US3196174A - Perhydro bis-(isoprenyl) alkyl aryl sulfonates - Google Patents

Perhydro bis-(isoprenyl) alkyl aryl sulfonates Download PDF

Info

Publication number
US3196174A
US3196174A US176802A US17680262A US3196174A US 3196174 A US3196174 A US 3196174A US 176802 A US176802 A US 176802A US 17680262 A US17680262 A US 17680262A US 3196174 A US3196174 A US 3196174A
Authority
US
United States
Prior art keywords
phenyl
product
prepared
alkyl
isoprenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US176802A
Inventor
Charles A Cohen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US176802A priority Critical patent/US3196174A/en
Application granted granted Critical
Publication of US3196174A publication Critical patent/US3196174A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • C07C309/31Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups by alkyl groups containing at least three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds

Definitions

  • the present invention relates to new alkyl benzene hydrocarbons which are useful in the production of biodegradable synthetic deter ents having highly superior washing properties. Further, this invention relates to the economic preparation of these hydrocarbons from inexpensive feed stocks.
  • this invention relates to the preparation of these hydrocarbons by reacting an aryl substituted alkyl alkali metal compound (preferably an arylallryl lithium compound) under carefully chosen reaction conditions to obtain the selective growth of two moles of isoprene on to the aralkyl metal, hydrolyzing to obtain the corresponding allradienyl benzene and hydrogenating to remove the unsaturation and thus produce the desired allryl benzene material.
  • an aryl substituted alkyl alkali metal compound preferably an arylallryl lithium compound
  • R is a perhydro bis (isoprenyl) alkyl radical containing ten carbon atoms comprising the structure CH QHCH -CH CH -?HCH CH but cm and Z is a two to four carbon atom alkylene group, the said alkylene group containing a single methyl group branch.
  • the alkali metal sulfonate of these materials is represented by the following formula:
  • X is an alkali metal, preferably sodium, and R and Z are as above described.
  • hydrocarbon materials are:
  • the product (2) may be hydrogenated directly both to remove the Li by displacement and to saturate the double bonds.
  • organolithium compounds having the general formula C H ZLi, where Z is a two to four carbon alkylene group having a single methyl branch may be prepared by the following general methods:
  • organolithium compounds by the methods shown above and by other means is well known in the art and is not considered as a novel aspect of this invention.
  • this material is reacted with isoprene at pressures of from one to several hundred atmospheres, preferably one to ten atmospheres, e.g. 1 to 3 atmospheres, and at temperatures of below 0 C. to 100 C., preferably 0 C. to 50 C., e.g. 25 C. for times of 0.25-25 hours, preferably 1-12 hours, e.g. 3-4 hours.
  • the amount of isoprene added is equal to 0.8 to 4 mols, preferably 1 to 3 mols, e.g. 2 mols of isoprene per mol of metal alkyl aryl.
  • the desired aralkadienyl metal having e.g. two mols of isoprene added is obtained.
  • the alkadienyl benzene is then hydrogenated by conventional means.
  • this material may be contacted with two to one hundred moles of hydrogen per mole of unsaturated compound at temperatures of 25 C. to C. and pressures of one to two thousand p.s.i.g. and in the presence of any of the hydrogenation catalysts well known to the art.
  • Suitable catalysts are platinum, palladium and nickel, either as such or supported on a carrier. Of these the preferred catalyst is Raney nickel.
  • hydrogenation of the metal alkadienyl benzene compounds directly to the desired alkyl benzenes with recovery of the metal hydride for reuse can be obtained using the above described conditions.
  • the product may be recovered by filtration from the catalyst and purified by distillation. It may be further purified prior to sulfonation by mild acid and clay treatment as disclosed in US. Patent 2,688,633.
  • the new alkyl benzenes may be sulfonated in known manner, e.g. by contact with an excess of concentrated sulfuric acid, oleum, ClSO I-I, sulfur trioxide, etc.
