height, as will be discussed in detail further on in this specification.
  • the bank of twelve air circulating fans is preferably provided in a partition running laterally the width of the building at the rear end of the lumber compartment, positioned forwardly of the forced air heater.
  • humid air pulled through the lumber stack compartment by the air circulating fans may be subjected to heated air blown into the air stream from the forced air heater, when conditions so require.
  • the exhaust fans for the system are preferably positioned in the upper section of the forward wall of the building, above the doors thereof and are called into operation to exhaust humid air from the system when the humidity of the circulated air therein rises above a prescribed optimum relative humidity.
  • the exhaust fans are positioned behind louvered vents which are normally closed and which open when the exhaust fans are called into action by their control humidistat when the relative humidity of the circulated air within the enclosure rises above the optimum level.
  • the invention contemplated the drying of green lumber by air of high humidity and comparatively l-ow temperature, which is an entirely new concept in the field of lumber drying.
  • This type of drying Ilias numerous advantages over conventional methods, takes a comparatively short time and positively prevents excessive surface drying of the Wood which in the past resulted in splitting,
  • the lumber Under conventional methods of lumber drying, the lumber is rst stacked in a yard, where it is subjected to the excessive heat of the sun, the excessive moisture of rain, fog and dampness in the air and wide temperature variations which results in a high percentage of spoilage, due to checking, splitting, rot and other weather damage. After a period of some 5 or 6 months in the yard, where spoilage frequently reaches 20%, the lumber has dried unevenly to approximately 20% moisture content and is then ready for the dry kilns. It will be understood that this yard-dried lumber is not of a uniform moisture content when it is placed -in the dry kilns.
  • the conventional dry kiln is usually a building or other enclosed space in which air is forced over steam coils or direct red heaters (oil or gas) and circulated through lumber being dried.
  • the cost of operation of the conventional dry kiln is high due to the fact that lall the standby losses, such as conduction losses through walls, floor, and roof, are proportional to the temperature dilferences employed in the two systems.
  • the soaking process with high temperature high humidity air represents in addition to the cost of the fuel required to provide steam for the humidity sprays continued fuel consumption to eventually drive oif all moisture including the moisture removed from the lumber before the final moisture content of 6% to 7% in the lumber itself can be achieved.
  • This invention is designed to eliminate both the wasteful and time-consuming preliminary yard-drying of the lumber and the excessive terminal hot air drying in the conventional dry kiln, with its attendant spoilage and high percentage of waste.
  • This method for the preliminary drying of green lumber down to approximately 20% moisture content results in uniformly dried, well preserved, preliminarily dried lumber and has practically eliminated spoilage in the lumber and reduced preliminary drying of the lumber from approximately 6 months, required for yard-drying, down to from 7 to l0 days, depending upon the type of wood being dried and its green moisture content.
  • this fan air preliminary drying drying time is drastically reduced, a high quality, uniformly preliminarily dried product results and spoilageis reduced to an absolute minimum.
  • the present invention carries the concept of fan air drying considerably further and makes available a method in which Iboth the preliminary drying of the green lumber, down to approximately moisture content, and the final kiln drying, down to .approximately 7% moisture content, may be accomplished rapidly and efficiently with practically no spoilage and in a remarkably short time.
  • a pair of exhaust fans and appropriate louvers and controls therefore are provided in the upper, forward Wall of the building, at the forward end of the recirculating air passage, which may be called into play to exhaust excessively humid air from the system to maintain a constant desired humidity in the circulating air of the system.
  • a lumber compartment is provided within the building which is rectangular in shape, approximately 40 ⁇ feet wide by 50 feet deep and 15 feet in height, which is open at its forward extremity adjacent the doors of the building and is provided with a rear wall in which are uniformly mounted in two rows a bank of twelve air circulating fans which serve to pull the circulating air through the open, forward end of the enclosure, through the stacked lumber and then force it rearwardly and upwardly to the recirculating air duct under the roof of the building for recirculation -back through the open end of the enclosure and through the lumber stack.
  • the side walls of the building comprise the side walls of the lumber compartment in the installation and are preferably provided at intervals with vertically disposed swinging air foil baflie members which are hinged to the walls and swing inwardly against the sides of the lumber stacks to prevent escape of circulating air thereabout.
  • Similar downwardly swinging, hinged air foil baffles are provided, laterally disposed beneath the ceiling of the lumber enclosure, in alignment with the side wall baiiies to prevent escape of circulating air over the upper surfaces of the lumber stacks and to insure complete and uniform circulation of the processing air through the lumber stacks.
  • This invention contemplates the drying of the green lumber by air of relatively high humidity, i.e., upy to 82% to 90% R.H., and of comparatively low temperature, i.e., from 50-120 F.
  • air of relatively high humidity i.e., upy to 82% to 90% R.H.
  • comparatively low temperature i.e., from 50-120 F.
  • test charts appear illustrating the eiciency of this high humidity air drying method.
  • a further object of this invention is to evolve an improved ⁇ control system which will maintain a substantially constant humidity in the circulated air and which will require the minimum of heating of the processing air.
  • FIG. 1 is a cross-sectional side view of the installation, taken on its longitudinal axis, showing the complete installation with the lumber stacks in position within the lumber compartment and with the d-rying process underway;
  • FIG. 2 is a top plan view of the drying unit, taken on line 2-2 of FIG. l, showing the relative positions ⁇ of the lumber compartment7 the bank of air lcirculating fans in its rear wall, the lforced Vair heater adjacent the -rear wall of the building and the evacuating fans positioned in the Iforward wall of the building;
  • FIG. 3 is an end View of the building taken from its rear extremity, on line 3 3 of FIG. l, showing the air circulating fans positioned in the rear wall of the lumber drying compartment, the air circulating space beneath the roof and the exhaust fans located in the upper extremity of the .forward wall of the building;
  • FIG. 4 is a fragmentary perspective View of one of the air Ifoil Amber members for the lumber compartment
  • FIG. 5 is a plan view of the electric contact hygrometer which controls the exhaust fans
  • FIG. 6 is a -schematic showing of the control panel circuits for the system.
  • FIG. 7 is a schematic showing of the control circuits ⁇ for the circulating fans, the forced air heater and the exhaust fans.
  • 10 indicates the outer building or housing for the installation which is preferably rectangularly shaped at its lower extremities and is brought t-o a peak 11 at its upper extremity to provide an air circulating duct beneath the roo-f portion of the building, above the ceiling of the lumber compartment.
  • Building 10 is preferably formed of sheet metal -or analogous material and is fullyinsulated over its interior with 2 fiberglass insulation, faced with metal foil to provide a vapor barrier over the insulation. It is provided at its rear extremity with a rear wall 12 and at its forward extremity with a depending forward Wall 13.
  • Forward wall 13 is preferably provided at its lower extremity with a door -space 14 which extends the full width o-f building 101 and may be opened or closed by means of laterally sliding doors 15 provided at their upper and lower extremities with appropriate rollers 16 and 17 running in track housings 18 and 19 provided along the upper and lower edges of ⁇ door space 14.
  • Doors 15 are also insulated over their interior surfaces with 2 fiberglass, faced with metal foil.
  • An angular baille strip 20 is provided along the upper edge of door space 14, extending outwardly over the upper edges of doors to prevent ingress of rain or other precipitation.
  • Door -space 14 preferably extends the full width of the building, at its forward extremity, thus allowing free access to the interior of the 'building when doors 15 are in completely open position.
  • the overall dimensions of the building are preferably 80 feet in depth, 40 feet in width and 25 feet in height, Vfrom the ground to -rooftree 11. These dimensions may be varied within a wide range, depending upon the nature of the installation desired.
  • a forced air heating unit 23 Positioned adjacent rear wall 12 of -building 10 is a forced air heating unit 23, which is preferably of a standard make, provided at its lower extremity with pressure blowers and motor 24, a lburner and combustion chamber 25 and exhaust vent 26.
  • This heater is preferably gas fired and is equipped with a thermostat 30 which cannot exercise ⁇ any control until the hygrometer 31, controlling the exhaust fans, is brought into play, as will hereinafter be discussed at length.
  • exhaust fans 32 and 33 are Positioned in lforward wall 13 of the building, above doors 15, are exhaust fans 32 and 33 driven by motors 34 and 35, which are appropriately mounted in brackets behind vents 36 and 37 let through wall 13. Louvers 38 and 39 are provided outwardly of vents 36 and 37 in wall 13 and are so designed as to remain in closed condition until fans 32 and 33 are called into operation by the hygrometer 31.
  • Exhaust fans 32 and 33 are preferably of standard make and are humidistatically controlled by hygrometer 31 which closes the circuits to the fan motors 34 and 35, respectively, when the relative humidity of the circulated air exceeds certain values, for example R.H. and 82% R.H., respectively, and which, conversely, breaks the circuits to one of the fan motors when the relative -humidity of the circulated air falls below 82% and to the other when it falls below 20% R.H.
  • Hygrometer 31 i-s preferably of the electric contact type, well known in the art, and is provided with two control hands, H and L, H to be set at the high humidity limit, for example 82%, and the other L set on the low humidity limit of, say 20%.
  • Main indicating hand I of hygrometer 31 indicates the relative humidity within the building and when the indicating hand I moves in a clockwise direction past the first, or low control hand L it closes the circuit to the motor of one of the exhaust Afans 32 and when it passes the other or high control hand H it closes the circuit to the motor of the second of the exhaust fans 33.
  • Exhaust fans 32 and 33 serve a dual purpose in the installation. Due to their control by hygrometer 31 they both exhaust excessively humid air when the R.H. in the system rises above the optimum high level of approxi- Imately 82% and, conversely, when the humidity falls below 82% the hygrometer control cuts off one or both of them, as required. They also serve to create a reduced pressure within the building which permits a free movement of water vapor from the lumber into the circulated air. Each exhaust fan preferably is capable of exhausting 3,000 c.f.m., whereby, depending upon whether or not one fan is cut out, up to 6,000 c.f.m. may be evacuated from the building, as required.
  • this compartment is defined by a ceiling section 42, preferably of insulated metal, which extends laterally the entire width of the building beneath the roof thereof and spaced below the roof, from side wall 21 to side wall 22 thereof and is affixed thereto at its lateral edges.
  • Ceiling 42 is preferably insulated by 2" fiberglass and foil on both surfaces and is supported at its rear extremity by a vertical rear wall 43, also extending the complete width of the building lbetween side walls 21 and 22.
  • Rear wall 43 is also preferably formed of insulated steel. As shown in FIG. 1, ceiling 42 is disposed some 10' beneath the rooftree 11 of the building, leaving a free 'air space between it and the roof portion of the building.
  • the forward extremity of the lumber stack compartment is open to permit free circulation of the processing air therethrough.
  • rear wall 43 of the lumber compartment is preferably provided with a parallel series of upper and lower circular orifices 44, preferably twelve in number, in which are appropriately mounted twelve air circulating fans 45 which are driven from mot-ors 46 by means of V-drive belts 47.
  • Circulating fans 45 are preferably 48 inches in diameter and are preferably each capable of circulating approximately 20,000 cubic feet of air per minute.
