US3220595A - Thin wall container with strengthening and insulating characteristics - Google Patents

Thin wall container with strengthening and insulating characteristics Download PDF

Info

Publication number
US3220595A
US3220595A US326487A US32648763A US3220595A US 3220595 A US3220595 A US 3220595A US 326487 A US326487 A US 326487A US 32648763 A US32648763 A US 32648763A US 3220595 A US3220595 A US 3220595A
Authority
US
United States
Prior art keywords
container
base portion
thickness
side wall
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US326487A
Inventor
Edwards Bryant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL113294D priority Critical patent/NL113294C/xx
Priority to NL258837D priority patent/NL258837A/xx
Priority claimed from US858792A external-priority patent/US3141913A/en
Priority to GB21516/64A priority patent/GB971160A/en
Priority to GB39549/60A priority patent/GB971159A/en
Priority to FR845791A priority patent/FR1275607A/en
Priority to CH1365360A priority patent/CH371256A/en
Priority to DK492960AA priority patent/DK108953C/en
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Priority to US326487A priority patent/US3220595A/en
Publication of US3220595A publication Critical patent/US3220595A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/146Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers whereby one or more of the layers is a honeycomb structure
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2205Drinking glasses or vessels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2288Drinking vessels or saucers used for table service with means for keeping liquid cool or hot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/006Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor for making articles having hollow walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/265Drinking cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3865Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
    • B65D81/3869Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers formed with double walls, i.e. hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0014Extrusion moulding in several steps, i.e. components merging outside the die producing flat articles having components brought in contact outside the extrusion die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • This invention relates in general to containers, and more particularly relates to plastic containers which are of the thin wall variety.
  • Another object of this invention is to provide an economical plastic container of the aforementioned type which may be stacked and readily dispensed from a vending machine, being comparable in weight to present cup designs.
  • Another object of this invention is to provide a container comparable in weight to containers heretofore known, but wherein the formed material affords a greatly increased apparent thickness of the container to thereby insulate the user from the temperature of the contents in the container.
  • Another object of the invention is to provide a container as aforedescribed which is made of similar base material to prior art containers but, due to configuration of materials, is stronger per unit of weight than containers known heretofore.
  • FIG. 1 is a fragmentary perspective view of a portion of the apparatus and materials being made by the process shown in FIG. 2;
  • FIG. 1a is a fragmentary sectional View of the material shown in FIG. 1;
  • FIG. 2 is a semidiagrammatic showing of the components of apparatus used in manufacturing the materials shown in FIG. 1;
  • FIG. 3 is an isometric perspective view of the continuous molding roll used in the apparatus shown in FIG. 2;
  • FIG. 4 is an enlarged fragmentary sectional view of a portion of the roll shown in FIG. 3;
  • FIG. 5 is an isometric perspective view, a portion being in section, illustrating somewhat diagrammatically a container embodying principles of this invention
  • FIG. 6 is a side view of the container shown in FIG. 5;
  • FIG. 7 is a bottom view of the container shown in FIG. 6;
  • FIG. 8 is an enlarged fragmentary sectional view of the upper portion of a container such as shown in FIG. 5 when made of the materials shown in FIG. 9;
  • FIG. 9 is a fragmentary isometric perspective view of the material used in making the container shown in FIG. 8;
  • FIG. 10 is a view similar to FIG. 8 when utilizing the materials shown in FIG. 11;
  • FIG. 11 is a fragmentary isometric perspective view of the material used in manufacturing the article shown in FIG. 10;
  • FIG. 12 is an isometric perspective view of an alternate type of material being manufactured by the general process shown in FIG. 2;
  • FIG. 13 is a view similar to FIG. 12 of still another type of material usable in making containers embodying the inventive concepts;
  • FIG. 14 is a semidiagrammatic isometric perspective view, a portion being in section, indicating diagrammatically the form of a container that is obtained when the material shown in FIG. 12 is used;
  • FIG. 15 is a fragmentary sectional view of an upper portion of the container shown in FIG. 14 when a portion of the material shown in FIG. 12 is used in a nonlaminated form;
  • FIG. 16 is a view similar to FIG. 15 showing the upper portion of the container when a laminated material such as shown in FIG. 12 is utilized;
  • FIG. 17 is a semidiagrammatic view, of the apparatus utilized in the preferred method of molding containers from the materials shown in the earlier figures.
  • Plastic containers have begun to come into general use with automatic vending machines and (particularly when associated with hot beverages such as coffee, soup, etc.) present a handling or holding problem to the user when the beverage is served hot.
  • plastics used in manufacturing these containers have fairly good insulating characteristics per unit thickness when compared with other materials.
  • relatively thin walls are required, since raw plastic material is uniformly sold on a per pound basis, and increasing of the amount or thickness of the material to increase the insulating qualities would merely increase the unit price of a plastic container to make it noncompetitive.
  • One approach to the problem has been to try to extend the plastic material by foaming, i.e., creating bubbles of gas in the plastic material, and manufacturing a container of such foam material or manufacturing a laminate of foamed material to a thin web of non-foamed material.
  • a first extruder of conventional design is shown diagrammatically in the lower right hand portion of FIG. 2 and is adapted to extrude a uniform web of thin plastic material 12 having a predetermined thickness and width.
  • the plastic material is preferably polystyrene or a similar type of thermoplastic material.
  • the web 12 is fed between a smooth roll 16 and a molding roll 14 (to be later discussed in detail) from which it emerges in the form which is shown in FIG. 1 and identified with the reference numeral 18. It should be noted that neither the width or length of the material is increased, but the apparent thickness is grealy increased.
  • the material 18 is then either used as is or fed between two laminating rolls 20 and 22 and emerges as a laminated material 24 on the output side of the rolls 20 and 22.
  • material which is to be laminated to the premolded material 18 may be conveniently extruded from a second extruder 26.
  • the web passes between two rolls 32 and 34 which locate the web 30 for feeding to the area between the laminating rolls 20 and 22.
  • the web of material 30 and the premolded material 18 are heated by a suitable heater 28 immediately adjacent the input side of the laminating rolls 20 and 22 so as to prepare the surfaces thereof sufliciently to obtain good cohesive bond therebetween in the finally produced material 24.
  • Heater 28 may be an electrical resistance type of heater of any commercially known type or other suitable equivalent type heater, the main purpose being to soften the mating surfaces only, of the material 30 and the premolded material 18.
  • the premolded material 18, or the laminated material 24, as it is received from the laminating rolls 20 and 22, may be wound on a suitable storage roll or may be fed directly into a container molding machine (shown diagrammatically in FIG. 17) as suitable and desired.
  • the continuous molding roll 14 is shown in an enlarged fragmentary sectional view FIG. 4 and shown in perspective in FIG. 3.
  • the molding roll 14 is generally cylindrical and on the outer surface of the periphery are a plurality of projecting lugs 38.
  • Each of the lugs 38 have a generally planar rectangular end surface 40 and four tapering side walls 42, 44, 46 and 48 which taper inwardly in converging relation as they project from the surface of the roll 14.
  • the individual lugs 38 may conveniently be formed by cutting away material from a cylinder to form a plurality of axially aligned longitudinal grooves 50 and transverse circumferential grooves 52. It will be appreciated that the fragmentary sectional view FIG.
  • the molding roll 14 as it impinges upon the material 12 as it comes from the extruder 10 (in a heated condition), continuously molds a plurality of pockets 49 which are complementary in shape to the shape of the lugs 38. It should be noted at this time that extreme care must be exercised so that the lugs 38 on the molding roll do not have any sharp burrs or wire edges so as to tear the corners of the pockets 49 when the molding lugs 38 are withdrawn from the material as it passes thereby.