  • the sulfonation may be carried out at temperatures up to 60 C., preferably for oleum 15 C. to 60 C., e.g. 40 C.
  • the acid concentration is preferably at least 98%. Acid of 100% concentration and preferably oleum, containing up to e.g. 20 wt. percent S0 or higher, may be employed. With higher acid concentration, lower reaction times are required, e.g. about 3 to 4 hours with 98% acid, about 2 hours with 100% acid, and preferably 0.5 to 1 hour, e.g.
  • Weight ratios of sulfuric acid to hydrocarbon may range from 0.811 to 2.0: l, a 1.4:1 ratio being suitable when using 20% oleum, for example.
  • the larger the ratio the more inorganic sulfate will be present in the product following neutralization. In many cases, the inorganic sulfate is a desirable constituent of the finished detergent composition.
  • the sulfonation product mixture may be separated by layering with the addition of a limited amount of Water to remove part of the excess spent acid before neutralizing or may be neutralized directly.
  • the sulfonic acids are thus converted to sulfonic acid salts
  • the neutralization may be carried out with any base or basic-reacting inorganic or organic substance.
  • aqueous sodium hydroxide or sodium carbonates are suitably employed.
  • Other alkali metal, alkaline earth metal, ammonium or amine salts may be similarly produced from the corresponding basic compounds.
  • the neutralization is generally carried out by contact with basic aqueous solution at temperatures of from 20 C. to 70 C., those between 30 C. and 50 C., e.g. 50 C., being preferred.
  • DIMETHYLDODECANE This hydrocarbon is prepared in similar manner to the product of Example I from 3-phenyl butyraldehyde and a Grignard prepared from l-bromo 3,7-dimethy1octane.
  • Carrier gas Argon20 p.s.i.g.
  • EXAMPLE VII Fifty grams of the alkyl benzenes prepared as in the above examples were sulfonated with seventy grams of 20% oleum at a maximum temperature of 55 C. for a total contact time of one-half hour. Following neutralization with sodium hydroxide, the products Were deoiled by extraction with petroleum ether and desalted by dehydration with excess sodium carbonate from a solution in isopropyl alcohol. Evaporation to dryness under vacuum gave pure dry sulfonates.
  • EXAMPLE VIII A number of the sulfonates prepared above were tested in a standard dishwashing procedure at a concentration of 0.03% of pure detergent in 8 grain water at a temperature of 120 F. and compared with a standard tetrapropylbenzene sulfonate.
  • Phenyldodecanc 9.8 15.2 10.6 15.7 Z-Phenyl5,9-Dimethyldecane 13.9 16.8 14.5 19.0 2-Phenyl 6,10-Dimethylhendecane 13.9 18.0 16.1 19.3 l-Phenyl 2,6,10-Tri1nethylhendecane-.- 15.5 18.8 17.0 19.4 Standard Tetrapropylbenzene 4.9 10.3 10.0 12.4
  • composition of matter which is the sulfonation product of the compound R-ZC H and wherein R is a perhydro bis-(isoprenyl) alkyl radical having predominantly the structure OH;-(fHCH CH OH OHOHT-OH2- CH; H
  • Z is a two to four carbon alkylene group, the said alkylene group containing a single methyl side chain.
  • composition of matter which is the sulfonation product of the compound RZC H and wherein R is a perhydro bis-(isoprenyl) alkyl radical having predominantly the structure CH ([3HCH -GH -CH -CH-OHg-OH;
  • CH3 H3 Z is a two to four carbon alkylene group, the said alkylene group containing a single methyl side chain, and M is an alkali metal.
  • composition of matter 9 10 which is the sulfonation product of the compound References Iited by the Examiner CH3 ?H CH2 CHFGHF$H CH2 CH2%H C6H5 UNITED STATES PATENTS CH8 3 3 1,934,123 11/33 Hofman et al 260-668 wherein M is an alkali metal. 5 2,467,170 4/49 Weinmayr 260-505 4.
  • composition of matter 2,517,720 8/50 Schaad 260-505 OH;CH-CH CH -CH:GHOH CH CH OH-C H;SO M 9 5 5/ 61 F055 26O668 H H 3,009,972 11/61 Johnson 260-505 a 3 3,115,530 12/63 Cohen 260-505 which is the sulfonation product of the compound 10 CH -C[HCH GH UH;:CHGH CH CH CH-C H OTHER REFERENCES OH; 0H H3 Bauzngartner: Ind. and Eng. Chem, vol. 46, 1954, wherein M is an alkali metal. 1349 1352' The Composition of matter 15 Hammenton: J. Appl. Chem, vol.
  • M is an alkali metal