  • the lumber stacks are subjected to an air circulation of some 240,000 cubic feet of air per minute.
  • Air circulating fans 45 are designed to run continuously, maintaining a continuous and uniform circulation of air through the lumber stacks at all times, both day and night, and may be stopped when the relative humidity of the circulated air rises above or falls below the optimum levels, i.e., below 20% RH. or above 82% RH. They may be provided Iwith appropriate high and low level 'humidistat controls 40 and 41, the control range being between approximately 20% R.H. and 82% R.H. Normally, these humidistats 40 and 41 are cut Iout and in usual operation fans 45 run continuously throughout the entire drying cycle.
  • each lumber chamber is defined within the lumber stack compartment within the building, the lumber compartment Ibeing formed by ceiling 42 and rear wall 43 thereof and the lumber chambers being defined therewithin by a series of vertical baffles 50 and a series of aligned depending ceiling bafiies 51.
  • these baffles are preferably spaced some 10 feet apart down the length of the lumber stack compartment and preferably stacks 48 in depth and 16 in width are formed therewithin prior to the commencement of the drying process.
  • Each lumber stack is on the order of 4 in depth, '16 in width and 14 in height. Stacks are placed end to end. Each layer of lumber in each stack is preferably separated -by appropriate spacers to provide easy access of the circulating air to all portions of each stack and all surfaces of each layer of lumber.
  • vertical baffles 50 are preferably hingedly mounted in parallel vertical position at approximately l0 foot intervals against side walls 21 and 22 of the main building structure in such fashion that they may be swung forwardly toward the forward end of the building and door space 14 to an angle -of some 90 to lie fiush against said walls during the loading and unloadin-g of the lumber compartment.
  • Vertical bafiies 50 preferably extend from the floor of the building vertically to a point just beneath ceiling 42 of the lumber stack compartment and, as shown, are prefer-ably four in number and aligned with each other in their hinged mounting on walls 21 and 22.
  • Baffles 50 are on the order of 2' in 7 Width so as to impinge against the lumber stacks at their inner, air foil extremities.
  • the setting ⁇ of hygrometer 31 may be lowered, as desired, toward or below the lower limit of 20% ⁇ R.H. i
  • baffles 51 are preferably up to 82% R.H. performs this initial drying rapidly, down hingedly attached to the undersurface of ceiling 42 and to 20% moisture content of the stacked lumber, without extend laterally the entire width of the building. Vthe necessity of adding heat to the circulating air. How- A detail of one of baffles 50 and 51 is shown in FIG. 4 10 ever, when a moisture content of approximately 20% has of the drawings.
  • baffles 50 and 51 may be swung 'forwardly tllrOugh l5 of the circulating air and to progressively raise its teman angle of 90 to flush position towards the entrance door perature, as moisture removal becomes more difficult.
  • FIG. 6 discloses a schematic Wiring diagram for the extremities Of the lumber Stacks, Yet Will maintain enVecontrol cabinet ⁇ for the ⁇ installation and FIG. 7 discloses lcpes 55 in such flexible ccndiiicn *es t0 conform t0 any a similar schematic wiring diagram for the circulating irregularities in the lateral 0r upper Surfaces 0f the 50 fan motors, the heating unit and the-exhaust .fan motors.
  • terminal strips T1, T2 and T3 are Spcct i0 ceiling 42 0f the lumber stack ccmpurimen'L t0 shown for the control cabinet, corresponding ⁇ to terminal allow remOVal 01' emplacement 0f lumber tllerelfiillinstrips T1, T2 and T3 of the master circuits for the instal- As aforesaid, by virtue of the flexible and inflatable nature lation Control, respectively ofthe circulating fan motors, of these air foil envelopes provided at the inner extremithe heating unit and the .exhaust fan moron Thus, re- Yties 0f Vertical baffles 50 and depending bullies 51 all irferring to the rst circuit, ybased on terminal strip Tnl irregularities in 'the lumber stacks are compensated for and of FIG.
  • terminal strip T-1 includes 4a complete air seal is ⁇ attained both at the lateral extremicontacts N and 1 through .6, Humidistats 40 and 41 of ties of each stack and over the upper surfaces thereof.
  • the opti- ,70 three way switch on, oifj automatic With this 'mum humidity ⁇ of the circulatedair and the temperature kswitch on automatic, high and low humidistats 40 and thereof are carefully controlled at all times to provide op- -41 control the air circulating fan motors 46 and thus timum and ⁇ uniform moisture removal .from each piece cut them out on low relative humidity of 20% and high of lumber in each of the lumber stacks within the lumber relative humidity of 82%, the low and high .settings of stack compartment. When ⁇ it is desired to lower the hu- 7.5 said humidistats, respectively.
  • terminal strip circuit T-l is the control cabinet circuit for the circulating fan motors 46 of FIG. 7 and may be under the control of high and low humidistats 40 and 41.
  • terminal strip T2 of FIG. 6 includes contacts 10-14, corresponding to contacts 10-14 of terminal strip T2 of FIG. 7, for the control of the forced air heater -23 of the installation.
  • This circuit includes thermostat 30 which is designed to close the circuit on low, and a double pole, double throw switch V with two settings, i.e. manual ⁇ and automatic. An indicating pilot light is also included.
  • terminal strip T-3 of FIG. 6 it will be seen that it includes contacts 1, 2 and 15 to 18 and covers the corresponding control circuit based on terminal strip T-3 of FIG. 6.
  • This circuit controls the motors 34 and 35 of exhaust fans 32 and 33, shown in FIG. 7. It includes high and low single pole switches S, electric contact hygrometer 31, provided with high and low adjustable control hands H and L, thermal gas relays Y, one of which makes on high and the other on low and a three pole, double throw switch, manual and automatic designated as X. Pilot lights P are also included.
  • control group No. 1 the function of control group No. 1 is to operate the motors of the circulating air fans 45 within preset conditions of high humidity and low humidity, if desired.
  • control With selective switch R in the automatic position the control is through humidistats 40 and 41, one of which is setto break the circuit on a predetermined low relative humidity of, say and the other to break the circuit to the fan motors on a predetermined high relative humidity of, say 82%.
  • the selective switches S control the operation of one half of the fan motors in each bank of air circulating fans for 50% reduced air circulation. With switch R in manual position, fan motors 46 run continuously. With switch R in automatic position fan motors 46 run under the control of high and low humidistats 40 and 41.
  • control group No. 2 based on terminal strips T-2, the thermostat closes the circuit on low and acts as the high limit (120 F.) for the forced air heater 23 of FIG. 7 to maintain a preset temperature through thermal gas relays Y.
  • the heat source 23 may be a gas or oil tired heater, steam or hot water or oil control valve or electric heating coils. Selector switch V in manual position calls for continuous operation of the heat supply. In automatic position, the low contact of hygrometer 31 controls the heat source and thermostat 30 is the high limit control for the heat source.
  • control group 2 and control group 3 are interlocked by line 14 so that the heat source 23 is controlled through the thermal gas relays Y.
  • Control group 3 operates through electric Contact hygometer 31 to control motors 34 and 35 of exhaust fans 32 and 33.
  • Hygrometer 31 is provided with adjustable control hands H and L set at high and low relative humidity, respectively, whereby the R.H. of the circulating air will control the operaton of exhaust fans 32 and 33 which are called into operation to discharge air from within the building through the automatic gravity type discharge shutters.
  • the low temperature kiln motor control cabinet wiring diagram comprises starter-s, relays and contactors of all circulatng fan motors and exhaust fan motors.
  • the automatic operation of circulating fan motors and exhaust -fan motors as required by the various controls and the instrument control cabinet terminal strips T1, T2 and T3 are wired to the various motors controls, as indicated.
  • the motor control circuits are shown, based on terminal strips T-1, T-2 and T3, corresponding to the terminal strips of the motor control cabinet shown in FIG. 6. It will be seen that the air circulating fans 45 are arranged in two banks and may be under the control of high and low level humidistats 40 and 41 and that the components of this circuit include thermal overload relays B for each circulating fan motor 46. Three pole magnetic contacts C for each bank of fans are included and a transformer D converting line voltage to secondary control voltage of volts. A fuse block E is included in the control circuit.
  • G indicates thermal overload relays, one for each of the exhaust fans 32 and 33.
  • Four pole magnetic contractors indicated at M are also included, one ⁇ for the motor of exhaust fan 32 and the other for the motor of exhaust fan 33.
  • a magnetic relay I of the single pole type energizes the holding coils in magnetic contractors M.
  • terminal strips T-1, T-Z and T-3 of the control cabinet are wired directly to terminal strips T-1, T-2 and T-3, respectively, of the motor control circuits.
  • the air circulating fan motors 46 may be under the direct control of the control humidistats 40 and 41, one for high level humidity control and the other for low level humidity control. It will further beseen, by reference to FIG. 7, that the operation of the heater 23 and the exhaust fan motors 34 and 3S are in interlocked control to the hygrometer 31 whereby both heat put into the system by heater 23 and humid air exhausted therefrom by the exhaust fans is directly controlled through the setting of the control hands H and L of hygrometer 31. It is thus possible through the instrument control cabinet for the operation to follow a schedule from the loading of the green lumber into the kiln until the nal ultimate moisture content of approximately 7% is reached.
  • the overall building structure 10 is preferably completely fabricated of sheet steel, insulated throughout on its interior walls with 2" fiberglass covered with an aluminum foil vapor barrier. Doors 15 are also provided with fiberglass insulation covered with foil over their interior surfaces to provide complete insulation at the forward extremity of the building. Further, ceiling 42 and rear wall 43 of the lumber compartment are also formed of sheet steel, appropriately insulated. Industrial steel structures of this type are manufactured by several nationally known manufacturers and are available in a number of widths, lengths and height-s, as desired.
  • doors 15 are first opened, opening the lower, forward extremity of the building 10.
  • the forwardmost of vertical bafiies 50 and horizontal batiles 51 are then swung iiush outwardly to walls 21 and 22, and ceiling 42, respectively.
  • the rst stack of lumber is then removed from the forwardmost compartment. With this stack removed, the second set of batiies 50 and 51 are swung flush against the walls and ceiling and the second stack of lumber is removed. This process is repeated for the next two stacks until the inner compartment is emptied.
  • doors 15 are then closed to near air tight position and the motors 46 of air circulating fans 45 are energized, starting the circulating fans 45.
  • This initiates 4a ow of air into the open forward extremity of ⁇ the lumber stack compartment, through the lumber stacks, through circulating fans 45, through the air return duct D under the roof of the building and back through the lumber stacks, in continuous cycle.
  • high level exhaust fan 33 is called into operation by hygrometer 31 to exhaust excessively humid air from the building until the moisture content of the circulated air is reduced to 82%.
  • hygrometer 31 set preferably at a high of 82% R.H. and a low of 20% R.H., controls the operation of low level exhaust fan 32 and high level exhaust fan 33 and does not call fan 33 into action until the circulated air exceeds 82% RH.