  • the material 18 as it leaves the molding roll 14 has a smooth bottom surface 56 on one side of a base portion 54 and a plurality of projecting cross connecting webs 58 and 60 which correspond respectively to the valleys or grooves 52 and 50 in the molding roll 14. It will be noted that this premolding operation by the molding roll 14 increases the apparent thickness of the material as is shown by the relative thickness of the material 12 before it passes roll 14 and the thickness of material 18 after passing roll 14, best seen in FIG. 2 of the drawings. It is preferred that the preformed material 18, in cross section, presents web members 58 and 60 which are not less in height than the bottom wall or base portion 54 is in thickness.
  • the molding roll 14 is mounted relative to roll 16 and the material 12, and the configurations and proportions of the lugs 38 on roll 14 are so arranged, that the material displaced by the lugs fills up the grooves 50 and 52 and the top surface of the cross webs 58 and 60 are parallel with planar surface 56 of the base portion 54.
  • the increase in apparent thickness enhances not only insulation characteristics, but also increases the strength on a unit Weight basis.
  • the stacking and vending problems of the containers are enhanced.
  • the increase in apparent thickness increases the interference of special stacking rings where used, and under some circumstances allows elimination thereof.
  • the container 62 is generally cylindrical in shape having a bottom portion 64, a short skirt portion 66, a radial shoulder 68 and side walls 70 which taper outwardly to a lip portion 72.
  • the shoulder 68 on the interior or inner wall surface of the container is adapted to engage an external shoulder of a similarly configured container nested therewithin, the external shoulder being defined by the juncture between the bottom portion 64 and the side walls 70 of each container.
  • the lines 74 and 76 are semidiagrammatic representations of the transformation of the cross webs 58 and 60 which define the pockets 49 in materials 18 and 24 as they are distorted to form new pockets 78 in the container molding operation by the method and apparatus shown semidiagrammatically in FIG. 17.
  • each of the individual pockets 78 have the premolded forms shown respectively as 49 in FIGS. 9 and 11 respectively as applied to FIGS. 8 and 10.
  • the material 18 when used to form a container 62, produces one having the outside appearance of a grid-like network of projecting interconnecting web members 74 and 76.
  • the inside surface of the container 81] is relatively smooth.
  • the outer surface of container 62 when manufactured from material 18 and when grasped by a user on the outside thereof, is such that the fingers of the user will be separated from the interior 80 by the dimension of the base portion 54 and by the thickness of the projecting portions 74 and 76.
  • the ribs or webs 74-76 are relatively closely spaced so as to prevent direct contact by the fingers of the user with the base portion 54. Similar statements are true relative to the material 24 used in the manufacture of the articles shown in FIG.
  • the material 31? may be very thin stock and substantially less than the thickness of the base portion 54.
  • FIG. 12 of the drawings Another embodiment of material 82 is shown in FIG. 12 of the drawings.
  • This material is essentially similar to that aforediscussed except that the cross or longitudinal ribs 60 have been eliminated and again this material may be used in the laminated form 83 or unlaminated form 85.
  • the material 82 comprises a base material which has been premolded by a roll similar to roll 14 so as to have projecting lugs 86.
  • a web of material 30 may be laminated to the top portions of the lugs 86 if desired to provide the laminated form. As shown in FIG.
  • the material 32 when used to make a container 62 by the apparatus and method shown in FIG. 17 will assume a configuration as shown, and the lines 88 are semidiagrammatic representations of the distortion of the individual projecting lugs 86 of the material 82.
  • material 82 is used in the laminated form (as shown in FIG. 16) it should be noted that the preferred method of molding the container assures that individual elongated compartments or pockets 92 are created by the lip 90 being pinched off in the molding operation (to be later described). By this method each pocket 92 between each pair of projecting ribs 88 is separated from adjacent pockets and from the atmosphere.
  • the non-laminated material 85 when molded into a container, a portion being shown in FIG. 15, is essentially similar to that shown in FIG.
  • the webs 88 necessarily strengthen the container on a weight to strength ratio. Further, it is possible to have a lesser amount of material in the container as compared to using material 18 with only a slight loss in rigidity. The close spacing of the ribs 88 prevents contact of the users fingers with the base portion of the material to increase the apparent thickness of the material.
  • FIG. 13 Another type of material 94, usable in molding containers to increase the apparent thickness thereof, is shown in FIG. 13 and comprises a base portion 96 having cylindrical projecting lugs 98 which may be used as is in form or may have a thin web 30 laminated to the tops of the projections 98 as shown to form material 93.
  • the lugs 98 increase the apparent thickness of the material 95.
  • the strength advantage noted in previous forms is not as great.
  • the material has been demonstrated to be quite strong per unit weight.
  • the lugs 98 assume positions on the container corresponding to the points of intersection of the cross webs 74'76 of containers 62.
  • the preferred method of molding is essentially that taught in my Patent No. 3,172,159 aforementioned.
  • I have elected to show the material 18 (unlaminated material) shown in FIG. 1 of the drawings to illustrate the container molding operation.
  • the apparatus 1% essentially comprises a storage roll 102 having material 18 wound thereon which is fed past a suitable heating means 104 into the molding apparatus per se wherein it is engaged on the upper and lower sides by an upper and lower clamp means 106 and 108.
  • each of the clamp means 106 and 188 has an aperture 110 and 112 respectively, which are larger than the mold means 114 and mandrel means 116.
  • the mold means 114 essentially comprises a male mandrel or plug member 118 and around the top portion thereof is a combination clamp and cut-off means which is discussed in detail in my co-pending application aforementioned.
  • the mold 116 is essentially frusto-conical in configuration, and comprises side walls 122, a short radial shoulder 126, a short skirt portion and a knock-Out plug 130, the head of which is adapted, during the molding operation per se to be the bottom of the mold cavity.
  • the bleed ports 132 which are placed adjacent the bottom of the short skirt portion 128. It will be noted that there are no other bleed ports in the side walls 122.
  • the material 18 is clamped by the opposed clamping means 1064198, and the mold means 116 and mandrel means 114 are moved into telescoped relation, mechanically drawing the material down into the mold cavity. Thereafter, an air pressure differential is created so as to move the web from contact with portions of the mandrel member 118 to the mold side walls 122. At this time air is trapped between the shoulder 126 and the clamping edges of the mold lip 124 and the cutoff and clamp means 120 on the mold 118 so as to provide a resilient back pressure on the material adjacent the side walls 122 preventing the flattening out of the projecting web portions 58 and 60 of the material 18 during the molding operation.
  • the material 18 is fed into the machine so that the projecting portions 58-60 (also true of projections 86 and 98) are those portions that engage the cavity side walls 122 in the molding operation.
  • the projecting portions 58-60 also true of projections 86 and 98
  • a thin wall seamless container made from thermoplastic material comprising, a hollow body member having a bottom wall and a peripherally continuous side wall extending upwardly therefrom which terminates in an open month, said container having a cross section throughout the peripherally continuous side wall which presents between inner and outer wall surfaces thereof a base portion of predetermined thickness, said base portion having uniformly distributed throughout its area a plurality of closely spaced, radially outwardly extending and integral projecting portions disposed on the outer side wall surface and being joined to each other by interconnecting means at points radially outwardly offset from said base portion to strengthen the container, said projecting portions extending outwardly by a dimension at least as great as the thickness of the base portion whereby the apparent thickness of the peripherally continuous side wall is increased to separate the container contents from a users hand by at least double the thickness of said base portion, said base portion throughout at least a major portion of its height being of uniform thickness with a smooth uninterrupted inner wall surface.
  • interconnecting means comprises a plurality of web members similar in size and shape to said projecting portions and interconnected to said projecting portions in a grid-like network to define a plurality of closely spaced, discrete pockets.
  • the container set forth in claim 2 including a sheet member of a predetermined thickness and of a like material secured to the ends of the projecting portions and web members.
  • said interconnecting means includes a sheet member of predetermined thickness and of a like material secured to the ends of the projecting portions in spaced relation to the base portion to join the projecting portions to each other.