Description

United States Patent 3,196,174 Bfi-(KSGPRENYL) ALKYL ARYL SULFONATES The present invention relates to new alkyl benzene hydrocarbons which are useful in the production of biodegradable synthetic deter ents having highly superior washing properties. Further, this invention relates to the economic preparation of these hydrocarbons from inexpensive feed stocks. More particularly, this invention relates to the preparation of these hydrocarbons by reacting an aryl substituted alkyl alkali metal compound (preferably an arylallryl lithium compound) under carefully chosen reaction conditions to obtain the selective growth of two moles of isoprene on to the aralkyl metal, hydrolyzing to obtain the corresponding allradienyl benzene and hydrogenating to remove the unsaturation and thus produce the desired allryl benzene material.
Illustrated in chemical notation the new alkyl benzene hydrocarbons of this invention may be represented by the following general formula.
wherein R is a perhydro bis (isoprenyl) alkyl radical containing ten carbon atoms comprising the structure CH QHCH -CH CH -?HCH CH but cm and Z is a two to four carbon atom alkylene group, the said alkylene group containing a single methyl group branch. The alkali metal sulfonate of these materials is represented by the following formula:
so x wherein X is an alkali metal, preferably sodium, and R and Z are as above described.
Illustrative examples of the hydrocarbon materials are:
Edd-6,174 Patented July 20, 1965 The alkali metal sulfonate salts of these alkyl benzene hydrocarbons have now been found to be highly superior to other similar type detergents known in the prior art. This is true not only with respect to the washing properties of these detergents but also with respect to their capacity to be removed in conventional sewage disposal plants. Thus, the present detergents have been found to be substantially entirely absent from the effluent from such a sewage treating, having been removed by biodegradation, adsorption, and the like. This property is an extremely important factor in preventing the foaming which has been encountered particularly in Europe in rivers and streams into which the efiluent from sewage disposal plants is discharged. It should be noted that it is surprising that both of these improvements are obtained at the same time by utilizing the present easily and cheaply prepared materials having molecular structures as above described.
It is now known that conventional alkyl benzene sulfonates commercially prepared by alkylating benzene with tetrapropylene prepared by polymerizing propylene over a phosphoric acid on Kieselguhr catalyst are particularly resistant to biological degradation by bacteria normally present in microorganism populations of activated sewage sludge (and that they are not otherwise removed by adsorption, etc.). Further it is known that severe foaming and frothing have occurred in many locations where sewage disposal plants discharge their efiluent into rivers and streams. It has now been found that the detergent materials of the type described in this invention are readily degraded biologically by the microorganisms normally present in this sludge or are otherwise removed so that when processed in a sewage plant the ellluent from said plant has little or no tendency to foam.
It has now been surprisingly discovered that by the process of the present invention substantially fully biodegradable detergents are obtained and in addition these detergents possess substantially higher detersive power than conventional sodium sulfonates of tetrapropylben zene. Thus, for example, at equal concentrations approximately twice the number of dishes can be washed with the new detergents herein described compared to a conventional tetrapropyl benzene sulfonate and brightness increases of the same order of magnitude are obtained in tests comparing the effectiveness of these detergents for soiled cotton cloth. Additionally, foaming power is ex ceptional without the use of the alkanolamides of fatty acids (foam builders) conventionally used in commercial detergents.
The present invention will be more clearly understood from a consideration of the general reaction sequence as applied to preparing one of the improved detergents of the present invention. Thus, two moles of isoprene are added to or ethyl phenyl lithium by growth reaction and the product material obtained after hydrolysis, is hydrogenated to obtain the desired saturated 2-phenyl-5,9-dimethyldecane as follows:
Alternatively, after the growth reaction the product (2) may be hydrogenated directly both to remove the Li by displacement and to saturate the double bonds.
The organolithium compounds having the general formula C H ZLi, where Z is a two to four carbon alkylene group having a single methyl branch may be prepared by the following general methods:
(1) By reaction of a suitable halogenated alkyl benzene with metallic lithium, preferably in a finely divided state and in the presence of a suitable solvent. Temperatures of below 0 C. to about 100 C. may be used depending on the nature of the halide or solvent and re action times of from one to several hours may similarly vary.