  • the relative humidity of the circulated air exceeds 82% hygrometer 31 closes the circuit to the motor of exhaust fan 33 and fan 33 begins exhausting humid air from the interior of the building, louvers 39 being forced to open position by the forced draft from fan 33.
  • the relative humidity of the circulating air is lowered below 82% hygrometer 31 breaks the circuit to the motor fan 33.
  • low level fan 32 is called into action by hygrometer 31 as soon as the drying cycle starts and continues to run until the relative humidity of the circulated air falls below When the moisture content of the lumber has been reduced to about 20% the humidity of the circulated air is also reduced until at 20% RH.
  • the low level control hand L of hygrometer 31 is passed. by the indicating hand I thereof and the circuits to the low level exhaust fan 32 and the air heater are broken. This shutting off of exhaust fan 32 and the air heater enables the relative humidity of the circulated air gradually to rise again to 20%, at which point hygrometer 31 again calls exhaust fan 32 and the air heater into action.
  • Louvers 38 and 39 of exhaust fans 32 and. 33 serve a two-fold purpose.
  • exhaust fans 32 and 33 are .not operating the pressure from the outside atmosphere maintains louvers 38 an-d 39 in closed condition until such 12 time as pressure builds up within the building, due to rise in temperature or pressure, whereupon louvers 38 and 39 open partially and permit the escape of excess moist air or other vapors. This results in a rapid. rate of drying even when exhaust fans 32 and 33 are not operating.
  • the force feed heater is equipped with a modulating thermostat 30, set 'at a high limit of 120 F.
  • the heater is cut olf.
  • the temperature can range from 55 F. to 120 F. with .an increased diiierence of only 3 between wet and ⁇ drybulb reading at .any time.
  • the dry and wet bulb rea-ding will be 55 D.B. and 52 W.B.
  • the dry and wet bulbs would read D.B. and 71 W.B.
  • F. and 82% RH. dry and wet bulb readings would be 115 D.B. and 109 W.B., a range in spread of 3 W.B. to a maximum of 6 W.B.
  • the relative humidity of the circulating air is maintained at high level, i.e., up to 82% RH. thus maintaining the lumber soft and the surface moist, whereby the lumber readily gives up its moisture to the circulating air.
  • the relative humidity of the circulating air is not reduced below this point until the later stages of the drying operation when the moisture content of the lumber is drastically reduced.
  • hygrometer 31 is provided with two control hands, L and H, control hand L being set at the low limit relative humidity, about 20% RH. and control hand H being set at the high limit relative humidity, normally 82%.
  • Hygrometer 31 is also provided with a sweep indicat-ing hand I which indicates the relative humidity of the air within the building. When the humidity is above 20% indicating hand I makes contact with the low limit control and the circuit is closed to low limit exhaust fan 32 and also to the forced air heater 23, both of which then start operating with exhaust fan 32 exhausting circulating air and the air heater initiating heating of the circulating air.
  • the indicating hand I of hygrometer 31 contacts the high level control hand H of the hygrometer, set at 82% RH., and the circuit to the motor of exhaust fan 33 is closed and exhaust fan 33 goes into operation to exhaust eX- cessively humid air from the building until the relative humidity thereof drops below 82%, at which point the indicating hand I breaks the circuit with the high level control hand H and the circuit to exhaust fan 33 is broken.
  • the high level control hand H is set at 82% RH. on the dial of hygrometer 31 and the low level control hand L is set at 20% R.H. thereon.
  • the high level control hand is set at 82% on the hygrometer -dial and the circuit to high level exhaust fan 33 will be closed and broken when ever required to maintain a balanced high level relative humidity to 82% within the building.
  • temperatures in the building may range from 50 F. to 120 F., with a relative humidity range of from 85% down to 18%.
  • the thermostat control for the forced air heater is set for a high temperature limit of 120 F. whereby maximum temperature in the system never exceeds this temperature.
  • the processing temperature ranges from room temperature in the building, say approximately 54 F., to a top limit of 120 F.
  • the average drying cycle period for green lumber from over 100% M.C. down to 7% M.C. has been approximately 12 days.
  • the following chart shows an actual test run at Memphis, Tennessee, on 235 board feet of end-coated green maple lumber between the dates of February 9, 1961, and February 2l, 1961.
  • the test was conducted as follows: At 4 p.m. the charge of green maple lumber, 235 board feet, weighing exactly 1,000 pounds, was placed on a platform scale inside the drying compartment. Part of this lumber was frozen and, as aforesaid, oven tests had previously established moisture contents in the various lumber lots of vfrom 28.4% to 89.8%.
  • sample A-l of the green maple was loaded at a moisture content of 86.9%; sample A-2 at a moisture content of 89.8%; sample B-l at a moisture content of 60.6%; sample B-2 at a moisture content of 41.7% and sample C-l at a moisture content of 28.4%.
  • the original total weight of these ve samples was 1,000 pounds, at the time of loading, -on February 9, 1961.
  • sample A-l Ten and a half days later, the moisture content of sample A-l was 6.6%; A-2 was 7.0%; B-1 was 6.9%; B-2 was 6.7% and sample C-l was 6.0%.
  • the weight of the 235 board feet of maple lumber had been reduced to 764 pounds, a moisture loss of 236 pounds, and the entire sample stack of lumber was in finally dried condition and ready for manufacturing.
  • temperature within the dryer was maintained at a low level during the rst two days of the test and was then gradually increased up to a maximum of 120 F., which temperature was maintained through the last ve days of the operation.
  • Wet bulb temperature within the drying compartment rather closely followed this dry bulb temperature during the rst six days but well off sharply during the last four and a half days.
  • samples A-l and A-2 were loaded at moisture contents of 86.9% and 89.8%, respectively, and were removed 101/2 days later at respective moisture contents of 6.6% and 7.0%.
  • This low temperature kiln air dries lumber very emciently without added heat.
  • the removal .of moisture from the lumber provides a substantial temperature increase within the system without the necessity of adding heat by way of the air heater until the terminal stage of the drying has been reached, i.e., approximately 20% M.C.
  • the reduced pressure created by the circulating fans and the exhaust fans results in rapid air .drying with the use of added heat until the end of the drying cycle, i.e., from approximately 20% M.C. to '7% M.C., is reached.
  • a method of drying green lumber comprising stacking the -lumber within an enclosure, sealing the enclosure, pulling through the lumber stack a constant, high speed circulation of humid air up to about relative humidity and of low temperature for a sufficient period of time to reduce its moisture content to 20% and subsequently drying the lumber down to 7% moisture content by progressively increasing the temperature to a maximum of about -F. and lowering the humidity of the circulated air to aiminimum'of about 20%.
  • a method of drying green, sawed lumber of high moisture content comprising stacking it in a sealed compartment, rapidly pulling and circulating air of high humidity up to about 82% and low temperature between 40 and 120 F. through said stacks at a constant rate of -ow until the Amoisture content of said lumber is reduced to about 20% and then progressively reducing the humidity to a maximum of about 20% and increasing the temperature of said circulating air to a maximum of about 120 F. and continuing its circulation through said stacks until the moisture content of the lumber is reduced to'7%.
  • a method of drying lumber from its initial, green moisture contentdown to a final moisture content of 7% which comprises stacking the green lumber within va sealed enclosure, subjecting it -to a constant speed low temperature ⁇ air circulation throughout the drying cycle While maintaining the relative humidity of the circulating air of about 82% during the preliminary stages of drying and then above 20% R.H. at the later stages thereof and raising the air temperature to a maximum of 120 F. throughout the remaining drying time.
  • a method of drying green lumber comprising stacking the ylumber in a series of sealed stacks within an enclosure, sealing the enclosure, pulling a draft of humid air of about 80% RH. and a temperature 4of between 40 and 120 F. and maintaining said .air at constant and high velocity circulation through said stacks for a Sullicient period of time to reduce the moisture content of the lumber down -to about 20% R.H. and subsequently progressively increasing the temperature of the circulated air to a maximum of about 120 F. and lowering the humidity of the circulated air to a minimum of about 20% until the lumber is dried down to a tina-l moisture content of about 7%.

Description

Feb. l5, 1966 s. c. SMITH LOW TEMPERATURE, HIGH HUMIDITY METHOD OF LUMBER DRYING IN A KILN 5 Sheets-Sheet 1 Filed May 8, 1961 pmu.
INVENTOR L C. 5M 1TH ATTORNEYS.
Feb. 15, 1966 s. c. sMlTH LOW TEMPERATURE, HIGH HUMIDITY METHOD 0F LUMBER DRYING IN A KILN 5 Sheets-Sheet 2 Filed May 8, 1961 m m V m (D o SAMUEL C. SMITH BY WMsL/n/ 4 ATTORNEYS MITH 3,234,659
HUMIDITY METHOD OF IN N S. C. S LOW TEMPERATURE, HIGH LUMBEB DRYING A KIL y Feb. 15, 1966 5 Sheets-Sheet 3 Filed May 6, 1961 F IG. 5.
INVENTOR SAMUEL C. SMITH ATTORNEYS Feb. 15, 1966 s. c. SMITH 3,234,559
Low TEMPERATURE, HIGH HuMlDITY METHOD 0E LUMBER DRYING 1N A KILN Filed May 8. 1961 5 Sheets-Sheet 4 THERMZV' H0 @JST/475' INV ENTOR SAMUEL C. SMITH www, man Jian ATTORNEYS FIG@ Feb. 15, 1966 s. c. SMITH 3,234,659
LOW TEMPERATURE, HIGH HUMIDITY METHOD OF LUMBER DRYING IN A KILN Filed May 8, 1961 5 Sheets-Sheet 5 RENT-0R COND U C TORS gg QAMUEL C. 5MLTH By @MM2 w/mqmAToRNEYs SERVICE ENTRANCE United States Patent O Tennessee Filed May 8, 1961, Ser. No. 108,488 4 Claims. (Cl. 34-26) This invention relates to a method for drying green lumber of all types from its original high moisture content down through the preliminarily dried moisture content of approximately 20% to the ultimate nal moisture Content of approximately 7%, required by the industry, at which percentage the lumber is in completely dried condition and ready for use by the industry.
The invention contemplates the provision of a special building, which is as nearly air-tight as possible, provided with an interior compartment designed to contain the stacked green lumber, a bank of circulating fans, a forced air heater for the system, exhaust fans and controls therefor. The building is so designed that a continuous circulation of low temperature, humid air is maintained at all times through the building and lumber compartment, the circulation being a forced air fan circulation in which the air is pulled through the lumber stacks at a uniform rate of speed by the bank of twelve circulating air fans. After passage through the lumber stacks t-he circulating air may be conditioned by heated air from the forced air heater. It is then circulated forwardly through the upper portion of the building, over the lumber compartment, past the exhaust fans and is then recirculated through the stacked lumber which is positioned in the lumber compartment in the lower portion of the building.
Doors are provided at the forward end of the building for loading and unloading lumber and are preferably as nearly air tight as they can be made. Further, the building is completely insulated over its interior with 2 fiberglass insulation provided with an aluminum foil facing which serves as a vapor barrier. The overall dimensions of the building are preferably 80 feet in length, by 40 feet in width, by 25 feet in height and the lumber stacking and drying compartment thereof is 40 feet in width, 50 feet in depth and l5 feet in height, as will be discussed in detail further on in this specification.