Description

Nov. 30, 1965 B. EDWARDS 3,220,595
THIN WALL CONTAINER WITH STRENGTHENING AND INSULATING CHARACTERISTICS Original Filed Dec. 10, 1959 4 Sheets-Sheet l INVENTOR. Bryan! Edwards BY EXTRUDER MOLDING ROLL Nov. 30, 1965 B. EDWARDS THIN WALL CONTAINER WITH STRENGTHENIN INSULATING CHARACTERISTICS Original Filed Dec. 10, 1959 G AND 4 Sheets-Sheet 2 N 00 Wow 9 INVENTOR. Bryanf Edwards Nov. 30, 1965 B. EDWARDS 3,220,595-
THIN WALL CONTAINER WITH STRENGTHENING AND INSULATING CHARACTERISTICS Original Filed Dec. 10, 1959 4 Sheets-Sheet 3 INVENTOR. Bryan/ Edwards Nov. 30, 1965 B. EDWARDS 3,220,595
THIN WALL CONTAINER WITH STRENGTHENING AND INSULATING CHARACTERISTICS Original Filed Dec. 10, 1959 4 Sheets-Sheet 4 o q N mmvron. A 3 Bryant Edwards BY k air United States Patent THIN WALL C(PNTAHNER WITH STRENGTHEN- ING AND INSULATING CHARACTERISTICS Bryant Edwards, Clarendon Hills, IlL, assignor to Illinois Tool Works Inc., a corporation of Delaware @riginal application Dec. 10, 1959, Ser. No. 858,792, now
Patent No. 3,141,913, dated July 21, 1964. Divided and this application Nov. 27, 1963, Ser. N 0. 326,487
6 Claims. (Cl. 2209) This is a divisional application of Serial No. 858,792, filed December 10, 1959, now Patent No. 3,141,913.
This invention relates in general to containers, and more particularly relates to plastic containers which are of the thin wall variety.
It has been desired to have an economical plastic container for use with hot beverages, foods, etc. and of the type wherein the user is not subjected to discomfort from heat transfer of a hot beverage disposed within the container.
It is therefore the general object of this invention to provide a plastic container which, when filled with hot beverages, may be readily manually grasped without discomfort to the user while drinking from or carrying the container.
Another object of this invention is to provide an economical plastic container of the aforementioned type which may be stacked and readily dispensed from a vending machine, being comparable in weight to present cup designs.
It is another object of this invention to provide a unitary plastic container which is unaffected by humidity and thus is dimensionally stable for easy vending, is uniform in size when manufactured by mass production techniques, and is otherwise well adapted to be automatically vended from the vending machines now in use.
It is another object of this invention to provide a corn tainer as above described which is strong per unit of weight, has no seams to disintegrate when filled with a hot beverage, and has a configuration affording insulating characteristics such that it may be readily held by user when the temperature of the beverages contained therein are well above the temperature that the human hand can normally withstand.
It is a further object of this invention to provide a novel container as set forth above which protects table surfaces, etc. from heat transfer, and additionally, the very low moisture vapor transmission of the material protects the table surface, etc. from marking by the beverages contained therewithin.
Another object of this invention is to provide a container comparable in weight to containers heretofore known, but wherein the formed material affords a greatly increased apparent thickness of the container to thereby insulate the user from the temperature of the contents in the container.
Another object of the invention is to provide a container as aforedescribed which is made of similar base material to prior art containers but, due to configuration of materials, is stronger per unit of weight than containers known heretofore.
Other objects and advantages of the present invention will appear from the following description in the accompanyin g drawings wherein:
FIG. 1 is a fragmentary perspective view of a portion of the apparatus and materials being made by the process shown in FIG. 2;
FIG. 1a is a fragmentary sectional View of the material shown in FIG. 1;
FIG. 2 is a semidiagrammatic showing of the components of apparatus used in manufacturing the materials shown in FIG. 1;
"ice
FIG. 3 is an isometric perspective view of the continuous molding roll used in the apparatus shown in FIG. 2;
FIG. 4 is an enlarged fragmentary sectional view of a portion of the roll shown in FIG. 3;
FIG. 5 is an isometric perspective view, a portion being in section, illustrating somewhat diagrammatically a container embodying principles of this invention;
FIG. 6 is a side view of the container shown in FIG. 5;
FIG. 7 is a bottom view of the container shown in FIG. 6;
FIG. 8 is an enlarged fragmentary sectional view of the upper portion of a container such as shown in FIG. 5 when made of the materials shown in FIG. 9;
FIG. 9 is a fragmentary isometric perspective view of the material used in making the container shown in FIG. 8;
FIG. 10 is a view similar to FIG. 8 when utilizing the materials shown in FIG. 11;
FIG. 11 is a fragmentary isometric perspective view of the material used in manufacturing the article shown in FIG. 10;
FIG. 12 is an isometric perspective view of an alternate type of material being manufactured by the general process shown in FIG. 2;
FIG. 13 is a view similar to FIG. 12 of still another type of material usable in making containers embodying the inventive concepts;
FIG. 14 is a semidiagrammatic isometric perspective view, a portion being in section, indicating diagrammatically the form of a container that is obtained when the material shown in FIG. 12 is used;
FIG. 15 is a fragmentary sectional view of an upper portion of the container shown in FIG. 14 when a portion of the material shown in FIG. 12 is used in a nonlaminated form;
FIG. 16 is a view similar to FIG. 15 showing the upper portion of the container when a laminated material such as shown in FIG. 12 is utilized;
FIG. 17 is a semidiagrammatic view, of the apparatus utilized in the preferred method of molding containers from the materials shown in the earlier figures.
Before discussing the invention in detail some general background would appear beneficial. Plastic containers have begun to come into general use with automatic vending machines and (particularly when associated with hot beverages such as coffee, soup, etc.) present a handling or holding problem to the user when the beverage is served hot.
Most of the plastics used in manufacturing these containers have fairly good insulating characteristics per unit thickness when compared with other materials. However, in the interests of economical manufacture of plastic containers to compete successfully with other materials, relatively thin walls are required, since raw plastic material is uniformly sold on a per pound basis, and increasing of the amount or thickness of the material to increase the insulating qualities would merely increase the unit price of a plastic container to make it noncompetitive. One approach to the problem has been to try to extend the plastic material by foaming, i.e., creating bubbles of gas in the plastic material, and manufacturing a container of such foam material or manufacturing a laminate of foamed material to a thin web of non-foamed material. This approach to date has not proved successful in terms of acceptable containers at a competitive price to containers made from other materials. Further, laminated foam and sheet stock pose great problems in reconstituting the scrap material. Also, solid foam containers present a product having a non-smooth interior surface which traps the particles in suspension in the beverage or the like served in the container Which is undesirable from a users standpoint.