(2) By reaction of a halogenated alkyl benzene with for example a lower alkyl lithium.
(3) By reaction of an alkyl benzene with an alkyl lithium compound.
C H Z--(H) +RLi C H ZLi+RH (4) By addition of an alkyl lithium compound to an unsaturated alkyl benzene. (RH below is minus RH) (5) By metal exchange with a Grignard compound prepared from a siutable halogenated alkyl benzene.
The preparation of organolithium compounds by the methods shown above and by other means is well known in the art and is not considered as a novel aspect of this invention.
Following the preparation of the aralkyl lithium com pound this material is reacted with isoprene at pressures of from one to several hundred atmospheres, preferably one to ten atmospheres, e.g. 1 to 3 atmospheres, and at temperatures of below 0 C. to 100 C., preferably 0 C. to 50 C., e.g. 25 C. for times of 0.25-25 hours, preferably 1-12 hours, e.g. 3-4 hours. The amount of isoprene added is equal to 0.8 to 4 mols, preferably 1 to 3 mols, e.g. 2 mols of isoprene per mol of metal alkyl aryl. Thus, the desired aralkadienyl metal having e.g. two mols of isoprene added is obtained.
Following the growth reaction the product is hydrolyzed and the excess sulfuric acid into sulfate.
with water at temperautres of e.g. 0 to C. to obtain the desired alkadienyl benzene. This hydrolysis may be carried out with or without an alcohol being present. If the alcohol is used, it may be added prior to the water hydrolysis. This makes the water hydrolysis less vigorous. Suitable alcohols are methanol, ethanol, isopropanol and the like. In any case considerable heat is evolved in the preliminary hydrolysis or alcoholysis and so rather large cooling capaicty is needed.
The alkadienyl benzene is then hydrogenated by conventional means. For example, this material may be contacted with two to one hundred moles of hydrogen per mole of unsaturated compound at temperatures of 25 C. to C. and pressures of one to two thousand p.s.i.g. and in the presence of any of the hydrogenation catalysts well known to the art. Suitable catalysts are platinum, palladium and nickel, either as such or supported on a carrier. Of these the preferred catalyst is Raney nickel. Alternatively, as previously mentioned hydrogenation of the metal alkadienyl benzene compounds directly to the desired alkyl benzenes with recovery of the metal hydride for reuse can be obtained using the above described conditions. When the hydrogenation is completed, the product may be recovered by filtration from the catalyst and purified by distillation. It may be further purified prior to sulfonation by mild acid and clay treatment as disclosed in US. Patent 2,688,633.
The new alkyl benzenes may be sulfonated in known manner, e.g. by contact with an excess of concentrated sulfuric acid, oleum, ClSO I-I, sulfur trioxide, etc. The sulfonation may be carried out at temperatures up to 60 C., preferably for oleum 15 C. to 60 C., e.g. 40 C. The acid concentration is preferably at least 98%. Acid of 100% concentration and preferably oleum, containing up to e.g. 20 wt. percent S0 or higher, may be employed. With higher acid concentration, lower reaction times are required, e.g. about 3 to 4 hours with 98% acid, about 2 hours with 100% acid, and preferably 0.5 to 1 hour, e.g. 0.7 hour, with oleum. Weight ratios of sulfuric acid to hydrocarbon may range from 0.811 to 2.0: l, a 1.4:1 ratio being suitable when using 20% oleum, for example. The larger the ratio, the more inorganic sulfate will be present in the product following neutralization. In many cases, the inorganic sulfate is a desirable constituent of the finished detergent composition.
The sulfonation product mixture may be separated by layering with the addition of a limited amount of Water to remove part of the excess spent acid before neutralizing or may be neutralized directly. When neutralized, the sulfonic acids are thus converted to sulfonic acid salts The neutralization may be carried out with any base or basic-reacting inorganic or organic substance. Thus, to produce sodium sulfonates, aqueous sodium hydroxide or sodium carbonates are suitably employed. Other alkali metal, alkaline earth metal, ammonium or amine salts may be similarly produced from the corresponding basic compounds. The neutralization is generally carried out by contact with basic aqueous solution at temperatures of from 20 C. to 70 C., those between 30 C. and 50 C., e.g. 50 C., being preferred.
The present invention will be more clearly understood from a consideration of the following examples.
EXAMPLE I.SYNTHESIS OF Z-PHENYL 5,9-DIMETHYLDECANE 2-phenyl 5,9-dimethyldecane was synthesized by the following series of steps.