The bank of twelve air circulating fans is preferably provided in a partition running laterally the width of the building at the rear end of the lumber compartment, positioned forwardly of the forced air heater. Thus, humid air pulled through the lumber stack compartment by the air circulating fans may be subjected to heated air blown into the air stream from the forced air heater, when conditions so require. The exhaust fans for the system are preferably positioned in the upper section of the forward wall of the building, above the doors thereof and are called into operation to exhaust humid air from the system when the humidity of the circulated air therein rises above a prescribed optimum relative humidity. The exhaust fans are positioned behind louvered vents which are normally closed and which open when the exhaust fans are called into action by their control humidistat when the relative humidity of the circulated air within the enclosure rises above the optimum level.
The invention contemplated the drying of green lumber by air of high humidity and comparatively l-ow temperature, which is an entirely new concept in the field of lumber drying. This type of drying Ilias numerous advantages over conventional methods, takes a comparatively short time and positively prevents excessive surface drying of the Wood which in the past resulted in splitting,
3,234,659 Patented Feb. l5, 1966 checking and other damage to the wood and actually slowed the drying operation.
Under conventional methods of lumber drying, the lumber is rst stacked in a yard, where it is subjected to the excessive heat of the sun, the excessive moisture of rain, fog and dampness in the air and wide temperature variations which results in a high percentage of spoilage, due to checking, splitting, rot and other weather damage. After a period of some 5 or 6 months in the yard, where spoilage frequently reaches 20%, the lumber has dried unevenly to approximately 20% moisture content and is then ready for the dry kilns. It will be understood that this yard-dried lumber is not of a uniform moisture content when it is placed -in the dry kilns.
The conventional dry kiln is usually a building or other enclosed space in which air is forced over steam coils or direct red heaters (oil or gas) and circulated through lumber being dried.
The extremely high temperatures employed and scheduled by the authorities such as Forest Products Laboratories, requires the use of live steam to raise the relative humidity to prevent case hardening, surface checking, and/or other conditions which either slow down the drying process or actually damage the lumber. The introduction of live steam usually results in a further rise in temperature or total heat of air being circulated. Excess moisture when required to be removed is usually exhausted through gravity type vents either manually or automatically controlled.
The cost of operation of the conventional dry kiln is high due to the fact that lall the standby losses, such as conduction losses through walls, floor, and roof, are proportional to the temperature dilferences employed in the two systems.
The soaking process with high temperature high humidity air represents in addition to the cost of the fuel required to provide steam for the humidity sprays continued fuel consumption to eventually drive oif all moisture including the moisture removed from the lumber before the final moisture content of 6% to 7% in the lumber itself can be achieved.
This invention is designed to eliminate both the wasteful and time-consuming preliminary yard-drying of the lumber and the excessive terminal hot air drying in the conventional dry kiln, with its attendant spoilage and high percentage of waste.
In a previous application, Serial No. 823,892, I have set forth a method and installations fo-r the preliminary drying of green lumber down to approximately 20%, which is referred to as fan air drying. In that method, the green lumber is stacked within an enclosure -wherein it is protected from atmospheric deviations in heat and humidity and from the ravages o-f the elements and is 'subjected to ya steady and uniform circulation of atmospheric n air of selected humidity, which is pulled through the lumber enclosure, from its open, forward extremity by a -bank of fans at the rear extremity of the enclosure and is then exhausted to the atmosphere. This method for the preliminary drying of green lumber down to approximately 20% moisture content results in uniformly dried, well preserved, preliminarily dried lumber and has practically eliminated spoilage in the lumber and reduced preliminary drying of the lumber from approximately 6 months, required for yard-drying, down to from 7 to l0 days, depending upon the type of wood being dried and its green moisture content. As aforesaid, with this fan air preliminary drying, drying time is drastically reduced, a high quality, uniformly preliminarily dried product results and spoilageis reduced to an absolute minimum.
The present invention carries the concept of fan air drying considerably further and makes available a method in which Iboth the preliminary drying of the green lumber, down to approximately moisture content, and the final kiln drying, down to .approximately 7% moisture content, may be accomplished rapidly and efficiently with practically no spoilage and in a remarkably short time.
'This new method, which is the subject of the present application, contemplates certain important additions to and improvements in the fan air system, primarily in the building or enclosure housing the unit Iwhereby an air channel or passage is provided through the upper or roof portion of the building for recirculation of the humid drying air through the upper portion of the building and back through the stacked lumber. It further contemplates the provision of a forced air heater positioned at the rear extremity of the building, adjacent to and rearwardly of the 4bank of air circulating fans whereby heat may be added to the circulating air, when required, either to reduce its humidity or to accomplish the final, kiln drying stage of the drying operation. In addition, a pair of exhaust fans and appropriate louvers and controls therefore are provided in the upper, forward Wall of the building, at the forward end of the recirculating air passage, which may be called into play to exhaust excessively humid air from the system to maintain a constant desired humidity in the circulating air of the system.
A lumber compartment is provided within the building which is rectangular in shape, approximately 40` feet wide by 50 feet deep and 15 feet in height, which is open at its forward extremity adjacent the doors of the building and is provided with a rear wall in which are uniformly mounted in two rows a bank of twelve air circulating fans which serve to pull the circulating air through the open, forward end of the enclosure, through the stacked lumber and then force it rearwardly and upwardly to the recirculating air duct under the roof of the building for recirculation -back through the open end of the enclosure and through the lumber stack. The side walls of the building comprise the side walls of the lumber compartment in the installation and are preferably provided at intervals with vertically disposed swinging air foil baflie members which are hinged to the walls and swing inwardly against the sides of the lumber stacks to prevent escape of circulating air thereabout. Similar downwardly swinging, hinged air foil baffles are provided, laterally disposed beneath the ceiling of the lumber enclosure, in alignment with the side wall baiiies to prevent escape of circulating air over the upper surfaces of the lumber stacks and to insure complete and uniform circulation of the processing air through the lumber stacks.
This invention contemplates the drying of the green lumber by air of relatively high humidity, i.e., upy to 82% to 90% R.H., and of comparatively low temperature, i.e., from 50-120 F. By drying the green lumber with air of high humidity and llow temperature the lumber remains soft at all times, there is never excessive sur-face drying and thus interior moisture is readily removed and an even ow" of moisture from the lumber is mairltaned. For example, in one experimental operation, with a temperature of 70 F. and a 90% relative humidity of the air, the drying rate was very rapid and soft green maple Was dried down to moisture content with an 83 dry bulb, and 80 wet bulb without stain in 8 days.
This theory of drying of green lumber with air of high humidity and low temperature is revolutionary and the primary reason for its efficacy is the fact that with circulating air of high humidity the lumber is maintained soft and its interior moisture is thus readily extracted, even into high humidity circulating air.
Further on in this specification test charts appear illustrating the eiciency of this high humidity air drying method.
It is therefore a primary object of this invention to evolve a method for the drying of green lumber, both soft and hard woods, from their original, green, moisture content of approximately down to a preliminarly dried moisture content of approximately 20% and then to complete the drying operation down to the iinal moisture content of approximately 7% in a short period of time.
Itis another object of this invention to evolve improved controls for this high humidity drying of lumber.
It is a further object of this invention to evolve such a method in which the temperature of the circulated air is maintained in a comparatively low range, i.e., Vbetween 40 and 120 F.
It is another object of this invention to evolve such a drying method in which the green lumber, Ifresh from the saw, may be completely dried down to final moist-ure content of approximately 7% in a small fraction of the time previously required for this drying operation and in which spoilage of lumber during the drying operation is reduced to an absolute minimum.
A further object of this invention is to evolve an improved `control system which will maintain a substantially constant humidity in the circulated air and which will require the minimum of heating of the processing air.
Other and further objects of this invention will become apparent as this specification proceeds.
Referring to the drawings:
FIG. 1 is a cross-sectional side view of the installation, taken on its longitudinal axis, showing the complete installation with the lumber stacks in position within the lumber compartment and with the d-rying process underway;
FIG. 2 is a top plan view of the drying unit, taken on line 2-2 of FIG. l, showing the relative positions `of the lumber compartment7 the bank of air lcirculating fans in its rear wall, the lforced Vair heater adjacent the -rear wall of the building and the evacuating fans positioned in the Iforward wall of the building;
FIG. 3 is an end View of the building taken from its rear extremity, on line 3 3 of FIG. l, showing the air circulating fans positioned in the rear wall of the lumber drying compartment, the air circulating space beneath the roof and the exhaust fans located in the upper extremity of the .forward wall of the building;
FIG. 4 is a fragmentary perspective View of one of the air Ifoil baie members for the lumber compartment;
FIG. 5 is a plan view of the electric contact hygrometer which controls the exhaust fans;
FIG. 6 is a -schematic showing of the control panel circuits for the system; and
FIG. 7 is a schematic showing of the control circuits `for the circulating fans, the forced air heater and the exhaust fans.
In the drawings, like numerals designating like parts throughout, 10 indicates the outer building or housing for the installation which is preferably rectangularly shaped at its lower extremities and is brought t-o a peak 11 at its upper extremity to provide an air circulating duct beneath the roo-f portion of the building, above the ceiling of the lumber compartment. Building 10 is preferably formed of sheet metal -or analogous material and is fullyinsulated over its interior with 2 fiberglass insulation, faced with metal foil to provide a vapor barrier over the insulation. It is provided at its rear extremity with a rear wall 12 and at its forward extremity with a depending forward Wall 13. Forward wall 13 is preferably provided at its lower extremity with a door -space 14 which extends the full width o-f building 101 and may be opened or closed by means of laterally sliding doors 15 provided at their upper and lower extremities with appropriate rollers 16 and 17 running in track housings 18 and 19 provided along the upper and lower edges of `door space 14. Doors 15 are also insulated over their interior surfaces with 2 fiberglass, faced with metal foil. An angular baille strip 20 is provided along the upper edge of door space 14, extending outwardly over the upper edges of doors to prevent ingress of rain or other precipitation. Doors 15'are preferably four in number and are overlapped to make a completely air tight closure with each other and with side walls 21 and 22 of the building, when they are in closed position. Door -space 14 preferably extends the full width of the building, at its forward extremity, thus allowing free access to the interior of the 'building when doors 15 are in completely open position.
The overall dimensions of the building are preferably 80 feet in depth, 40 feet in width and 25 feet in height, Vfrom the ground to -rooftree 11. These dimensions may be varied within a wide range, depending upon the nature of the installation desired.
Positioned adjacent rear wall 12 of -building 10 is a forced air heating unit 23, which is preferably of a standard make, provided at its lower extremity with pressure blowers and motor 24, a lburner and combustion chamber 25 and exhaust vent 26. Inlet duct 27 i-s provided -through rear wall 12 of the building and an appropriate exhaust stack 28 for smoke and combustion products is provided through rear wall 12 of the building and affixed thereto by appropriate brackets 29. This heater is preferably gas fired and is equipped with a thermostat 30 which cannot exercise `any control until the hygrometer 31, controlling the exhaust fans, is brought into play, as will hereinafter be discussed at length.