In my co-pending application entitled Container Molding Machine filed December 7, 1962 with Serial No. 243,166 as a continuation of abandoned application Serial No. 763,668 filed September 26, 1958, now Patent No. 3,172,159, I have disclosed a machine and method for manufacturing thin wall containers by a technique which includes the use of a combination of mechanical plugassist and pressure differentials. While the instant invention has special advantages when made through the use of molding techniques, it will be apreciated that it also has advantages relative to the other forming techniques now in use such as vacuum forming, blow forming, drape forming, and the like.
More particularly, I have developed a new material, in the sense that I increase the apparent thickness of the material prior to the container molding stage by premolding, preferably in a continuous manner, a plurality of closely spaced projections on a web of plastic material. This material may then be used as is in the container molding operation or a thin sheet may be laminated to the end portions of the projections. If the projections are configured corectly, not only is the apparent thickness of the finally formed container increased, but in addition, the projections serve to structurally increase the strength and rigidity of the container affording an even further benefit in the weight vs. strength ratio.
The molding of the container with my premolded material utilizes the general techniques taught in the Patent No. 3,172,159 with certain modifications. These modifications do not change the basic procedure, however, they do aid in providing a better container with certain of the materials as will be discussed hereinafter.
Returning now to FIG. 2 of the drawings, a first extruder of conventional design is shown diagrammatically in the lower right hand portion of FIG. 2 and is adapted to extrude a uniform web of thin plastic material 12 having a predetermined thickness and width. In the illustration to be described, the plastic material is preferably polystyrene or a similar type of thermoplastic material. The web 12 is fed between a smooth roll 16 and a molding roll 14 (to be later discussed in detail) from which it emerges in the form which is shown in FIG. 1 and identified with the reference numeral 18. It should be noted that neither the width or length of the material is increased, but the apparent thickness is grealy increased. The material 18 is then either used as is or fed between two laminating rolls 20 and 22 and emerges as a laminated material 24 on the output side of the rolls 20 and 22. In the event that laminated material is desired, material which is to be laminated to the premolded material 18 may be conveniently extruded from a second extruder 26. The web passes between two rolls 32 and 34 which locate the web 30 for feeding to the area between the laminating rolls 20 and 22. The web of material 30 and the premolded material 18 are heated by a suitable heater 28 immediately adjacent the input side of the laminating rolls 20 and 22 so as to prepare the surfaces thereof sufliciently to obtain good cohesive bond therebetween in the finally produced material 24. Heater 28 may be an electrical resistance type of heater of any commercially known type or other suitable equivalent type heater, the main purpose being to soften the mating surfaces only, of the material 30 and the premolded material 18. The premolded material 18, or the laminated material 24, as it is received from the laminating rolls 20 and 22, may be wound on a suitable storage roll or may be fed directly into a container molding machine (shown diagrammatically in FIG. 17) as suitable and desired.
The continuous molding roll 14 is shown in an enlarged fragmentary sectional view FIG. 4 and shown in perspective in FIG. 3. The molding roll 14 is generally cylindrical and on the outer surface of the periphery are a plurality of projecting lugs 38. Each of the lugs 38 have a generally planar rectangular end surface 40 and four tapering side walls 42, 44, 46 and 48 which taper inwardly in converging relation as they project from the surface of the roll 14. The individual lugs 38 may conveniently be formed by cutting away material from a cylinder to form a plurality of axially aligned longitudinal grooves 50 and transverse circumferential grooves 52. It will be appreciated that the fragmentary sectional view FIG. 4 is considerably enlarged for purposes of clarity as are the certain other views in these drawings inasmuch as it is intended that the individual lugs project from the surface on the order of five to fifty thousandths of an inch. It will be further appreciated that the material 12, material 18, and material 24 are all measured in terms of thousandths of an inch and that the final dimension of the thickness of the side walls of the container 62 used for illustration, would not generally exceed sixty thousandths of an inch.
The molding roll 14 as it impinges upon the material 12 as it comes from the extruder 10 (in a heated condition), continuously molds a plurality of pockets 49 which are complementary in shape to the shape of the lugs 38. It should be noted at this time that extreme care must be exercised so that the lugs 38 on the molding roll do not have any sharp burrs or wire edges so as to tear the corners of the pockets 49 when the molding lugs 38 are withdrawn from the material as it passes thereby.
As shown in FIG. 1, the material 18 as it leaves the molding roll 14 has a smooth bottom surface 56 on one side of a base portion 54 and a plurality of projecting cross connecting webs 58 and 60 which correspond respectively to the valleys or grooves 52 and 50 in the molding roll 14. It will be noted that this premolding operation by the molding roll 14 increases the apparent thickness of the material as is shown by the relative thickness of the material 12 before it passes roll 14 and the thickness of material 18 after passing roll 14, best seen in FIG. 2 of the drawings. It is preferred that the preformed material 18, in cross section, presents web members 58 and 60 which are not less in height than the bottom wall or base portion 54 is in thickness. The molding roll 14 is mounted relative to roll 16 and the material 12, and the configurations and proportions of the lugs 38 on roll 14 are so arranged, that the material displaced by the lugs fills up the grooves 50 and 52 and the top surface of the cross webs 58 and 60 are parallel with planar surface 56 of the base portion 54.