OCCCGCC-OOH PBra 1-bromo-3,7-dimethy1oetane 2'phenyl5,9-dimethyldecene-2 (3) 2-phenyl5,9-dhnethyldemnol-Z 2 (4) 2 phe11yl 5,9-dimethyldecene-2 W 2-phenyl-5,9-dirnethyldccane (1 1-bromo-3,7-dimethy[octane One mole (158 grns.) of 3,7-dimethyloctanol-1 (8.1. 114 C. 20 torr fi /D 1.4369) made by the hydrogenation of citronellol over Raney nickel was reacted at 5 to C. with 100 grams of PBIg followed by heating on a water bath at 70 C. for 2 hours. The mixture was then distilled rapidly at low pressure (1 mm.) to a pot temperature of 125 C. to'obtain a distillate weighing 177 gms. and a residue (P(()H) of 50 grams. T .e distillate Was extracted twice with 50 ml. portions of ice-cold 96% H 80 neutralized with NHgOH and extracted with methanol. The product was dried over K CO and distilled at reduced pressure. B.P. 4445 C. 0.4 torr. Yield 156 grams=70%.
(2) 2-pizenyl-2-hydr0xy-5,9-dimet!zylciccane 155 grams (0.7 mole) of the above bromide was Grig- (3) Z-pizenyZ-5,9-dimethyldecene-Z 136 gm. of the phenyl hydroxy decane was dehydrated by retiuxng with 500 ml. of 60 wt. percent H 59 for 4 hours. After isolation the product was distilled under vacuum using a spinning band column. BF. 148 C. 4 torr. Yield 105 gm.
(4) Z-plzenyl-S,Q-dimehtyldecmze 100 gms. of the olefin was dissolved in 200 ml. of anhydrous ethanol and hydrogenated with the aid of 1.0 gram of 5% palladium on charcoal at a pressure of 40 p.s.i.g. for 4 hours.
Distillation at 5:1 reflux ratio through a spinning band column yielded 86 grns. of product. Bl. 140-141 3.9-4.0 torr. n ZO/D 1.4813.
AnaZysfs.Found: (1:87.77, (3:87.73, H=12.27.
EXAMPLE H.2-PHENYL 6,10- DIMETHYLHENDECANE H: 12.24. tl1eor.:
(1 2,6-dimethylhendecanone-Z Pseudoionone, (2,6-dimethylhendeca 2,6,8 triene-- one) made by the condensation of citral with acetone was hydrogenated at 40 p.s.i.g. and 40 C. over a palladium on charcoal catalyst until three moles of hydrogen had been absorbed. Distillation under a spinning-band column gave a pure product showing no unsaturation by infrared spectroscopy. B.P. 118 C. 12 torr. n /1) 1.4345.
(2) Z-plzenyl 6,10-dimetlzylhendecanol-Z A Grignard reagent prepared from 173 grams bromobenzene in 500 ml. anhydrous ether and 40 grams of magnesium turnings in ml. ether was reacted With 193 grams of perhydroseudoionone at 5 C. The reaction mixture was then heated under reflux for 3 hours. The reaction products were decomposed with ice and HCl and after removing solvent, distilled under reduced pressure. B.P. C. 1.2 torr. Wt. 245 gms. n 20/D=1.4972.
(3) 2-phenyl 6,1G-dimerhylkendecene-2 The above carbinol was dehydrated by heating with 500 ml. of 60% sufuric acid at 100 C. for 4 hours. The reaction product was isolated and distilled at reduced pressure. El. 97-98" C. 0.025 torr. Wt. 211 guns. n 20/D=1.5029.
(4) Z-phenyl dJO-dimethlyhendecane The above prepared olefin was reduced at 40 p.s.i.g. over a Pd catalyst. The product was fractionated through a spinning-band column. B.P. 8788 C. 0.025 torr. Wt.=189 gins. n 20/D=1.4807.
EXAMPLE III.1-PHENY1.-2,6, 1 O-TRIMETHYL- HENDECANE This alkyl benzene was prepared in the same manner as the product of Example II, except that benzyl chloride was used instead of brorno benzene.
(1) Z-phenyl 2,6,10-zrimethylhendecane-Z The above product was prepared by reacting a Grignard consisting of 18 gm. magnesium, 73 grams benzyl chloride and 200 ml. ether with 96 grams perhydroseudoionone. The crude produce was stripped to C. (it) 1 torr. without distillation. Wt.=1.34.4 grams.
(2) 1 -phenyl 2,6,10-tri'methylhendecene-Z The crude product prepared above was dehydrated at 100 C. for 4 hours with 500 grams of 60% H 80 13.1. 108-110" C. 0.08 torr. Wt. =106.4 guns. n 20/d=1.4950.
(3) I-phenyl 2,6,IO-trimethylherzdecane The above prepared olefin diluted with 250 ml. of absolute ethanol was hydrogenated at 45 C. and 40 p.s.i.g. over 2 grams of 5% Pd on charcoal. B.P. 105-160 C. 0.07 torr. Wt. :91 gms. n 20/D==1.4872.
EXAMPLE IV.-1-PHENYL 2,5,9- TRIMETHYLDECANE This hydrocarbon is prepared in similar manner to the product of Example I from l-phenyl propanone-2 and a Grignard prepared from l-bromo 3,7-dimethyloctane.
EXAMPLE V.1-PHENYL 3,6,10- T RIM ETHYLHENDECANE This hydrocarbon is prepared in similar manner to the product of Example I from l-phenyl butanone-3 and a Grignard prepared from l-bromo 3,7-dimethyloctane.
EXAMPLE VI.-2-PHENYL 7,11-
DIMETHYLDODECANE This hydrocarbon is prepared in similar manner to the product of Example I from 3-phenyl butyraldehyde and a Grignard prepared from l-bromo 3,7-dimethy1octane.
A number of the alkyl benzenes prepared above were checked for purity by means of capillary gas chromatography. Analytical data obtained by this means are more precise than a simple carbon and hydrogen analysis. Through the use of two internal standards, namely; benzene and hexadecane, relative retention times were obtained for a number of products. Retention times under the conditions noted below were calculated on the basis of benzene equal to zero and hexadecane equal to 1.00.
7 .CAP'ILLARY GAS CHROMATOGrRAPHY Instrument Barber-Colman.
Column 150 ft. capillary.
Coating Apeizon-L.
Flash heater 213C.
Column heater 200 C.
Cell temp 215 C.
Ionization source Strontium-90.
Carrier gas Argon20 p.s.i.g.
Voltage 1250.-
