US3223623A - Textile lubricants - Google Patents

Textile lubricants Download PDF

Info

Publication number
US3223623A
US3223623A US195961A US19596162A US3223623A US 3223623 A US3223623 A US 3223623A US 195961 A US195961 A US 195961A US 19596162 A US19596162 A US 19596162A US 3223623 A US3223623 A US 3223623A
Authority
US
United States
Prior art keywords
fatty acids
aromatized
tall oil
oil fatty
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US195961A
Inventor
Karl A Kubitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenneco Chemicals Inc
Original Assignee
Tenneco Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenneco Chemicals Inc filed Critical Tenneco Chemicals Inc
Priority to US195961A priority Critical patent/US3223623A/en
Application granted granted Critical
Publication of US3223623A publication Critical patent/US3223623A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • Thepresent invention relates to textile fiber finishes. It particularly relates to lubricants for threads and fabrics of cotton, wool and synthetics to facilitate the handling and processing of such fibers and to provide the tactile characteristics desired in the finished or semifinishcd material.
  • oleic. acid white oleic
  • the oleic acid may be applied by spraying the acid onto the fabric or the fabric maybe dipped in-the oleic acid.
  • a common procedure is to form an aqueous emulsion of the oleic acid and then immerse the textile in the emulsion or the emulsion can be sprayed onto the textile.
  • Part of the oleic acid is saponified with sodium hydroxide to facilitate formation of the emulsion and to produce the type of hand desired.
  • Usually such an emulsion will contain 0.25-% nonaqueous material.
  • aromatized linoleic acid or mixtures of aromatized linoleic acid and fatty acids containing 14 to 20 carbon atoms per molecule are excellent textile lubricants.
  • An important advantage of the present invention is that tall oil fatty acids can be used as a textile lubricant after aromatization of the linoleic acid.
  • the resulting fatty acid mixtures will usually contain at least 5% by weight of aromatized linoleic acid and atleast 25% and usually at least 50% by weight of oleicv acid.
  • the mixture ofacids should be substantially free of and not contain more than 5% by weight of polyunsaturated fatty acids which are acids containing more than one carbon to carbon double bond in the molecule.
  • aromatized linoleic acid may be prepared by the aromatization of substantially pure linoleic acid or by aromatization of the linoleic acid when mixed with'other fatty acids, the preferred procedure is to aromatize the linoleic acid in tall oil fatty acids in the presence of a palladium catalyst.
  • Aromatized linoleic acid is a mixture of acids having a characteristic and strong infrared absorption band in the 13.3;1. region and having the following structural forumula:
  • the aromatized tall oil fatty acids may be prepared by any suitable process and may be prepared, for example, as described in the article entitled The Aromatization of Linoleic Acid With Palladium Catalyst appearing in The Journal of the American Oil Chemists Society, volume 33, No. 12, December 1956, pages 609 through 614.
  • the aromatized tall oil fatty acids can be used in place of and in the same manner as oleic acid as a textile lubricant.
  • the tall oil fatty acids may be applied as such but preferably are partially saponified with sodium-hydroxide, diluted with Water and mixed to form an emulsioncontaining about 0.255% of non-aqueous material (fatty acid plus soap). Enough of the acid mixture is saponified 3,223,623 Patented Dec. 14, 1965 "ice to form the emulsion.
  • the ratio of soap to acid may be varied widely to provide the desired lubricity and hand.
  • the textile isimmersed: in this emulsion or sprayed with the emulsion to deposit soap-and fatty acid on the textile.
  • the aromatized tall oil fatty acids have excellent heat (color) stability and excellent resistance to oxidation and the formation of odors.