The material above described, either in laminated form as shown and identified by the reference numeral 24, or when used in sheet form without the laminated element, as shown and identified by reference numeral 18, is particularly well suited for the manufacture of containers such as 62 as shown in FIGS. 5, 6 and 7. While I have elected to show a container in the form of a cup, it must be realized that the instant invention is adapted for other uses in molded plastic items and it is not to be limited to the precise article shown.
In container manufacturing of the variety set forth in my co-pending application aforementioned, it is the practice to feed .030 inch web stock into the molding apparatus and the container side walls, after molding, are in the neighborhood of .012 inch in thickness. Using the same starting thickness (and weight) of the material 12 (.30 inch) as it comes from the extruder 10, and then passing it through the molding roll 14, it is relatively easy to increase the apparent thickness thereof such that the material 18 (unlaminated form) is .060 inch in apparent thickness. This .060 inch material then is reduced to the neighborhood of .024 side wall thickness in the finished container in the molding operation. However, the unit weight of the container remains the same as the unmodified material now in use. (The same proportions may be used in laminated form.)
The container thus formed from my premolded mate- 'rial, while weighing the same as containers produced heretofor'e, is much stronger due to the reinforcing action of the web as shall become apparent. Thus the increase in apparent thickness enhances not only insulation characteristics, but also increases the strength on a unit Weight basis. Further, due to the increase in apparent thickness, the stacking and vending problems of the containers are enhanced. The increase in apparent thickness increases the interference of special stacking rings where used, and under some circumstances allows elimination thereof.
Turning now to the container shown, the container 62 is generally cylindrical in shape having a bottom portion 64, a short skirt portion 66, a radial shoulder 68 and side walls 70 which taper outwardly to a lip portion 72. The shoulder 68 on the interior or inner wall surface of the container is adapted to engage an external shoulder of a similarly configured container nested therewithin, the external shoulder being defined by the juncture between the bottom portion 64 and the side walls 70 of each container. For a specific discussion of the manner in which thin wall containers can be stacked in non-jamming nested relationship Within one another, reference is made to my Patent No. 3,139,213 which has matured from original patent application Serial No. 769,057 filed October 29, 1958. The lines 74 and 76 are semidiagrammatic representations of the transformation of the cross webs 58 and 60 which define the pockets 49 in materials 18 and 24 as they are distorted to form new pockets 78 in the container molding operation by the method and apparatus shown semidiagrammatically in FIG. 17.
It will be noted by referring to the enlarged fragmentary sectional views on FIGS. 8 and 10 respectively that the ribs or webs 56 and 58 of the materials 18 and 24 are stretched out proportionately with the thinning down of the other portions of the material when the container is formed in the container molding operation. In practice, there are in the neighborhood of two times as many struts or webs 74 and 76 as are shown in FIGS. 5-7. It will be appreciated that each of the individual pockets 78 have the premolded forms shown respectively as 49 in FIGS. 9 and 11 respectively as applied to FIGS. 8 and 10.
The material 18 (shown in FIG. 1 1) when used to form a container 62, produces one having the outside appearance of a grid-like network of projecting interconnecting web members 74 and 76. The inside surface of the container 81] is relatively smooth. Further, the outer surface of container 62, when manufactured from material 18 and when grasped by a user on the outside thereof, is such that the fingers of the user will be separated from the interior 80 by the dimension of the base portion 54 and by the thickness of the projecting portions 74 and 76. The ribs or webs 74-76 are relatively closely spaced so as to prevent direct contact by the fingers of the user with the base portion 54. Similar statements are true relative to the material 24 used in the manufacture of the articles shown in FIG. 8 except that there is an additional thickness of material or 30' which has been laminated to the end portions of the projecting struts or webs. As shown in FIG. la, the material 31? may be very thin stock and substantially less than the thickness of the base portion 54. When this form of material is used in the relative dimensions stated, care must be taken to mold the container 62 so that the surface 56 becomes the surface 80 of the container.
Another embodiment of material 82 is shown in FIG. 12 of the drawings. This material is essentially similar to that aforediscussed except that the cross or longitudinal ribs 60 have been eliminated and again this material may be used in the laminated form 83 or unlaminated form 85. More particularly, the material 82 comprises a base material which has been premolded by a roll similar to roll 14 so as to have projecting lugs 86. A web of material 30 may be laminated to the top portions of the lugs 86 if desired to provide the laminated form. As shown in FIG.
6 14, the material 32 when used to make a container 62 by the apparatus and method shown in FIG. 17 will assume a configuration as shown, and the lines 88 are semidiagrammatic representations of the distortion of the individual projecting lugs 86 of the material 82. When material 82 is used in the laminated form (as shown in FIG. 16) it should be noted that the preferred method of molding the container assures that individual elongated compartments or pockets 92 are created by the lip 90 being pinched off in the molding operation (to be later described). By this method each pocket 92 between each pair of projecting ribs 88 is separated from adjacent pockets and from the atmosphere. The non-laminated material 85 when molded into a container, a portion being shown in FIG. 15, is essentially similar to that shown in FIG. 11 with the elimination of the cross web member 76. Due to the configuration, the webs 88 necessarily strengthen the container on a weight to strength ratio. Further, it is possible to have a lesser amount of material in the container as compared to using material 18 with only a slight loss in rigidity. The close spacing of the ribs 88 prevents contact of the users fingers with the base portion of the material to increase the apparent thickness of the material.