Product: Retention time l-phenyl dodecane 3.75 2-phenyl dodecane 2.56 3-phenyldodecane 2.12 4-phenyldodecane 1.87 5-phenyldodecane 1.75 6-phenyldodecane 1.69 2-phenyl 5,9-dimethyldecane 1.54 2-pheny1 6,10-dimethylhendecane 2.38 l-phenyl 2,6,IO-trimethylhendecane 3.92 l-phenyl 6-cyclohexylhexane 5.55 l-phenyl 5,5,7,7-tetramethyloctane 1.94
EXAMPLE VII Fifty grams of the alkyl benzenes prepared as in the above examples were sulfonated with seventy grams of 20% oleum at a maximum temperature of 55 C. for a total contact time of one-half hour. Following neutralization with sodium hydroxide, the products Were deoiled by extraction with petroleum ether and desalted by dehydration with excess sodium carbonate from a solution in isopropyl alcohol. Evaporation to dryness under vacuum gave pure dry sulfonates.
EXAMPLE VIII A number of the sulfonates prepared above were tested in a standard dishwashing procedure at a concentration of 0.03% of pure detergent in 8 grain water at a temperature of 120 F. and compared with a standard tetrapropylbenzene sulfonate.
Product: Dishes washed Sod. sulfonate 2-phenyldodecane 16 Sod. sulfonate 2-phenyl 5,9-dimethyldecane 31 Sod. sulfonate 2 phenyl 6,10 dimethylhendecane 29 Sod. sulfonate tetrapropylbenzene 15 EXAMPLE IX Cotton detergency using standard soiled cloth was determined for a number of sulfonates in a build formulation. All products were tested at 0.15 and 0.25% at 120 F. in 8 grain water of the built formulation using the following composition.
Wt. percent Test sod. alkyl benzene sulfonate 20 Sodium tripolyphosphate 30 Tetrasodium pyrophosphate 10 Sodium metasilicate 5 Sodium carboxymethyl cellulose 1 Sodium sulfate 34 Cotton Detergency 0 Increase in Reflectance Concentration (100% Active) 1 0.03% 0.05%
Ootton-SoilType U.S. T.F. U.S. T.F.
2 Phenyldodecanc 9.8 15.2 10.6 15.7 Z-Phenyl5,9-Dimethyldecane 13.9 16.8 14.5 19.0 2-Phenyl 6,10-Dimethylhendecane 13.9 18.0 16.1 19.3 l-Phenyl 2,6,10-Tri1nethylhendecane-.- 15.5 18.8 17.0 19.4 Standard Tetrapropylbenzene 4.9 10.3 10.0 12.4
8 EXAMPLE X.-BIODEGRADATION Two types of tests were employed for determining the biodegradability of the synthetic detergents prepared according to this invention.
In an Activated Sludge Test, fifty milligrams of the detergent along with one liter of synthetic sewage was fed daily to aeration units containing approximately 2000 milligrams of activated sludge per liter. Effluent from the unit was removed daily and the residual detergent determined by means of methylene-blue and the foaming characteristics determined by blowing a fixed rate of air through a standard volume of efiluent. Details of this test have been published by I. F. Nelson et al., Developments in Industrial Microbiology Plenum Press, New York, 1961.
In a Simulated River Water test the sewage organisms were acclimated to the detergent for a period of about 2 months and then starved so that the only source of food was the synthetic detergent.
The results obtained with these tests are shown below.
ACTIVATED SLUDGE TEST 1 By Methylene-Blue Test. 2 Foam height in cm.
Sodium sulfonates of above alkylbenzenes mgm. per Liter.
SIMULATED RIVER TEST tested at 50 Percent Disappearance 2 Days on Test l 26 56 Sod. Sulf. 2-Phenyldodecane 100 100 Sod. 8111!. Example I 93 Sod. Snlf. Example II 96 95 Sod. Suit. Tctrapropylbcnzene--- 0 4 After initial acclimation. 2 By Methylene-Blue.
What is claimed is:
1. The composition of matter RZ-C H --SO H which is the sulfonation product of the compound R-ZC H and wherein R is a perhydro bis-(isoprenyl) alkyl radical having predominantly the structure OH;-(fHCH CH OH OHOHT-OH2- CH; H
and Z is a two to four carbon alkylene group, the said alkylene group containing a single methyl side chain.
2. The composition of matter RZ-C H $O M which is the sulfonation product of the compound RZC H and wherein R is a perhydro bis-(isoprenyl) alkyl radical having predominantly the structure CH ([3HCH -GH -CH -CH-OHg-OH;
CH3 H3 Z is a two to four carbon alkylene group, the said alkylene group containing a single methyl side chain, and M is an alkali metal.
3. The composition of matter 9 10 which is the sulfonation product of the compound References Iited by the Examiner CH3 ?H CH2 CHFGHF$H CH2 CH2%H C6H5 UNITED STATES PATENTS CH8 3 3 1,934,123 11/33 Hofman et al 260-668 wherein M is an alkali metal. 5 2,467,170 4/49 Weinmayr 260-505 4. The composition of matter 2,517,720 8/50 Schaad 260-505 OH;CH-CH CH -CH:GHOH CH CH OH-C H;SO M 9 5 5/ 61 F055 26O668 H H 3,009,972 11/61 Johnson 260-505 a 3 3,115,530 12/63 Cohen 260-505 which is the sulfonation product of the compound 10 CH -C[HCH GH UH;:CHGH CH CH CH-C H OTHER REFERENCES OH; 0H H3 Bauzngartner: Ind. and Eng. Chem, vol. 46, 1954, wherein M is an alkali metal. 1349 1352' The Composition of matter 15 Hammenton: J. Appl. Chem, vol. 5, 1955, pp. 517-524. CH -CH-CH CH -CH -CH-CH -CH -CE -CH-CH -C611;S03M References Cited by the Applicant H3 H H3 Gray et al.: Journal of Organic Chemistry, vol. 26, which is the sulfonation product of the compound 209 19 1 CH CH-CH CH CH UHF-CH CH CH2OH=CH C H5 3- H 2 F ii H CH r LORRAINE A. WEINBERGER, Primary Examiner.
wherein M is an alkali metal. LEON ZITVER Examiner