Positioned in lforward wall 13 of the building, above doors 15, are exhaust fans 32 and 33 driven by motors 34 and 35, which are appropriately mounted in brackets behind vents 36 and 37 let through wall 13. Louvers 38 and 39 are provided outwardly of vents 36 and 37 in wall 13 and are so designed as to remain in closed condition until fans 32 and 33 are called into operation by the hygrometer 31. Exhaust fans 32 and 33 are preferably of standard make and are humidistatically controlled by hygrometer 31 which closes the circuits to the fan motors 34 and 35, respectively, when the relative humidity of the circulated air exceeds certain values, for example R.H. and 82% R.H., respectively, and which, conversely, breaks the circuits to one of the fan motors when the relative -humidity of the circulated air falls below 82% and to the other when it falls below 20% R.H.
Hygrometer 31 i-s preferably of the electric contact type, well known in the art, and is provided with two control hands, H and L, H to be set at the high humidity limit, for example 82%, and the other L set on the low humidity limit of, say 20%. Main indicating hand I of hygrometer 31 indicates the relative humidity within the building and when the indicating hand I moves in a clockwise direction past the first, or low control hand L it closes the circuit to the motor of one of the exhaust Afans 32 and when it passes the other or high control hand H it closes the circuit to the motor of the second of the exhaust fans 33. Conversely, as the humidity of the circulating air falls below 82% and as the indicating hand I moves in a counterclockwise direction past control hand H the circuit to exhaust fan 33 is broken and when t-he RH. falls below 20% the circuit t-o exhaust fan 32 is broken.
Exhaust fans 32 and 33 serve a dual purpose in the installation. Due to their control by hygrometer 31 they both exhaust excessively humid air when the R.H. in the system rises above the optimum high level of approxi- Imately 82% and, conversely, when the humidity falls below 82% the hygrometer control cuts off one or both of them, as required. They also serve to create a reduced pressure within the building which permits a free movement of water vapor from the lumber into the circulated air. Each exhaust fan preferably is capable of exhausting 3,000 c.f.m., whereby, depending upon whether or not one fan is cut out, up to 6,000 c.f.m. may be evacuated from the building, as required.
A further enlargement on the function of exhaust fans 32 and 33 will be presented later in this specification.
Referring now to the lumber st-acking compartment per se, this compartment is defined by a ceiling section 42, preferably of insulated metal, which extends laterally the entire width of the building beneath the roof thereof and spaced below the roof, from side wall 21 to side wall 22 thereof and is affixed thereto at its lateral edges. Ceiling 42 is preferably insulated by 2" fiberglass and foil on both surfaces and is supported at its rear extremity by a vertical rear wall 43, also extending the complete width of the building lbetween side walls 21 and 22. Rear wall 43 is also preferably formed of insulated steel. As shown in FIG. 1, ceiling 42 is disposed some 10' beneath the rooftree 11 of the building, leaving a free 'air space between it and the roof portion of the building. The forward extremity of the lumber stack compartment is open to permit free circulation of the processing air therethrough.
As shown, rear wall 43 of the lumber compartment is preferably provided with a parallel series of upper and lower circular orifices 44, preferably twelve in number, in which are appropriately mounted twelve air circulating fans 45 which are driven from mot-ors 46 by means of V-drive belts 47. Circulating fans 45 are preferably 48 inches in diameter and are preferably each capable of circulating approximately 20,000 cubic feet of air per minute. Thus, the lumber stacks are subjected to an air circulation of some 240,000 cubic feet of air per minute.
Air circulating fans 45 are designed to run continuously, maintaining a continuous and uniform circulation of air through the lumber stacks at all times, both day and night, and may be stopped when the relative humidity of the circulated air rises above or falls below the optimum levels, i.e., below 20% RH. or above 82% RH. They may be provided Iwith appropriate high and low level 'humidistat controls 40 and 41, the control range being between approximately 20% R.H. and 82% R.H. Normally, these humidistats 40 and 41 are cut Iout and in usual operation fans 45 run continuously throughout the entire drying cycle.
As shown in FIGS. 1 and 3, preferably four lumber chambers are defined within the lumber stack compartment within the building, the lumber compartment Ibeing formed by ceiling 42 and rear wall 43 thereof and the lumber chambers being defined therewithin by a series of vertical baffles 50 and a series of aligned depending ceiling bafiies 51. As the dimensions of the lumber stack compartment are preferably 40 x 50 x l5', these baffles are preferably spaced some 10 feet apart down the length of the lumber stack compartment and preferably stacks 48 in depth and 16 in width are formed therewithin prior to the commencement of the drying process.
Each lumber stack is on the order of 4 in depth, '16 in width and 14 in height. Stacks are placed end to end. Each layer of lumber in each stack is preferably separated -by appropriate spacers to provide easy access of the circulating air to all portions of each stack and all surfaces of each layer of lumber.
Referring specifically to the baffle members per se, it will be seen that vertical baffles 50 are preferably hingedly mounted in parallel vertical position at approximately l0 foot intervals against side walls 21 and 22 of the main building structure in such fashion that they may be swung forwardly toward the forward end of the building and door space 14 to an angle -of some 90 to lie fiush against said walls during the loading and unloadin-g of the lumber compartment. Vertical bafiies 50 preferably extend from the floor of the building vertically to a point just beneath ceiling 42 of the lumber stack compartment and, as shown, are prefer-ably four in number and aligned with each other in their hinged mounting on walls 21 and 22. Baffles 50 are on the order of 2' in 7 Width so as to impinge against the lumber stacks at their inner, air foil extremities.
Depending downwardly from ceiling 42 and hingedly attached thereto are ceiling bafles 51, of the same overall 8 midity of the circulating air the setting `of hygrometer 31 may be lowered, as desired, toward or below the lower limit of 20% `R.H. i
During the preliminary drying stage of the process, it
configuration and dimensionsfasvertical bafes 50, aligned 5 is normally unnecessary to bring ythe air heating unit 23 with vertical baliies V() and spaced apart a distance of into operation, as the relatively |humid circulating air, of some feet. Depending baffles 51 are preferably up to 82% R.H. performs this initial drying rapidly, down hingedly attached to the undersurface of ceiling 42 and to 20% moisture content of the stacked lumber, without extend laterally the entire width of the building. Vthe necessity of adding heat to the circulating air. How- A detail of one of baffles 50 and 51 is shown in FIG. 4 10 ever, when a moisture content of approximately 20% has of the drawings. It will be seen thatbafes S0 and 51 l been attained in the lumber and it is thus preliminarily 'are comprised of a hinge member 52, aixed either to the dried the further drying lof the lumber down to the final 'side walls of the building or to the undersurface of the 7% moisture content becomes more difiicult and it then lce'iling 42 ofthe lumber stack compartment in such fashion becomes necessary to progressively reduce 'the humidity that baffles 50 and 51 may be swung 'forwardly tllrOugh l5 of the circulating air and to progressively raise its teman angle of 90 to flush position towards the entrance door perature, as moisture removal becomes more difficult. 14 Of the building but Will be 'limited lll their IaPWard AS an exan'lple 0f the performance 0f the unit 0n Various movement to a rectangular position with respect either `types of Vgreen lumber fresh from the saws the following t0 Side Walls 20 and 21 0r Ceiling 42 0f the lumbel ccm' test chart is included lshowing experimental processing at partment by the rectilinear bult end V53 Of baffle panel 54. 20 Memphis 0f various types of soft Woods fron-1 July 28 The inner, air foil extremity of each baflie comprises through August 3, 1960, showing the progressive loss in `a canvas or P-liolm envelope 55 which is appropriately weight, or moisture content, for each Wood during this sevaflixed at the extrimity'of baffle panel 54 by means of outer en day period. No heat was added to the circulating air blocks 56 and 57 and inner blocks 58, maintained in place during this drying operation.
Oven Weight Test, Bone 1 p.m. 10 am. 10 am. 10 am. l0 aJn. 10 a..m. 10 ani. Percent Dry 7-28 7-29 7-30 7-31 8-1 8-2 83 Moisture Black Gum- 99.6 35. 70-12 62-3 56-7 51-11 4t2-1a 47-15 46-7 Cotton Wood- 138.4 20.24 4&4 42-2y 36-5 31-15 29-4` 26-13 lgi Hack Berry... 74. s 26. 57 46-7 42-5 40-0 38-9 37-4 35-8 mali-Zi sap 116.4 29.14 63-1 54-12 46-6 42-6 40-8 38-8 2gb-2% nim 110.6 25.28 V534 47-6 42-12 3&2 sts-0 33-15 2in-i172 29.5%
by bolts 59. Inner blocks 58 are provided down their The above test chart shows the progressive weight loss, entire length with a series of air vents or orifices 60, 40 i.e. moisture removal, in pounds and Ounces, dal by day, providing `access tothe interior of air foil envelopes 55 from July 28, 1960 to August 3, 1960, of live different for the processing air pulled through the lumber stack woods dried in the subject low temperature kiln without compartment by the circulating fans 45. In each instance the addition of heat tothe circulating air. these air inlet orifices 60 are disposed -on the forward The control circuits for the installation are schematiside of baffles and 51 whereby circulating air pulled 4 cally shown in FIGS. 6 and 7 of the drawings and will now through the lumber enclosure by fans 45 will infliate enveo be described. lopes to maintain them firmly against 'thetop and lateral FIG. 6 discloses a schematic Wiring diagram for the extremities Of the lumber Stacks, Yet Will maintain enVecontrol cabinet `for the `installation and FIG. 7 discloses lcpes 55 in such flexible ccndiiicn *es t0 conform t0 any a similar schematic wiring diagram for the circulating irregularities in the lateral 0r upper Surfaces 0f the 50 fan motors, the heating unit and the-exhaust .fan motors. lumber Stacks t0 pfcVeni escape 0f circululing air illerc- These circuits are substantially conventional and the units around. thereof are well known in the art. Other analogous cir- ThuS, 'When it is desired i0 Open 'tbe lumber stack cuits may .be utilized within the spirit of this invention, Compartiment the t0 emplace O1' remove the present Circuit however being preferred. stacks of lumber therefrom, Vertical bullies 50 are swung 55 A brief discussion and enlargement on these circuits will rectangularly forwardly with respect -to side walls 21 and now be given 22 and depending bullies 51 are SWung upwardly With re' Referring to FIG. -6, terminal strips T1, T2 and T3 are Spcct i0 ceiling 42 0f the lumber stack ccmpurimen'L t0 shown for the control cabinet, corresponding `to terminal allow remOVal 01' emplacement 0f lumber tllerelfiillinstrips T1, T2 and T3 of the master circuits for the instal- As aforesaid, by virtue of the flexible and inflatable nature lation Control, respectively ofthe circulating fan motors, of these air foil envelopes provided at the inner extremithe heating unit and the .exhaust fan moron Thus, re- Yties 0f Vertical baffles 50 and depending bullies 51 all irferring to the rst circuit, ybased on terminal strip Tnl irregularities in 'the lumber stacks are compensated for and of FIG. 6, it will be seen that terminal strip T-1 includes 4a complete air seal is `attained both at the lateral extremicontacts N and 1 through .6, Humidistats 40 and 41 of ties of each stack and over the upper surfaces thereof. V .the three wire, snap -acting A.type `are shown as basic con- An installation is provided -in accordance with this introls for the air circulating fan motors 46 Yof circuit T1 of 'Vention iu'WhiCh SOme V240,000 Cubic feet 0f air Per min- FIG. 6. One of these humidistats 4is set -to break the cirute are 4continuously 'circulated through the lumber stack ycuit on high, 82% R.H., and the other on low, 20% compartment in a constant low over all surfaces of the RH. It will be noted that switch R in T1 circuit is a stacked lumber at Ia -speed of S50-500 `f.p.m. The opti- ,70 three way switch on, oifj automatic With this 'mum humidity `of the circulatedair and the temperature kswitch on automatic, high and low humidistats 40 and thereof are carefully controlled at all times to provide op- -41 control the air circulating fan motors 46 and thus timum and `uniform moisture removal .from each piece cut them out on low relative humidity of 20% and high of lumber in each of the lumber stacks within the lumber relative humidity of 82%, the low and high .settings of stack compartment. When `it is desired to lower the hu- 7.5 said humidistats, respectively. However, with switch R set on manual humidistats 40 and 41 are cut out of the circuit and fan motors 46 will run continuously, regardless of the moisture content of the circulating air. Normally, this is the setting used in the system whereby the air circulating fans 45 operate throughout the entire preliminary and final drying cycles.