Another type of material 94, usable in molding containers to increase the apparent thickness thereof, is shown in FIG. 13 and comprises a base portion 96 having cylindrical projecting lugs 98 which may be used as is in form or may have a thin web 30 laminated to the tops of the projections 98 as shown to form material 93. The lugs 98 increase the apparent thickness of the material 95. Obviously, since the lugs 98 are not interconnected, the strength advantage noted in previous forms is not as great. In the laminated form, the material has been demonstrated to be quite strong per unit weight. When molded into a container, the lugs 98 assume positions on the container corresponding to the points of intersection of the cross webs 74'76 of containers 62.
As shown in FIG. 17, the preferred method of molding is essentially that taught in my Patent No. 3,172,159 aforementioned. I have elected to show the material 18 (unlaminated material) shown in FIG. 1 of the drawings to illustrate the container molding operation. The apparatus 1% essentially comprises a storage roll 102 having material 18 wound thereon which is fed past a suitable heating means 104 into the molding apparatus per se wherein it is engaged on the upper and lower sides by an upper and lower clamp means 106 and 108. It will be noted that each of the clamp means 106 and 188 has an aperture 110 and 112 respectively, which are larger than the mold means 114 and mandrel means 116. The mold means 114 essentially comprises a male mandrel or plug member 118 and around the top portion thereof is a combination clamp and cut-off means which is discussed in detail in my co-pending application aforementioned. The mold 116 is essentially frusto-conical in configuration, and comprises side walls 122, a short radial shoulder 126, a short skirt portion and a knock-Out plug 130, the head of which is adapted, during the molding operation per se to be the bottom of the mold cavity. Of special note are the bleed ports 132 which are placed adjacent the bottom of the short skirt portion 128. It will be noted that there are no other bleed ports in the side walls 122.
In operation, the material 18 is clamped by the opposed clamping means 1064198, and the mold means 116 and mandrel means 114 are moved into telescoped relation, mechanically drawing the material down into the mold cavity. Thereafter, an air pressure differential is created so as to move the web from contact with portions of the mandrel member 118 to the mold side walls 122. At this time air is trapped between the shoulder 126 and the clamping edges of the mold lip 124 and the cutoff and clamp means 120 on the mold 118 so as to provide a resilient back pressure on the material adjacent the side walls 122 preventing the flattening out of the projecting web portions 58 and 60 of the material 18 during the molding operation. Since the pressure differentials across the web created in container molding operations of this kind are rather severe, without the shoulder edge 126 adjacent the skirt portion 128 and the clamping of the container around the periphery at the lip, the projecting portions 58 and 60 (and 86) would have a tendency to be crushed and thereby reduce the advantages of the premolding operation.
It will be noted that the material 18 is fed into the machine so that the projecting portions 58-60 (also true of projections 86 and 98) are those portions that engage the cavity side walls 122 in the molding operation. When molding a container with laminated material, it is not necessary to orientate the material if the web 30 is of the same thickness as the base portion of the material.
While I have shown and described certain embodiments of the invention in detail, it is with full awareness that many modifications thereof can occur and the scope of the invention, therefore, is to be construed only in the light of the prior art and the spirit of the appended claims.
What is claimed as the invention is:
1. A thin wall seamless container made from thermoplastic material comprising, a hollow body member having a bottom wall and a peripherally continuous side wall extending upwardly therefrom which terminates in an open month, said container having a cross section throughout the peripherally continuous side wall which presents between inner and outer wall surfaces thereof a base portion of predetermined thickness, said base portion having uniformly distributed throughout its area a plurality of closely spaced, radially outwardly extending and integral projecting portions disposed on the outer side wall surface and being joined to each other by interconnecting means at points radially outwardly offset from said base portion to strengthen the container, said projecting portions extending outwardly by a dimension at least as great as the thickness of the base portion whereby the apparent thickness of the peripherally continuous side wall is increased to separate the container contents from a users hand by at least double the thickness of said base portion, said base portion throughout at least a major portion of its height being of uniform thickness with a smooth uninterrupted inner wall surface.
2. The container set forth in claim 1 wherein said interconnecting means comprises a plurality of web members similar in size and shape to said projecting portions and interconnected to said projecting portions in a grid-like network to define a plurality of closely spaced, discrete pockets.
3. The container set forth in claim 2 including a sheet member of a predetermined thickness and of a like material secured to the ends of the projecting portions and web members.
4. The container set forth in claim 1 wherein said interconnecting means includes a sheet member of predetermined thickness and of a like material secured to the ends of the projecting portions in spaced relation to the base portion to join the projecting portions to each other.
5. The container set forth in claim 1 wherein at least the projecting portions are curvilinear in shape over the entire side wall to aid in preventing longitudinal slippage of the container or turning of the container in the hands of a user.
6. The container set forth in claim 1 wherein said peripherally continuous side wall tapers outwardly as it proceeds upwardly, said container further including a stacking ring element provided on the side wall comprising an internal shoulder and an external shoulder spaced vertically therefrom, the external shoulder of one container being engageable with the internal shoulder of an identical configured container in nested relationship therewith to limit the degree of telescoping of nested containers.
References Cited by the Examiner UNITED STATES PATENTS 2,221,310 11/1940 Gazelle 229-3.5 2,530,124 11/ 1950 Kieckhefer 220-97 2,853,222 9/1958 Gallagher 2291.5 3,085,730 4/1963 Fibish 229-1.5 3,169,688 2/1965 Schad 2291.5
FOREIGN PATENTS 750,189 6/1956 Great Britain.
THERON E. CONDON, Primary Examiner.
GEORGE E. LOWRANCE, LOUIS G. MANCENE,
Examiners.