Claims (1)

1. THE COMPOSITION OF MATTER R-Z-C6H4-SO3H WHICH IS THE SULFONATION PRODUCT OF THE COMPOUND R-Z-C6H5 AND WHEREIN R IS A PERHYDRO BIS-(ISOPRENYL) ALKYL RADICAL HAVING PREDOMINANTLY THE STRUCTURE
US176802A 1962-03-01 1962-03-01 Perhydro bis-(isoprenyl) alkyl aryl sulfonates Expired - Lifetime US3196174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US176802A US3196174A (en) 1962-03-01 1962-03-01 Perhydro bis-(isoprenyl) alkyl aryl sulfonates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US176802A US3196174A (en) 1962-03-01 1962-03-01 Perhydro bis-(isoprenyl) alkyl aryl sulfonates

Publications (1)

Publication Number Publication Date
US3196174A true US3196174A (en) 1965-07-20

Family

ID=22645883

Family Applications (1)

Application Number Title Priority Date Filing Date
US176802A Expired - Lifetime US3196174A (en) 1962-03-01 1962-03-01 Perhydro bis-(isoprenyl) alkyl aryl sulfonates

Country Status (1)

Country Link
US (1) US3196174A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355484A (en) * 1964-08-20 1967-11-28 Universal Oil Prod Co Process for making biodegradable detergents
US3442964A (en) * 1964-01-17 1969-05-06 British Hydrocarbon Chem Ltd Production of detergent alkylate
WO1999005242A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Improved alkylbenzenesulfonate surfactants
WO1999005243A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Detergent compositions containing mixtures of crystallinity-disrupted surfactants
WO1999005244A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Improved alkyl aryl sulfonate surfactants
US6303556B1 (en) 1999-01-20 2001-10-16 The Procter & Gamble Company Hard surface cleaning compositions comprising modified alkybenzene sulfonates
US6342473B1 (en) 1999-01-20 2002-01-29 The Procter & Gamble Company Hard surface cleaning compositions comprising modified alkylbenzene sulfonates
US6498134B1 (en) 1999-01-20 2002-12-24 The Procter & Gamble Company Dishwashing compositions containing alkylbenzenesulfonate surfactants
US6514926B1 (en) 1998-10-20 2003-02-04 The Procter & Gamble Company Laundry detergents comprising modified alkylbenzene sulfonates
US6525233B1 (en) 1997-08-08 2003-02-25 The Procter & Gamble Company Process for preparing a modified alkylaryl
US6566319B1 (en) 1997-07-21 2003-05-20 The Procter & Gamble Company Cleaning products comprising improved alkylarylsulfonate surfactants prepared via vinylidene olefins and processes for preparation thereof
US6583096B1 (en) 1998-10-20 2003-06-24 The Procter & Gamble Company Laundry detergents comprising modified alkylbenzene sulfonates
US6602840B1 (en) 1997-07-21 2003-08-05 The Procter & Gamble Company Processes for making alkylbenzenesulfonate surfactants and products thereof
US6774099B1 (en) 1999-01-20 2004-08-10 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures or crystallinity-disrupted surfactants
US7202205B1 (en) 1999-09-01 2007-04-10 Daniel Stedman Connor Processes for making surfactants via adsorptive separation and products thereof
US9193935B2 (en) 2010-12-23 2015-11-24 Givaudan S.A. Compounds capable of releasing fragrant compounds

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1934123A (en) * 1928-07-12 1933-11-07 Ig Farbenindustrie Ag Process for the manufacture of condensation products from diolefines and hydrocarbons
US2467170A (en) * 1947-10-15 1949-04-12 Du Pont Alkyl substituted aromatic sulfonates
US2517720A (en) * 1947-12-22 1950-08-08 Universal Oil Prod Co Method of producing propylene polymers and surface active agents derived from said polymers
US2984691A (en) * 1954-09-30 1961-05-16 Standard Oil Co Telomerization process
US3009972A (en) * 1959-09-25 1961-11-21 Monsanto Chemicals Dimerization of olefins
US3115530A (en) * 1960-05-13 1963-12-24 Exxon Research Engineering Co Preferred alkyl aryl sulfonate detergents

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1934123A (en) * 1928-07-12 1933-11-07 Ig Farbenindustrie Ag Process for the manufacture of condensation products from diolefines and hydrocarbons
US2467170A (en) * 1947-10-15 1949-04-12 Du Pont Alkyl substituted aromatic sulfonates
US2517720A (en) * 1947-12-22 1950-08-08 Universal Oil Prod Co Method of producing propylene polymers and surface active agents derived from said polymers
US2984691A (en) * 1954-09-30 1961-05-16 Standard Oil Co Telomerization process
US3009972A (en) * 1959-09-25 1961-11-21 Monsanto Chemicals Dimerization of olefins
US3115530A (en) * 1960-05-13 1963-12-24 Exxon Research Engineering Co Preferred alkyl aryl sulfonate detergents