Also included in this circuit is a double pole, double throw switch R on, olf and automatic Center position is off. S indicates an SPST switch and T designates a fan motor for an aspirating air supply fan for humidistats 40 and 41. Pilot lights P are also included indicating operating conditions. As aforesaid, terminal strip circuit T-l is the control cabinet circuit for the circulating fan motors 46 of FIG. 7 and may be under the control of high and low humidistats 40 and 41.
Referring to terminal strip T2 of FIG. 6 and its circuit it will be seen that terminal strip T2 includes contacts 10-14, corresponding to contacts 10-14 of terminal strip T2 of FIG. 7, for the control of the forced air heater -23 of the installation. This circuit includes thermostat 30 which is designed to close the circuit on low, and a double pole, double throw switch V with two settings, i.e. manual `and automatic. An indicating pilot light is also included.
Referring to terminal strip T-3 of FIG. 6, it will be seen that it includes contacts 1, 2 and 15 to 18 and covers the corresponding control circuit based on terminal strip T-3 of FIG. 6. This circuit controls the motors 34 and 35 of exhaust fans 32 and 33, shown in FIG. 7. It includes high and low single pole switches S, electric contact hygrometer 31, provided with high and low adjustable control hands H and L, thermal gas relays Y, one of which makes on high and the other on low and a three pole, double throw switch, manual and automatic designated as X. Pilot lights P are also included.
As aforesaid, the function of control group No. 1 is to operate the motors of the circulating air fans 45 within preset conditions of high humidity and low humidity, if desired. With selective switch R in the automatic position the control is through humidistats 40 and 41, one of which is setto break the circuit on a predetermined low relative humidity of, say and the other to break the circuit to the fan motors on a predetermined high relative humidity of, say 82%.
The selective switches S control the operation of one half of the fan motors in each bank of air circulating fans for 50% reduced air circulation. With switch R in manual position, fan motors 46 run continuously. With switch R in automatic position fan motors 46 run under the control of high and low humidistats 40 and 41.
Referring to control group No. 2, based on terminal strips T-2, the thermostat closes the circuit on low and acts as the high limit (120 F.) for the forced air heater 23 of FIG. 7 to maintain a preset temperature through thermal gas relays Y. The heat source 23 may be a gas or oil tired heater, steam or hot water or oil control valve or electric heating coils. Selector switch V in manual position calls for continuous operation of the heat supply. In automatic position, the low contact of hygrometer 31 controls the heat source and thermostat 30 is the high limit control for the heat source. As will be seen, control group 2 and control group 3 are interlocked by line 14 so that the heat source 23 is controlled through the thermal gas relays Y.
Control group 3 operates through electric Contact hygometer 31 to control motors 34 and 35 of exhaust fans 32 and 33. Hygrometer 31 is provided with adjustable control hands H and L set at high and low relative humidity, respectively, whereby the R.H. of the circulating air will control the operaton of exhaust fans 32 and 33 which are called into operation to discharge air from within the building through the automatic gravity type discharge shutters.
The low temperature kiln motor control cabinet wiring diagram comprises starter-s, relays and contactors of all circulatng fan motors and exhaust fan motors. The automatic operation of circulating fan motors and exhaust -fan motors as required by the various controls and the instrument control cabinet terminal strips T1, T2 and T3 are wired to the various motors controls, as indicated.
Referring to FIG. 7, the motor control circuits are shown, based on terminal strips T-1, T-2 and T3, corresponding to the terminal strips of the motor control cabinet shown in FIG. 6. It will be seen that the air circulating fans 45 are arranged in two banks and may be under the control of high and low level humidistats 40 and 41 and that the components of this circuit include thermal overload relays B for each circulating fan motor 46. Three pole magnetic contacts C for each bank of fans are included and a transformer D converting line voltage to secondary control voltage of volts. A fuse block E is included in the control circuit.
Referring to terminal strips T-Z and T-3 of FIG. 6 and their circuits, G indicates thermal overload relays, one for each of the exhaust fans 32 and 33. Four pole magnetic contractors indicated at M are also included, one `for the motor of exhaust fan 32 and the other for the motor of exhaust fan 33. A magnetic relay I of the single pole type energizes the holding coils in magnetic contractors M. Heat source 23, which may be a gas red heater or any analogous type of heater, is shown.
It will be appreciated that terminal strips T-1, T-Z and T-3 of the control cabinet are wired directly to terminal strips T-1, T-2 and T-3, respectively, of the motor control circuits.
It will thus be seen that the air circulating fan motors 46 may be under the direct control of the control humidistats 40 and 41, one for high level humidity control and the other for low level humidity control. It will further beseen, by reference to FIG. 7, that the operation of the heater 23 and the exhaust fan motors 34 and 3S are in interlocked control to the hygrometer 31 whereby both heat put into the system by heater 23 and humid air exhausted therefrom by the exhaust fans is directly controlled through the setting of the control hands H and L of hygrometer 31. It is thus possible through the instrument control cabinet for the operation to follow a schedule from the loading of the green lumber into the kiln until the nal ultimate moisture content of approximately 7% is reached. These schedules will vary with different species of wood and will be controlled by the thickness thereof, hardness, initial moisture content and certain other variables. The operating schedules are quite flexible and require only the adjustment of the two hygrometer control hands H and L. Normally, heater 23 is not called into action to put heat into the circulating air during the preliminary drying of the lumber down to say, 20% M.C., the drying down to this point being done by the circulating air alone. When a 20% M.C. is reached the heater 23 is then set in operation to heat the circulating air to complete the iinal drying of the lumber down to approximately 7% M.C.
Referring back to the overall building structure 10, it is preferably completely fabricated of sheet steel, insulated throughout on its interior walls with 2" fiberglass covered with an aluminum foil vapor barrier. Doors 15 are also provided with fiberglass insulation covered with foil over their interior surfaces to provide complete insulation at the forward extremity of the building. Further, ceiling 42 and rear wall 43 of the lumber compartment are also formed of sheet steel, appropriately insulated. Industrial steel structures of this type are manufactured by several nationally known manufacturers and are available in a number of widths, lengths and height-s, as desired.
The manner of operating the drier is as follows:
If the lumber processing compartment contains stacks of dried lumber on which the treating cycle has been completed, doors 15 are first opened, opening the lower, forward extremity of the building 10. The forwardmost of vertical bafiies 50 and horizontal batiles 51 are then swung iiush outwardly to walls 21 and 22, and ceiling 42, respectively. The rst stack of lumber is then removed from the forwardmost compartment. With this stack removed, the second set of batiies 50 and 51 are swung flush against the walls and ceiling and the second stack of lumber is removed. This process is repeated for the next two stacks until the inner compartment is emptied. With the inner lumber compartment completely emptied of the dried lumber, and with the baffles ush against the walls and ceiling of the compartment, green lumber is then stacked in the rearmost of the lumber compartments until this compartment is filled from Wall to wall of the building to a height of some 14 feet. With the rearmost compartment thus iilled, side wall baille 50 and ceiling baille 51 are then swung inwardly at right angles to the walls and ceiling, respectively, sealing the edges and top of this rearmost stack. This loading process is repeated through the next three compartments of the inner chamber until all four compartments contain complete 4lumber stacks and all baffles 50 and 51 are in registering position with respect to the stacks, as shown in FIG. l of the drawings. With the entire lumber compartment thus filled and with the batiies turned inwardly in sealing position doors 15 are then closed to near air tight position and the motors 46 of air circulating fans 45 are energized, starting the circulating fans 45. This initiates 4a ow of air into the open forward extremity of `the lumber stack compartment, through the lumber stacks, through circulating fans 45, through the air return duct D under the roof of the building and back through the lumber stacks, in continuous cycle. When the relative humidity of the circulated air Irises above 82%, high level exhaust fan 33 is called into operation by hygrometer 31 to exhaust excessively humid air from the building until the moisture content of the circulated air is reduced to 82%.
During the preliminary stage of the drying of the green lumber, hygrometer 31, set preferably at a high of 82% R.H. and a low of 20% R.H., controls the operation of low level exhaust fan 32 and high level exhaust fan 33 and does not call fan 33 into action until the circulated air exceeds 82% RH. When the relative humidity of the circulated air exceeds 82% hygrometer 31 closes the circuit to the motor of exhaust fan 33 and fan 33 begins exhausting humid air from the interior of the building, louvers 39 being forced to open position by the forced draft from fan 33. When the relative humidity of the circulating air is lowered below 82% hygrometer 31 breaks the circuit to the motor fan 33. As aforesaid, low level fan 32 is called into action by hygrometer 31 as soon as the drying cycle starts and continues to run until the relative humidity of the circulated air falls below When the moisture content of the lumber has been reduced to about 20% the humidity of the circulated air is also reduced until at 20% RH. the low level control hand L of hygrometer 31 is passed. by the indicating hand I thereof and the circuits to the low level exhaust fan 32 and the air heater are broken. This shutting off of exhaust fan 32 and the air heater enables the relative humidity of the circulated air gradually to rise again to 20%, at which point hygrometer 31 again calls exhaust fan 32 and the air heater into action.
It is the practice to permit the air circulating fans 45 to continue operating for several hours after the heater and exhaust fan 32 have stopped operating, these extra hours of air circulation equalizing the moisture content of the lumber between core and shell and producing a iine quality of lumber in optimum condition.