Claims (1)

1. A THIN WALL SEAMLESS CONTAINER MADE FROM THERMOPLASTIC MATERIAL COMPRISING, A HOLLOW BODY MEMBER HAVING A BOTTOM WALL AND A PERIPHERALLY CONTINUOUS SIDE WALL EXTENDING UPWARDLY THEREFROM WHICH TERMINATED IN AN OPEN MOUTH, SAID CONTAINER HAVING A CROSS SECTION THROUGHOUT THE PERIPHERALLY CONTINUOUS SIDE WALL WHICH PRESENTS BETWEEN INNER AND OUTER WALL SURFACES THEREOF A BASE PORTION OF PERDETERMINED THICKNESS, SAID BASE PORTION HAVING UNIFORMLY DISTRIBUTED THROUGHOUT ITS AREA A PLURALITY OF CLOSELY SPACED, RADIALLY OUTWARDLY EXTENDING AND INTERGAL PROJECTING PORTIONS DISPOSED ON THE OUTER SIDE WALL SURFACE AND BEING JOINED TO EACH OTHER BY INTERCONNECTING MEANS AT POINTS RADIALLY OUTWARDLY OFFSET FROM SAID BASE PORTION TO STRENGTH THE CONTAINER, SAID PROJECTING PORTIONS EXTENDING OUTWARDLY BY A DIMENSION AT LEAST AS GREAT AS THE THICKNESS OF THE BASE PORTION WHEREBY THE APPARENT THICKNESS OF THE PERIPHERALLY CONTINUOUS SIDE WALL IS INCREASED TO SEPARATE CONTAINER CONTENTS FROM A USER''S HAND BY AT LEAST DOUBLE THE THICKNESS OF SIDE BASE PORTION, SAID BASE PORTION THROUGHOUT AT LEAST A MAJOR PORTION OF ITS HEIGHT BEING OF UNIFORM THICKNESS WITH A SMOOTH UNINTERRUPTED INNER WALL SURFACE.
US326487A 1959-12-10 1963-11-27 Thin wall container with strengthening and insulating characteristics Expired - Lifetime US3220595A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NL113294D NL113294C (en) 1959-12-10
NL258837D NL258837A (en) 1959-12-10
GB39549/60A GB971159A (en) 1959-12-10 1960-11-17 Containers and methods for forming them
GB21516/64A GB971160A (en) 1959-12-10 1960-11-17 Thin-wall containers of thermoplastic materials
FR845791A FR1275607A (en) 1959-12-10 1960-12-02 Container and its manufacturing process
CH1365360A CH371256A (en) 1959-12-10 1960-12-06 Container and method for its manufacture
DK492960AA DK108953C (en) 1959-12-10 1960-12-10 Container of heat-insulating plastic foil.
US326487A US3220595A (en) 1959-12-10 1963-11-27 Thin wall container with strengthening and insulating characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US858792A US3141913A (en) 1959-12-10 1959-12-10 Method of making a container
US326487A US3220595A (en) 1959-12-10 1963-11-27 Thin wall container with strengthening and insulating characteristics

Publications (1)

Publication Number Publication Date
US3220595A true US3220595A (en) 1965-11-30

Family

ID=26985430

Family Applications (1)

Application Number Title Priority Date Filing Date
US326487A Expired - Lifetime US3220595A (en) 1959-12-10 1963-11-27 Thin wall container with strengthening and insulating characteristics

Country Status (5)

Country Link
US (1) US3220595A (en)
CH (1) CH371256A (en)
DK (1) DK108953C (en)
GB (2) GB971159A (en)
NL (2) NL258837A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509005A (en) * 1967-03-02 1970-04-28 Du Pont Ribbed structures of thermoplastic resin
US3576270A (en) * 1969-05-29 1971-04-27 Chicago Bridge & Iron Co Cryogenic tank
FR2208767A1 (en) * 1972-12-06 1974-06-28 Lincrusta Corrugation of hollow thermoplastic board - by heating and vacuum forming bridged profiles
US4468423A (en) * 1982-11-17 1984-08-28 Arlie Hall Insulating cell element and structures composed thereof
US5000342A (en) * 1990-05-02 1991-03-19 Sharp Bruce R Double walled storage tank systems with enhanced strength
US5054645A (en) * 1990-05-02 1991-10-08 Sharp Bruce R Storage tank systems with enhanced strength having in situ formed inner tank
US5820016A (en) * 1996-05-13 1998-10-13 Dunkin' Donuts Incorporated Cup and lid
US5979693A (en) * 1997-12-29 1999-11-09 Bane, Iii; William W. Panel for shipping containers
US6224954B1 (en) 1997-03-26 2001-05-01 Fort James Corporation Insulating stock material and containers and methods of making the same
US6474498B1 (en) * 1998-02-06 2002-11-05 Gary R. Markham Thermally insulated containers for liquids
US20040112949A1 (en) * 2002-12-12 2004-06-17 Hed Aharon Zeev Disposable and biodegradable paper cup
US20050274686A1 (en) * 2004-06-09 2005-12-15 Mohamed Elansary Container for liquids
US20090226698A1 (en) * 2005-07-04 2009-09-10 Massimo De Maria Method for Producing an Alveolar Panel Element Particularly for Coverings, Packagings, Supporting Surfaces, and Alveolar Panel Element Produced Thereby
US20120298731A1 (en) * 2009-12-09 2012-11-29 Emerson & Renwick Ltd Carton and method of manufacture thereof
US20160318693A1 (en) * 2015-04-30 2016-11-03 Steel Technology, Llc Insulated cap