  • the aromatized acids were prepared by heatingrrefined tall oil fatty acids in the presence of palladium on carbon catalyst until the fatty acids were substantially free of polyunsaturated fatty acids and contained a substantial amount of arom-atized'linoleic acid. The resulting reaction was distilled to separate the aromatized fatty acids from the catalyst and a small amount of by-products.
  • the aromatized. tall oil fatty acids had the following characteristics. Analysis was by vapor chromatography.
  • Acid number 196 Iodine value Titer C 28
  • NOTE.C1s and Cm mean fatty acids containing eighteen and nineteen carbon atoms in the molecule, respectively, and sat. means saturated.
  • the refined tall oil fatty acids from which the aromatized tall oil fatty acids were prepared contained 98% fatty acids which contained 44.5% oleic acid, 51% linoleic acid, and 4.5% other fatty acids.
  • the oleic acid includes all of the fatty acid containing eighteen carbon atoms and one carbon to'carbon double bond, and the linoleic oleic acid also includes the small amount of other acids containing two carbon to carbon double bonds. This refined tall oil also was used in the comparative tests hereinafter described.
  • Textile lubricants must: resist oxidation, particularly under warm humid conditions.
  • the oxidative stability of textile lubricants is shown by the tropics test.
  • the lubricant is applied, for example, asan aqueous emulsion of the fatty acids with part of the fatty acids being saponified with sodium hydroxide.
  • the treated textile is then stored in a container at relative humidity and at 55 C. for about 24 hours.
  • the sample is checked for odor and discoloration. Comparative tests were made with rayon to which there had been added Similar amounts of aqueous emulsions of the oleic acid, the aromatized tall oil fatty acids and the tall oil fatty acids previously described.
  • the present lubricant can be used with other synthetic staple fibers as well as with natural fibers such as cotton.
  • the present lubricant is particularly useful as a wool lubricant where resistance to oxidation is particularly important.
  • the aromatized tall oil fatty acids may be used alone or may be mixed with other fatty acids substantially free of polyunsaturation containing from 14 to 20 carbon atoms in the molecule.
  • the added acids are saturated and the palm oil fatty acids are especially useful for this purpose.
  • about 10% of palm oil fatty acids may be added so as to increase the saturated fatty acid content to about 20%. Such a mixture will be even more stable to oxidation.
  • Textile fiber having thereon as a lubricant an effective amount of a material selected from the group consisting of aromatized tall oil fatty acids and partial soaps of such acids, said aromatized tall oil fatty acids being essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
  • Textile fiber having thereon as a lubricant an effective amount of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
  • Textile fiber having thereon as a lubricant an effective amount of partial sodium soap of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
  • Textile fiber having thereon as a lubricant an effective amount of the partial sodium soap of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
  • Textile fiber having thereon as a lubricant an effective amount of aromatized tall oil fatty acids essentially composed of about 10% of aromatized linoleic acid, about 75% of oleic acid, less than 5% polyunsaturated tall oil fatty acids, and the remainder of said aromatized tall oil fatty acids being saturated tall oil fatty acids, said aromatized linoleic acid being a mixture of acids having the formula:
  • the process of lubricating textile fibers comprising applying to said fibers as a lubricant an effective amount of an aqueous emulsion containing partially saponified aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:

Description

United States Patent TEXTILE LUBRICANTS Karl A. Kubitz, Pensacola, Fla, assignor, by mesne assignments, to Tenneco Chemicals, Inc., a corporation of Delaware No Drawing. Filed May '18, 1962, Ser. No. 195,961 6 Claims. (Cl. 252-86) Thepresent invention relates to textile fiber finishes. It particularly relates to lubricants for threads and fabrics of cotton, wool and synthetics to facilitate the handling and processing of such fibers and to provide the tactile characteristics desired in the finished or semifinishcd material.
Commercial oleic. acid, white oleic, is used extensively as a textile lubricant. The oleic acid may be applied by spraying the acid onto the fabric or the fabric maybe dipped in-the oleic acid. A common procedure is to form an aqueous emulsion of the oleic acid and then immerse the textile in the emulsion or the emulsion can be sprayed onto the textile. Part of the oleic acid is saponified with sodium hydroxide to facilitate formation of the emulsion and to produce the type of hand desired. Usually such an emulsion will contain 0.25-% nonaqueous material. By varying the ratio of salt to acid, it is possible to vary the hand from very scroopy to extremely soft. A high acid content produces a scroopy hand while a high salt content results in a soft hand.
In accordance with the present invention it has been found that aromatized linoleic acid or mixtures of aromatized linoleic acid and fatty acids containing 14 to 20 carbon atoms per molecule are excellent textile lubricants. An important advantage of the present invention is that tall oil fatty acids can be used as a textile lubricant after aromatization of the linoleic acid. The resulting fatty acid mixtures will usually contain at least 5% by weight of aromatized linoleic acid and atleast 25% and usually at least 50% by weight of oleicv acid. The mixture ofacids should be substantially free of and not contain more than 5% by weight of polyunsaturated fatty acids which are acids containing more than one carbon to carbon double bond in the molecule.
While the aromatized linoleic acid may be prepared by the aromatization of substantially pure linoleic acid or by aromatization of the linoleic acid when mixed with'other fatty acids, the preferred procedure is to aromatize the linoleic acid in tall oil fatty acids in the presence of a palladium catalyst. Aromatized linoleic acid is a mixture of acids having a characteristic and strong infrared absorption band in the 13.3;1. region and having the following structural forumula:
2) x Hs in which the sum of x and y is equal to and y is at least 5 and less than 8. The aromatized tall oil fatty acids may be prepared by any suitable process and may be prepared, for example, as described in the article entitled The Aromatization of Linoleic Acid With Palladium Catalyst appearing in The Journal of the American Oil Chemists Society, volume 33, No. 12, December 1956, pages 609 through 614.
The aromatized tall oil fatty acids can be used in place of and in the same manner as oleic acid as a textile lubricant. The tall oil fatty acids may be applied as such but preferably are partially saponified with sodium-hydroxide, diluted with Water and mixed to form an emulsioncontaining about 0.255% of non-aqueous material (fatty acid plus soap). Enough of the acid mixture is saponified 3,223,623 Patented Dec. 14, 1965 "ice to form the emulsion. The ratio of soap to acid may be varied widely to provide the desired lubricity and hand. The textile isimmersed: in this emulsion or sprayed with the emulsion to deposit soap-and fatty acid on the textile. This lubrication'is important to the behavior of fibers on carding, spinning and knitting equipment. The hand of fabrics is an important characteristic of textiles. The aromatized tall oil fatty acids have excellent heat (color) stability and excellent resistance to oxidation and the formation of odors. In the following comparisons between-oleic acid, tall oil fatty acids and aromatized tall oil fatty acids, the aromatized acids were prepared by heatingrrefined tall oil fatty acids in the presence of palladium on carbon catalyst until the fatty acids were substantially free of polyunsaturated fatty acids and contained a substantial amount of arom-atized'linoleic acid. The resulting reaction was distilled to separate the aromatized fatty acids from the catalyst and a small amount of by-products. The aromatized. tall oil fatty acids had the following characteristics. Analysis was by vapor chromatography.
Acids Percent Below C sat 0.4 C18 sat C onedouble bond 75.0 C sat 4.3 C two double bonds 3.2 Aromatized linoleic acid 10.5
Properties:
Acid number 196 Iodine value Titer C 28 NOTE.C1s and Cm mean fatty acids containing eighteen and nineteen carbon atoms in the molecule, respectively, and sat. means saturated.
The refined tall oil fatty acids from which the aromatized tall oil fatty acids were prepared contained 98% fatty acids which contained 44.5% oleic acid, 51% linoleic acid, and 4.5% other fatty acids. As is customary in the analysis of tall oil fatty acids the oleic acid includes all of the fatty acid containing eighteen carbon atoms and one carbon to'carbon double bond, and the linoleic oleic acid also includes the small amount of other acids containing two carbon to carbon double bonds. This refined tall oil also was used in the comparative tests hereinafter described.