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442964A (en) * 1964-01-17 1969-05-06 British Hydrocarbon Chem Ltd Production of detergent alkylate
US3355484A (en) * 1964-08-20 1967-11-28 Universal Oil Prod Co Process for making biodegradable detergents
US6593285B1 (en) 1997-07-21 2003-07-15 The Procter & Gamble Company Alkylbenzenesulfonate surfactants
US6566319B1 (en) 1997-07-21 2003-05-20 The Procter & Gamble Company Cleaning products comprising improved alkylarylsulfonate surfactants prepared via vinylidene olefins and processes for preparation thereof
WO1999005244A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Improved alkyl aryl sulfonate surfactants
AU736622B2 (en) * 1997-07-21 2001-08-02 Procter & Gamble Company, The Detergent compositions containing mixtures of crystallinity-disrupted surfactants
US6274540B1 (en) 1997-07-21 2001-08-14 The Procter & Gamble Company Detergent compositions containing mixtures of crystallinity-disrupted surfactants
US6908894B2 (en) 1997-07-21 2005-06-21 The Procter & Gamble Company Alkylaromatic hydrocarbon compositions
US6602840B1 (en) 1997-07-21 2003-08-05 The Procter & Gamble Company Processes for making alkylbenzenesulfonate surfactants and products thereof
US20020103096A1 (en) * 1997-07-21 2002-08-01 Kott Kevin Lee Alkylaryls
WO1999005242A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Improved alkylbenzenesulfonate surfactants
WO1999005243A1 (en) * 1997-07-21 1999-02-04 The Procter & Gamble Company Detergent compositions containing mixtures of crystallinity-disrupted surfactants
US6525233B1 (en) 1997-08-08 2003-02-25 The Procter & Gamble Company Process for preparing a modified alkylaryl
US6514926B1 (en) 1998-10-20 2003-02-04 The Procter & Gamble Company Laundry detergents comprising modified alkylbenzene sulfonates
US6583096B1 (en) 1998-10-20 2003-06-24 The Procter & Gamble Company Laundry detergents comprising modified alkylbenzene sulfonates
US6498134B1 (en) 1999-01-20 2002-12-24 The Procter & Gamble Company Dishwashing compositions containing alkylbenzenesulfonate surfactants
US6342473B1 (en) 1999-01-20 2002-01-29 The Procter & Gamble Company Hard surface cleaning compositions comprising modified alkylbenzene sulfonates
US6774099B1 (en) 1999-01-20 2004-08-10 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures or crystallinity-disrupted surfactants
US6303556B1 (en) 1999-01-20 2001-10-16 The Procter & Gamble Company Hard surface cleaning compositions comprising modified alkybenzene sulfonates
US7202205B1 (en) 1999-09-01 2007-04-10 Daniel Stedman Connor Processes for making surfactants via adsorptive separation and products thereof
US9193935B2 (en) 2010-12-23 2015-11-24 Givaudan S.A. Compounds capable of releasing fragrant compounds

Similar Documents

Publication Publication Date Title
US3196174A (en) Perhydro bis-(isoprenyl) alkyl aryl sulfonates
US2902510A (en) 2-substituted-2,6-dimethyl-7-octenes and process for preparing same
KR20030012895A (en) Alcohol mixtures having 13 and 15 carbon atoms and the use thereof in the preparation of surface-active substances
Olah et al. Catalysis by solid superacids. 21. Nafion-H catalyzed de-tert-butylation of aromatic compounds
US3636034A (en) Surfactant production via rhodium-catalyzed oxo process
US3235601A (en) Process for the production of civetone and homologues
US2995600A (en) Process for preparing oxygenated compounds of the 2, 6-dimethyl-octane series
US3772443A (en) 5-bromo-5-nitro-1,3-dioxane,process and antimicrobial compositions
US3115530A (en) Preferred alkyl aryl sulfonate detergents
US3711548A (en) Cyclopropyl substituted aliphatic amines
US3205264A (en) Process for the preparation of 10, 11-dihydro-5-(gamma-methyl-and dimethyl-amino propylidene)-5h-dibenzo[a, d] cycloheptene
US3778479A (en) Unsaturated alcohols and derivatives thereof
US3843564A (en) Detergent compositions and methods of obtaining them
US2088017A (en) Oxygenated aliphatic compounds derived from 2-ethylbutyraldehyde
US3927061A (en) Phosphate-free carboxylate-sulfate detergents
US3712922A (en) Unsaturated quaternary alkylated fatty acids and derivatives
US3801612A (en) Aliphatic substituted-2-en-4-yne acids and esters
US4623483A (en) Method for improving water solubility of surfactants using Nopol derived sulfonates
US3576886A (en) Isomerization of medium ring cyclic alphatic epoxides
Toda et al. Cyclic Acetylenes. I. Cyclic Derivatives of o, o′-Dihydroxydiphenyl-diacetylene. An Example of a Strained Cyclic Diacetylene
US4528144A (en) Terpene sulfonate hydrotropes
US3694526A (en) Hydrocarbon phosphonates
EP0155040B1 (en) Menthene sulphonates and the hydrogenated derivatives thereof
US3052709A (en) Benzyl phosphoric acid ester compounds and process for making same
US3349106A (en) Solvent for obtaining very high yields of aldehydic products from soybean oil