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1524796A (en) * 1966-05-23 1968-05-10 Du Pont Ribbed structures of thermoplastic resin, their manufacturing process and articles produced from these structures
JPS512576A (en) * 1974-03-02 1976-01-10 Emiko Kimura
FR2508288A1 (en) * 1981-06-29 1982-12-31 Sirs Soc Int Revetements Sol Hollow thermoplastic profiles for forming into suitcase bodies etc. - complete with bonded pliant covers
FR2607434B1 (en) * 1986-11-28 1989-02-24 Beghin Say Sa PROCESS FOR THERMOFORMING A DOUBLE-WALLED PLATE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221310A (en) * 1937-08-26 1940-11-12 Insulfoil Corp Of America Fabricated insulation
US2530124A (en) * 1944-05-29 1950-11-14 American Lace Paper Company Nested cup
GB750189A (en) * 1952-11-21 1956-06-13 Otto George Johan Struycken De Composite or multi-ply textile fabric
US2853222A (en) * 1953-04-20 1958-09-23 John P Gallagher Insulated foil lined paper cup
US3085730A (en) * 1961-05-01 1963-04-16 Illinois Tool Works Plastic containers
US3169688A (en) * 1960-07-25 1965-02-16 Traders Leasing Ltd Thin walled container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221310A (en) * 1937-08-26 1940-11-12 Insulfoil Corp Of America Fabricated insulation
US2530124A (en) * 1944-05-29 1950-11-14 American Lace Paper Company Nested cup
GB750189A (en) * 1952-11-21 1956-06-13 Otto George Johan Struycken De Composite or multi-ply textile fabric
US2853222A (en) * 1953-04-20 1958-09-23 John P Gallagher Insulated foil lined paper cup
US3169688A (en) * 1960-07-25 1965-02-16 Traders Leasing Ltd Thin walled container
US3085730A (en) * 1961-05-01 1963-04-16 Illinois Tool Works Plastic containers

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509005A (en) * 1967-03-02 1970-04-28 Du Pont Ribbed structures of thermoplastic resin
US3576270A (en) * 1969-05-29 1971-04-27 Chicago Bridge & Iron Co Cryogenic tank
FR2208767A1 (en) * 1972-12-06 1974-06-28 Lincrusta Corrugation of hollow thermoplastic board - by heating and vacuum forming bridged profiles
US4468423A (en) * 1982-11-17 1984-08-28 Arlie Hall Insulating cell element and structures composed thereof
US5000342A (en) * 1990-05-02 1991-03-19 Sharp Bruce R Double walled storage tank systems with enhanced strength
US5054645A (en) * 1990-05-02 1991-10-08 Sharp Bruce R Storage tank systems with enhanced strength having in situ formed inner tank
US5820016A (en) * 1996-05-13 1998-10-13 Dunkin' Donuts Incorporated Cup and lid
US20030186605A1 (en) * 1997-03-26 2003-10-02 Fort James Corporation Insulating stock material and containers and methods of making the same
US6224954B1 (en) 1997-03-26 2001-05-01 Fort James Corporation Insulating stock material and containers and methods of making the same
US6267837B1 (en) 1997-03-26 2001-07-31 Fort James Corporation Method of making container with insulating stock material
US6586075B1 (en) * 1997-03-26 2003-07-01 Fort James Corporation Insulated stock material and containers and methods of making the same
US5979693A (en) * 1997-12-29 1999-11-09 Bane, Iii; William W. Panel for shipping containers
US6474498B1 (en) * 1998-02-06 2002-11-05 Gary R. Markham Thermally insulated containers for liquids
US20040112949A1 (en) * 2002-12-12 2004-06-17 Hed Aharon Zeev Disposable and biodegradable paper cup
US6926197B2 (en) * 2002-12-12 2005-08-09 Aharon Zeev Hed Disposable and biodegradable paper cup
US20050274686A1 (en) * 2004-06-09 2005-12-15 Mohamed Elansary Container for liquids
US7344038B2 (en) * 2004-06-09 2008-03-18 Mohamed Elansary Insulated container for liquids
US20090226698A1 (en) * 2005-07-04 2009-09-10 Massimo De Maria Method for Producing an Alveolar Panel Element Particularly for Coverings, Packagings, Supporting Surfaces, and Alveolar Panel Element Produced Thereby
US20120298731A1 (en) * 2009-12-09 2012-11-29 Emerson & Renwick Ltd Carton and method of manufacture thereof
US20160318693A1 (en) * 2015-04-30 2016-11-03 Steel Technology, Llc Insulated cap
US10017301B2 (en) * 2015-04-30 2018-07-10 Helen Of Troy Limited Insulated cap
US10384837B2 (en) 2015-04-30 2019-08-20 Helen Of Troy Limited Insulated cap
US10661949B2 (en) 2015-04-30 2020-05-26 Helen Of Troy Limited Insulated cap

Also Published As

Publication number Publication date
NL258837A (en) 1900-01-01
GB971159A (en) 1964-09-30
CH371256A (en) 1963-08-15
DK108953C (en) 1968-02-26
GB971160A (en) 1964-09-30
NL113294C (en) 1900-01-01

Similar Documents

Publication Publication Date Title
US3220595A (en) Thin wall container with strengthening and insulating characteristics
US3141595A (en) Container
US3141913A (en) Method of making a container
US3237834A (en) Laminated container and method of making the same
US3220902A (en) Laminated container forming method and apparatus
US3344222A (en) Method of making containers from expandable plastic sheets
US3375954A (en) Nestable container
US3312383A (en) Plastic container
US4337116A (en) Contoured molded pulp container with polyester liner
JP2917061B2 (en) Insulating container and method of manufacturing the same
US3437253A (en) Disposable plastic cup with stiff gripping section
WO1999059883A1 (en) Insulating container
EP0140282A2 (en) Can-like container and method for manufacturing same
US3315018A (en) Method of making foamed plastic containers
US3792809A (en) Disposable tray
JPH05330552A (en) Thermoplastic cup
KR20020073366A (en) Cup having safety structure and manufacturing method thereof
US3142422A (en) Container
JP3953584B2 (en) Microwave paper cup
GB2057337A (en) Contoured molded pulp container with polyester liner
US9045246B2 (en) Container usable as a deep bottom and shallow bottom type container, and manufacturing method thereof
JP2004315065A (en) Heat-insulating composite container
JPH11321936A (en) Heat-insulating container
US3199757A (en) Composite plastic container
US3414180A (en) Plastic containers