Color stability is important for textile lubricantsand can be determined'by A.O.C.S. Tentative Method L 15a- 58. In this test the acids are held at 205 C. for one hour. The Gardner color is determined before and immediately after the test. In a series of comparative color tests, the aromatized tall oil fatty acids had an initial Gardner color of 2 which increased to 4.5 upon heating. The color of the tall oil fatty acids previously described increased from2 /2 to-6. A- commercialgrade. of oleic acid extensively used as a textile lubricant also was tested. This commercial oleic acid contained 68.2% oleic'acid and 27% saturated fatty acids. The initial Gardner color was 2 audit increased to 4.5. Thus, the aromatized tall oil fatty acids had better heat stability-than-the refined tall oil fatty acids and compared favorably with=oleic acid in this respect.
Textile lubricants must: resist oxidation, particularly under warm humid conditions. The oxidative stability of textile lubricantsis shown by the tropics test. In this test the lubricant is applied, for example, asan aqueous emulsion of the fatty acids with part of the fatty acids being saponified with sodium hydroxide. The treated textile is then stored in a container at relative humidity and at 55 C. for about 24 hours. At the end of this test, the sample is checked for odor and discoloration. Comparative tests were made with rayon to which there had been added Similar amounts of aqueous emulsions of the oleic acid, the aromatized tall oil fatty acids and the tall oil fatty acids previously described. In each instance an aqueous emulsion was formed containing 2% of the acid component with 50% of this acid having been saponified with sodium hydroxide. The partial soaps of the oleic acid and the aromatized tall oil fatty acids held up very satisfactorily while the partial soap of the tall oil fatty acids failed this test.
While the foregoing tests were With rayon, it is to be understood that the present lubricant can be used with other synthetic staple fibers as well as with natural fibers such as cotton. The present lubricant is particularly useful as a wool lubricant where resistance to oxidation is particularly important.
The aromatized tall oil fatty acids may be used alone or may be mixed with other fatty acids substantially free of polyunsaturation containing from 14 to 20 carbon atoms in the molecule. Preferably, the added acids are saturated and the palm oil fatty acids are especially useful for this purpose. For example, about 10% of palm oil fatty acids may be added so as to increase the saturated fatty acid content to about 20%. Such a mixture will be even more stable to oxidation.
I claim:
1. Textile fiber having thereon as a lubricant an effective amount of a material selected from the group consisting of aromatized tall oil fatty acids and partial soaps of such acids, said aromatized tall oil fatty acids being essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
wherein the sum of x and y is equal to and y is at least 5 and less than 8.
2.v Textile fiber having thereon as a lubricant an effective amount of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
'(CH2)xCH3 wherein the sum of x and y is equal to 10 and y is at least 5 and less than 8.
3. Textile fiber having thereon as a lubricant an effective amount of partial sodium soap of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
(CH2) y O OH wherein the sum of x and y is equal to 10 and y is at least 5 and less than 8.
4. Textile fiber having thereon as a lubricant an effective amount of the partial sodium soap of aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
(CH x 0 Ha wherein the sum of x and y is equal to 10 and y is at least 5 and less than 8.
5. Textile fiber having thereon as a lubricant an effective amount of aromatized tall oil fatty acids essentially composed of about 10% of aromatized linoleic acid, about 75% of oleic acid, less than 5% polyunsaturated tall oil fatty acids, and the remainder of said aromatized tall oil fatty acids being saturated tall oil fatty acids, said aromatized linoleic acid being a mixture of acids having the formula:
(CH2) xCHa wherein the sum of x and y is equal to 10 and y is at least 5 and less than 8.
6. The process of lubricating textile fibers comprising applying to said fibers as a lubricant an effective amount of an aqueous emulsion containing partially saponified aromatized tall oil fatty acids essentially composed of a mixture of tall oil fatty acids and aromatized linoleic acid, said mixture containing by weight at least 5% of aromatized linoleic acid, at least 50% of oleic acid, not more than 5% polyunsaturated tall oil fatty acids, and the remainder of said mixture being saturated tall oil fatty acids, and said aromatized linoleic acid being a mixture of acids having the formula:
wherein the sum of x and y is equal to 10 and y is at least 5 and less than 8.
References Cited by the Examiner UNITED STATES PATENTS 1/1936 Gill 25286 XR 6/ 1942 Robinson 25286 FOREIGN PATENTS 170,562 11/1922 Great Britain.
OTHER REFERENCES JULIUS GREENWALD, Primary Examiner.