Louvers 38 and 39 of exhaust fans 32 and. 33 serve a two-fold purpose. When exhaust fans 32 and 33 are .not operating the pressure from the outside atmosphere maintains louvers 38 an-d 39 in closed condition until such 12 time as pressure builds up within the building, due to rise in temperature or pressure, whereupon louvers 38 and 39 open partially and permit the escape of excess moist air or other vapors. This results in a rapid. rate of drying even when exhaust fans 32 and 33 are not operating.
As aforesaid, the force feed heater is equipped with a modulating thermostat 30, set 'at a high limit of 120 F. Thus when the temperature within the building reaches 120 F. the heater is cut olf.
As humidity is the primary factor in this drying system, heat may only be added to the air within the building so long as it will not-disturb the balance of moisture Ain the air. However, `the air temperature may be grad- -ually raised, while maintaining the proper relative `humidity, this extra heat causing the lumber to give up a little extra moisture and at the same `time maintaining a relative humidity and temperature in `proper balance.
As an example, with the humidity control set at approximately 82%, the temperature can range from 55 F. to 120 F. with .an increased diiierence of only 3 between wet and `drybulb reading at .any time. At 82% RH. and 55 F. the dry and wet bulb rea-ding will be 55 D.B. and 52 W.B. At a temperature of 75 F. and .82% R.H. the dry and wet bulbs would read D.B. and 71 W.B. At F. and 82% RH. dry and wet bulb readings would be 115 D.B. and 109 W.B., a range in spread of 3 W.B. to a maximum of 6 W.B.
In the iinal stages of the drying operation, from 20% moisture content of the lumber down to the inal 7% moisture content the humidity of the circulated air progressively falls down to below 20% at which point low level exhaust fan 32 and the air heater are cut out by hygrometer 31.
Thus it will be seen that during the preliminary drying stage of the operation in which the green lumber is dried down to approximately 20% moisture content, the relative humidity of the circulating air is maintained at high level, i.e., up to 82% RH. thus maintaining the lumber soft and the surface moist, whereby the lumber readily gives up its moisture to the circulating air. The relative humidity of the circulating air is not reduced below this point until the later stages of the drying operation when the moisture content of the lumber is drastically reduced.
As aforesaid, hygrometer 31 is provided with two control hands, L and H, control hand L being set at the low limit relative humidity, about 20% RH. and control hand H being set at the high limit relative humidity, normally 82%. Hygrometer 31 is also provided with a sweep indicat-ing hand I which indicates the relative humidity of the air within the building. When the humidity is above 20% indicating hand I makes contact with the low limit control and the circuit is closed to low limit exhaust fan 32 and also to the forced air heater 23, both of which then start operating with exhaust fan 32 exhausting circulating air and the air heater initiating heating of the circulating air. As the relative humidity of the circulating air increases and rises up to 82%, the top humidity limit, the indicating hand I of hygrometer 31 contacts the high level control hand H of the hygrometer, set at 82% RH., and the circuit to the motor of exhaust fan 33 is closed and exhaust fan 33 goes into operation to exhaust eX- cessively humid air from the building until the relative humidity thereof drops below 82%, at which point the indicating hand I breaks the circuit with the high level control hand H and the circuit to exhaust fan 33 is broken. Normally, when green lumber is being processed, the high level control hand H is set at 82% RH. on the dial of hygrometer 31 and the low level control hand L is set at 20% R.H. thereon. As aforesaid, the high level control hand is set at 82% on the hygrometer -dial and the circuit to high level exhaust fan 33 will be closed and broken when ever required to maintain a balanced high level relative humidity to 82% within the building.
When the lumber being dried has dried sufficiently to eliminate a relative humidity as high as 82% in the system, high level exhaust fan 33 will cease to operate, but the air heater and low level fan 32 will continue to operate until the lumber is dried down to the point where a 20% relative humidity can no longer be maintained. At this stage the heater 23 and the low level exhaust fan 32 are cut off by hygrometer 31 until the circulating air cools to such a point that there is a slight increase in relative humidity up to 20% at which time the circuit is again closed by the indicating and low level control hands I and L of hygrometer 31 whereby the heater and low level exhaust fan 32 again start to operate. This terminal end of the cycle is continued until the lumber is thoroughly dried down to approximately 7% M.C.
In drying 4/4 soft maple, sap gum, tupelo gum, elm, and hackberry, it has been found that from 5 to 10 days are required to dry the heaviest boards down to 20% M.C. When the process is initiated with green lumber of the above species and is carried through on an uninterrupted cycle, l2 days is the longest average time required to complete the drying cycle from over 100% M.C. down to the final completely dried moisture content of 7%. In the operation of these drying cycles temperatures in the building may range from 50 F. to 120 F., with a relative humidity range of from 85% down to 18%.
In starting with cold, air-dried lumber, of M.C. from 20% to 30%, the drying time down to approximately 7% has averaged approximately 7 days, room temperature never exceeding 120 F., the top limit of the thermostat control for the forced air heater.
As aforesaid, the thermostat control for the forced air heater is set for a high temperature limit of 120 F. whereby maximum temperature in the system never exceeds this temperature. Normally the processing temperature ranges from room temperature in the building, say approximately 54 F., to a top limit of 120 F. The average drying cycle period for green lumber from over 100% M.C. down to 7% M.C. has been approximately 12 days.
The following chart shows an actual test run at Memphis, Tennessee, on 235 board feet of end-coated green maple lumber between the dates of February 9, 1961, and February 2l, 1961.
The test was conducted as follows: At 4 p.m. the charge of green maple lumber, 235 board feet, weighing exactly 1,000 pounds, was placed on a platform scale inside the drying compartment. Part of this lumber was frozen and, as aforesaid, oven tests had previously established moisture contents in the various lumber lots of vfrom 28.4% to 89.8%.
At 5:00 pm., February 9, the doors of the building were closed and the circulating fans were turned on, initiating air circulation within the dryer.
A check at 8:30 pm., February 9, showed a temperature increase within the dryer to 47 F., dry bulb, and 46 F., wet bulb. This one degree depression indicated an extremely high humidity within the drying compartment. Despite this high humidity and the comparatively low temperature within the compartment, on the following morning the 1,000 pound sample weighed only 994 pounds, a loss of 6 pounds of moisture, indicating that drying had already begun. At that time relative humidity within the compartment was 94%.
Reference to the chart will show that sample A-l of the green maple was loaded at a moisture content of 86.9%; sample A-2 at a moisture content of 89.8%; sample B-l at a moisture content of 60.6%; sample B-2 at a moisture content of 41.7% and sample C-l at a moisture content of 28.4%. The original total weight of these ve samples was 1,000 pounds, at the time of loading, -on February 9, 1961.
Ten and a half days later, the moisture content of sample A-l was 6.6%; A-2 was 7.0%; B-1 was 6.9%; B-2 was 6.7% and sample C-l was 6.0%. In this period the weight of the 235 board feet of maple lumber had been reduced to 764 pounds, a moisture loss of 236 pounds, and the entire sample stack of lumber was in finally dried condition and ready for manufacturing.
It will be noted from the test chart that temperature within the dryer was maintained at a low level during the rst two days of the test and was then gradually increased up to a maximum of 120 F., which temperature was maintained through the last ve days of the operation. Wet bulb temperature within the drying compartment rather closely followed this dry bulb temperature during the rst six days but well off sharply during the last four and a half days.
Maple run in new kiln 2-9-61-2-2161 Inside Board Dry Wet Dep. RH 235 Temp. Bulb Bulb Date Time Sample Sample Sample Sample Sample Weight A-l A-2 B-l B- C-l on scale In Out Inside Kiln Inside Kiln Kiln Kiln 43 40 3 77 35 52 5l 1 94 39 93 89 4 85 58 97 93 4 86 48 102 94 8 74 57 104 92 l2 63 56 115 99 16 56 6l 120 97 23 43 59 120 91 29 33 8 am.-- 11.0 9.6 33 120 82 38 19 8 am. 7. 6 10. 5 8. 6.6 40 l2() 80 40 17 8 am.. 6. 6 7.0 6.9 6. 7 6.0 46 120 8O 40 17 Oven tests were made of ive samples of this green maple lumber before being placed in the drying compartment. These tests indicated that the moisture content of the various lots of green maple ranged from 28.4% to 89.8%. Holes were drilled in several sample boards and thermometers placed inside. Sample boards outside of the dryer were also equipped with thermometers for comparison purposes.
During the first night the outside temperature fell from 37 to 24 F. but the temperature inside the dryer rose to 52 F., without the addition of any heat whatsoever to the circulated air within the dryer.
With respect to relative humidity insidel the drying compartment it will be noted that it reached a peak of 94% on the second day of the test and then progressively dropped down to a -nal low level of 17% on the last two days of the test during the final drying stage.
As aforesaid, when this stack of lumber was removed from the drying compartment, it was ready for manufacturing, at an average moisture content of 6.7%. It will be noted further that samples A-l and A-2 were loaded at moisture contents of 86.9% and 89.8%, respectively, and were removed 101/2 days later at respective moisture contents of 6.6% and 7.0%.
:15 For different species of woods different instrument settings are required. For all species of soft southern hardwoods, thefollowing'schedule is normally adhered to.
For green r partially dried lumber (l) Start 12 circulating fans and operate for 12 to 24 hours without heat or exhaust.
(2) Set hygrometer high `limit H at 82% R.H. and lowv limit L at 18 to 22% R.H. as required.
(a) Release of moisture from lumber raises RH. to 82% to 90%. At 82% RH. or over, high limit hygrometer Contact H causes exhaust fan 33 to operate continuously, throwing away excess moisture.
(b) RH. being in excess of low limit setting energizes thermal gas relay to heat source supervised by high limit thermostat set at 120 F., and to exhaust fan 32.
(c) As the lumber dries, the R.H. is lowered, and controls function to maintain the balanced atmosphere at optimum drying conditions. For example, usually the balance will occur at some point between .80 F. and 104 F. depending upon rate of release of moisture from lumber and temperature difference with outside. The reason for reaching `equilibrium is that the loss due to latent heat of evaporation and heat input are balanced. This will continue for approximately 12 to 24 hours depending on heat loss to outside, after which a lower R.H. will be reached and another point of balance at a higher temperature will be obtained, still below the high limit setting of 120 F.
In the iinal drying stage to reach the desired 6% to 7% E.M.C. the temperature will gradually climb to the maximum of 120 F. and the R.H. will uniformly go lower, until the R.H. reaches the low limit setting of 20% at which time the circuit to the heat source and exhaust fan 32 are interrupted through the gas relay causing intermittent operation of'heat source and exhaust fan 32, maintaining the preset 20% RH. low limit setting. This iinal period of intermittent operation of heat source and exhaust fan tends to equalize the moisture content of the lumber between core and shell, finally achieving a difference of li1% M.C. between core and shell, which is greatly superior to conditions obtained in conventional dry kilns.
For more diiiicult to dry hardwoods, optimum results can be obtained by raising both high limit and low limit settings of the hygrometer, thus maintaining a higher R.H. in the circulating air throughout the entire drying cycle.