Claims (1)

1. TEXTILE FIBER HAVING THEREON AS A LUBRICANT AN EFFECTIVE AMOUNT OF A MATERIAL SELECTED FROMTHE GROUP CONSISTING OF AROMATIZED TALL OIL FATTY ACIDS AND PARTIAL SOAPS OF SUCH ACIDS, AND AROMATIZED TALL OIL FATTY ACIDS BEING ESSENTIALLY COMPOSED OF A MIXTURE OF TALL OIL FATTY ACIDS AND AROMATIZED LINOLEIC ACID, SAID MIXTURE CONTAINING BY WEIGHT AT LEAST 5% OF AROMATIZED LINOLEIC ACID, AT LEAST TALL OIL FATTY ACIDS, AND THE REMAINDER OF SAID MIXTURE BEING SATURATED TALL OIL FATTY ACIDS, AND SAID AROMATIZED LINOLEIC ACID BEING A MIXTURE OF ACIDS HAVING THE FORMULA:
US195961A 1962-05-18 1962-05-18 Textile lubricants Expired - Lifetime US3223623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US195961A US3223623A (en) 1962-05-18 1962-05-18 Textile lubricants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US195961A US3223623A (en) 1962-05-18 1962-05-18 Textile lubricants

Publications (1)

Publication Number Publication Date
US3223623A true US3223623A (en) 1965-12-14

Family

ID=22723547

Family Applications (1)

Application Number Title Priority Date Filing Date
US195961A Expired - Lifetime US3223623A (en) 1962-05-18 1962-05-18 Textile lubricants

Country Status (1)

Country Link
US (1) US3223623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052321A (en) * 1976-03-17 1977-10-04 Dixie Yarns, Inc. Flame-retardant yarn or thread containing brominated ester of oleic or linoleic acid
WO1993017170A1 (en) * 1992-02-19 1993-09-02 E.I. Du Pont De Nemours And Company Oil finish with high lubricant content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB170562A (en) * 1920-10-20 1922-11-09 Meilach Melamid An improved process for the manufacture of substances of the fatty acid type
US2026735A (en) * 1933-10-10 1936-01-07 Gill Corp Treatment of textile fibers
US2285357A (en) * 1938-06-02 1942-06-02 Nat Oil Prod Co Processing of textile fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB170562A (en) * 1920-10-20 1922-11-09 Meilach Melamid An improved process for the manufacture of substances of the fatty acid type
US2026735A (en) * 1933-10-10 1936-01-07 Gill Corp Treatment of textile fibers
US2285357A (en) * 1938-06-02 1942-06-02 Nat Oil Prod Co Processing of textile fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052321A (en) * 1976-03-17 1977-10-04 Dixie Yarns, Inc. Flame-retardant yarn or thread containing brominated ester of oleic or linoleic acid
WO1993017170A1 (en) * 1992-02-19 1993-09-02 E.I. Du Pont De Nemours And Company Oil finish with high lubricant content
US5370804A (en) * 1992-02-19 1994-12-06 E. I. Du Pont De Nemours And Company Neat oil finish with high lubricant content
TR28934A (en) * 1992-02-19 1997-07-21 Du Pont Pure oil finishing agent with high lubricant content.

Similar Documents

Publication Publication Date Title
US2461043A (en) Process of conditioning cellulose ester filaments
US2401479A (en) Treatment of wool
GB555480A (en) Improvements in or relating to the sizing and lubricating of textile yarns, and the production of fabrics therefrom
US2565403A (en) Textile oils
US2086544A (en) Textile material and method of preparing the same
US2418752A (en) Yarn having the twist set therein with an unctuous solid
US3223623A (en) Textile lubricants
US2197930A (en) Method of treating cellulose organic derivative cut staple fibers
EP0038295A1 (en) A mixture of reaction products of epoxide-polyalkylene-polyamino-amide and of polymerised products based on acryl and/or styrene, their preparation and their use as paper-sizing and textile-treating agents
US2903382A (en) Treatment of fabric with alkenylsuccinic acids and anhydrides to impart water repellency
DE2322307A1 (en) PROCESS FOR WET DESIZING OF TEXTILE GOODS MADE OF GLASS FIBER AND TEXTILE GOODS OBTAINED BY THIS PROCESS
US2176402A (en) Treatment of artificial silk
US2207740A (en) Process for producing water-repellent cellulose-containing materials and products therefrom
DE1113205B (en) Process for bleaching cotton goods
US2978408A (en) Scorch resistant textile softening finish composition
US2141845A (en) Method of treating fibrous material
US2731323A (en) Process of reacting cellulose textile with beta-propiolactone or beta-isovalerolactone
US2246085A (en) Composition and process for softening leather, paper, and textile materials
US2684311A (en) Process for lubricating regenerated cellulose yarns
US2101532A (en) Textile lubrication
US2232565A (en) Lubricating and softening of textile materials
US1771347A (en) Treated raw-cotton fiber and lubricant and conditioner therefor
US3220969A (en) Composition and method for weatherproofing fabrics
US2199986A (en) Yarn treating process and composition therefor
US2692203A (en) Softener and flame-resistant coating composition, method of its application to cellulosic materials and the article produced thereby