For air drying only, to approximately 20% M.C., when heat is not available or desired, the same .instrument settings are used as are used with heat. Temperature and relative humidity will reach a balance to produce satisfactory air drying.
This low temperature kiln air dries lumber very emciently without added heat. The removal .of moisture from the lumber provides a substantial temperature increase within the system without the necessity of adding heat by way of the air heater until the terminal stage of the drying has been reached, i.e., approximately 20% M.C.
Further, the reduced pressure created by the circulating fans and the exhaust fans results in rapid air .drying with the use of added heat until the end of the drying cycle, i.e., from approximately 20% M.C. to '7% M.C., is reached.
The invention is susceptible of numerous modications without departing from the spirit thereof, Throughout,
equivalents may be substituted for all elements of the installation within the spirit of the invention. The installation and method disclosed herein are by way of illustration, only. Attention is directe-d to the appended claims for a limitation of the scope of the invention.
What is claimed is:
1. A method of drying green lumber comprising stacking the -lumber within an enclosure, sealing the enclosure, pulling through the lumber stack a constant, high speed circulation of humid air up to about relative humidity and of low temperature for a sufficient period of time to reduce its moisture content to 20% and subsequently drying the lumber down to 7% moisture content by progressively increasing the temperature to a maximum of about -F. and lowering the humidity of the circulated air to aiminimum'of about 20%.
2. A method of drying green, sawed lumber of high moisture content comprising stacking it in a sealed compartment, rapidly pulling and circulating air of high humidity up to about 82% and low temperature between 40 and 120 F. through said stacks at a constant rate of -ow until the Amoisture content of said lumber is reduced to about 20% and then progressively reducing the humidity to a maximum of about 20% and increasing the temperature of said circulating air to a maximum of about 120 F. and continuing its circulation through said stacks until the moisture content of the lumber is reduced to'7%.
3. A method of drying lumber from its initial, green moisture contentdown to a final moisture content of 7% which comprises stacking the green lumber within va sealed enclosure, subjecting it -to a constant speed low temperature `air circulation throughout the drying cycle While maintaining the relative humidity of the circulating air of about 82% during the preliminary stages of drying and then above 20% R.H. at the later stages thereof and raising the air temperature to a maximum of 120 F. throughout the remaining drying time.
4. A method of drying green lumber comprising stacking the ylumber in a series of sealed stacks within an enclosure, sealing the enclosure, pulling a draft of humid air of about 80% RH. and a temperature 4of between 40 and 120 F. and maintaining said .air at constant and high velocity circulation through said stacks for a Sullicient period of time to reduce the moisture content of the lumber down -to about 20% R.H. and subsequently progressively increasing the temperature of the circulated air to a maximum of about 120 F. and lowering the humidity of the circulated air to a minimum of about 20% until the lumber is dried down to a tina-l moisture content of about 7%.
VRcferences'Cited by the Examiner UNITED STATES PATENTS 528,496 10/1894 Williams 34--29 1,125,862 1/1915 McMullen 34--26 1,490,569 4/1924 Kriek 34-4-26 1,509,533 9/1924 Thelen 34-26 1,567,559 12/1925 Welch 34-26 1,863,943 `6/1932 Rubin 34-26 2,710,455 6/1955 Freeman 34-54 2,758,388 8/1956 Westerberg 34-54 WILLIAM F. ODEA, Acting Primary Examiner. BENJAMIN BENDETT, NORMAN YUDKOFF,
PERCY L- PATRICK, Examiners..

Claims (1)

1. A METHOD OF DRYING GREEN LUMBER COMPRISING STACKING THE LUMBER WITHIN AN ENCLOSURE, SEALING THE ENCLOSURE, PULLING THROUGH THE LUMBER STACK A CONSTANT, HIGH SPEED CIRCULATION OF HUMID AIR UP TO ABOUT 80% RELATIVE HUMIDITY AND OF LOW TEMPERATURE FOR A SUFFICIENT PERIOD OF TIME TO REDUCE ITS MOISTURE CONTENT TO 20% AND SUBSEQUENTLY DRYING THE LUMBER DOWN TO 7% MOISTURE CONTENT BY PROGRESSIVELY INCREASING THE TEMPERATURE TO A MAXIMUM OF ABOUT 120*F. AND LOWERING THE HUMIDITY OF THE CIRCULATED AIR TO A MINIMUM OF ABOUT 20%.
US108488A 1961-05-08 1961-05-08 Low temperature, high humidity method of lumber drying in a kiln Expired - Lifetime US3234659A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US108488A US3234659A (en) 1961-05-08 1961-05-08 Low temperature, high humidity method of lumber drying in a kiln
US440681A US3337967A (en) 1961-05-08 1965-03-18 Low temperature, high humidity lumber drying kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US108488A US3234659A (en) 1961-05-08 1961-05-08 Low temperature, high humidity method of lumber drying in a kiln

Publications (1)

Publication Number Publication Date
US3234659A true US3234659A (en) 1966-02-15

Family

ID=22322503

Family Applications (1)

Application Number Title Priority Date Filing Date
US108488A Expired - Lifetime US3234659A (en) 1961-05-08 1961-05-08 Low temperature, high humidity method of lumber drying in a kiln

Country Status (1)

Country Link
US (1) US3234659A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182048A (en) * 1978-02-21 1980-01-08 U.S. Natural Resources, Inc. Method of drying lumber
FR2667010A1 (en) * 1990-06-07 1992-03-27 Berthod Christian Method for stabilising logs and producing stabilised and dried-out thick boards, particularly of oak
US5522898A (en) * 1993-09-16 1996-06-04 Howmedica Inc. Dehydration of hydrogels
US20070044341A1 (en) * 2005-05-23 2007-03-01 Pollard Levi A Dual path kiln
US20090158615A1 (en) * 2006-04-12 2009-06-25 Kurt Muehlboeck Method for Drying Wood Combined Into Stacks
US20110056087A1 (en) * 2009-09-04 2011-03-10 Tinsley Douglas M Dual Path Kiln Improvement
US20150181770A1 (en) * 2012-02-29 2015-06-25 Inertech Ip Llc Air flow distribution system for data center server racks
US10619921B2 (en) 2018-01-29 2020-04-14 Norev Dpk, Llc Dual path kiln and method of operating a dual path kiln to continuously dry lumber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528496A (en) * 1894-10-30 Method of drying articles
US1125862A (en) * 1914-04-06 1915-01-19 George Whitman Mcmullen Process of drying lumber and product thereof.
US1490569A (en) * 1923-10-27 1924-04-15 Arthur E Krick Process of drying control
US1509533A (en) * 1923-10-27 1924-09-23 Citizens Of The United States Method for seasoning wood
US1567559A (en) * 1924-05-24 1925-12-29 Welch John Berchmans Drying wood, lumber, and the like
US1863943A (en) * 1928-12-07 1932-06-21 Utility Mfg And Sales Company Process and apparatus for drying lumber
US2710455A (en) * 1951-08-20 1955-06-14 Mitchell Co John E Automatic control for cotton processing equipment
US2758388A (en) * 1952-03-08 1956-08-14 Svenska Flaektfabriken Ab Drying device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528496A (en) * 1894-10-30 Method of drying articles
US1125862A (en) * 1914-04-06 1915-01-19 George Whitman Mcmullen Process of drying lumber and product thereof.
US1490569A (en) * 1923-10-27 1924-04-15 Arthur E Krick Process of drying control
US1509533A (en) * 1923-10-27 1924-09-23 Citizens Of The United States Method for seasoning wood
US1567559A (en) * 1924-05-24 1925-12-29 Welch John Berchmans Drying wood, lumber, and the like
US1863943A (en) * 1928-12-07 1932-06-21 Utility Mfg And Sales Company Process and apparatus for drying lumber
US2710455A (en) * 1951-08-20 1955-06-14 Mitchell Co John E Automatic control for cotton processing equipment
US2758388A (en) * 1952-03-08 1956-08-14 Svenska Flaektfabriken Ab Drying device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182048A (en) * 1978-02-21 1980-01-08 U.S. Natural Resources, Inc. Method of drying lumber
FR2667010A1 (en) * 1990-06-07 1992-03-27 Berthod Christian Method for stabilising logs and producing stabilised and dried-out thick boards, particularly of oak
US5522898A (en) * 1993-09-16 1996-06-04 Howmedica Inc. Dehydration of hydrogels
US7963048B2 (en) * 2005-05-23 2011-06-21 Pollard Levi A Dual path kiln
US20070044341A1 (en) * 2005-05-23 2007-03-01 Pollard Levi A Dual path kiln
US20090158615A1 (en) * 2006-04-12 2009-06-25 Kurt Muehlboeck Method for Drying Wood Combined Into Stacks
US20110056087A1 (en) * 2009-09-04 2011-03-10 Tinsley Douglas M Dual Path Kiln Improvement
US8201501B2 (en) 2009-09-04 2012-06-19 Tinsley Douglas M Dual path kiln improvement
US8342102B2 (en) 2009-09-04 2013-01-01 Douglas M Tinsley Dual path kiln improvement
US20150181770A1 (en) * 2012-02-29 2015-06-25 Inertech Ip Llc Air flow distribution system for data center server racks
US10716241B2 (en) * 2012-02-29 2020-07-14 Inertech Ip Llc Air flow distribution system for data center server racks
US11547019B2 (en) 2012-02-29 2023-01-03 Inertech Ip Llc Air flow distribution system for data center server racks
US11871544B2 (en) 2012-02-29 2024-01-09 Inertech Ip Llc Air flow distribution system for data center server racks
US10619921B2 (en) 2018-01-29 2020-04-14 Norev Dpk, Llc Dual path kiln and method of operating a dual path kiln to continuously dry lumber

Similar Documents

Publication Publication Date Title
US3337967A (en) Low temperature, high humidity lumber drying kiln
US4182048A (en) Method of drying lumber
US3659352A (en) Circulating air dryer
US3234659A (en) Low temperature, high humidity method of lumber drying in a kiln
US2296546A (en) Method of artificially seasoning lumber
US2718713A (en) Lumber drying kiln
KR100481454B1 (en) A Drying Device
GB2147400A (en) Drying plant
US528496A (en) Method of drying articles
US2763069A (en) Method of controlling air seasoning of wood
US3262216A (en) Process for artificially drying lumber
US2834120A (en) Lumber curing process
US1784727A (en) Method of and apparatus for conditioning lumber and other materials
US2534618A (en) Apparatus for curing of tobacco
US2884707A (en) Method for drying wood
US2798496A (en) Method of curing tobacco
US2050226A (en) Apparatus for drying lumber
US2087454A (en) Apparatus for kiln drying
CZ279668B6 (en) Equipment for drying and protection of wood
JPH0798177A (en) Lumber drying device
JP3103292B2 (en) Grain drying equipment
US1687822A (en) Process and apparatus for removing chemicals and moisture from lumber, wood, and othe rsubstances
US1349908A (en) Dehydrating plant
JP4351141B2 (en) Smoke drying equipment and wood smoke drying method
US1602988A (en) Dehydration plant