US3193423A - Etching printing plates - Google Patents

Etching printing plates Download PDF

Info

Publication number
US3193423A
US3193423A US226154A US22615462A US3193423A US 3193423 A US3193423 A US 3193423A US 226154 A US226154 A US 226154A US 22615462 A US22615462 A US 22615462A US 3193423 A US3193423 A US 3193423A
Authority
US
United States
Prior art keywords
etching
magnesium
metal
percent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US226154A
Inventor
Goffredo Daniel Louis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US226154A priority Critical patent/US3193423A/en
Application granted granted Critical
Publication of US3193423A publication Critical patent/US3193423A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/42Aqueous compositions containing a dispersed water-immiscible liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions

Definitions

  • the conventional photoengraving processes involve the coating of metal plates, such as magnesium or zinc, with a light-sensitive coating.
  • the coated surface is exposed to light through a negative bearing the image to be reproduced.
  • the exposed coated surface is developed and forms the image in an acid resistant coating.
  • the acid resistant image on the surface of the metal plate is heated to further harden it and increase its acid resistance.
  • This image surface is then subjected to the action of a strong mineral acid, such as a twelve percent solution of nitric acid.
  • a strong mineral acid such as a twelve percent solution of nitric acid.
  • the acid also, begins to etch laterally and undercuts the acid resistant coating and thus distorts the image.
  • the conventional method of preventing or reducing the undercutting is to manually brush a resin powder against the sides of the image area with a technique that is known as powdering by the photoengraving trade. This is a very time consuming and tedious operation. Also, the nitric acid presents a very serious health hazard to the industry. Its fumes are very toxic and the solution causes painful skin and eye burns.
  • the etching process of this invention which comprises impinging a solution of persulfate compounds against the surface of the metal to be etched. It has been discovered that by controlling the direction and impact of the persulfate etchant against the metal the amount of lateral etching can be reduced. It has been found that by the addition of salts of metals lower in the electromotive force series than the metal being etched'that the amount of lateral etching can be further reduced. It has also, been found that the addition of surface active agents has a further beneficial effect on reducing the lateral etching. And it has been found that the addition of a water-immiscible organic liquid can even further reduce the amount of lateral etching. The etching rate can be increased by the addition of acids.
  • the acid resistant image is placed upon the magnesium metal in the conventional manner.
  • the magnesium plate is placed face down in an etching chamber.
  • a spray nozzle is placed a predetermined distance from the magnesium plate.
  • the distance between spray nozzle and magnesium plate is dependent upon the hydraulic line pressure and the etchants composition. For example, at a distance of six inches between spray nozzle and magnesium plate, and at a hydraulic line pressure of 20 centimeters of mercury; a ten percent solution of ammonium persulfate will etch magnesium metal at the rate of one half thousandths of an inch per minute and cause the amount of lateral etching to be significantly reduced. Etching at higher hydraulic pressures tends to increase the lateral etching. Etching at lower pressures tends to stop the etching.
  • the characteristics of this protection from lateral etching shows in the development of shoulders projecting from the image areas down into the metal as it is etched.
  • the characteristics of these shoulders for a set of etching conditions can be changed by the addition of 0.01 to 0.4 percent of a surface active agent such as the anionic type; and the addition of 1 to 10 percent of a waterimmiscible organic liquid such as a petroleum distillate.
  • the rate of etch can be increased by the addition of 0.5 to 10 percent of an acid, such as sulfuric acid.
  • Example I Gr Ammonium persulfate 800 Copper sulfate 40 Water to make 4.0 liters.
  • Example I Ammonium persulfate 400 Copper sulfate 40 Dioctyl sodium sulfosuccinate 12 Water to make 4.0 liters.
  • Example III Ammonium persulfate 400 Copper sulfate 30 Dioctyl sodium sulfosuccinate 16 Sulfuric acid 50 Aromatic solvent with a flash point of 150 degrees Fahrenheit 200 Water to make 4.0 liters.
  • Example IV Ammonium persulfate gr 500 Copper sulfate gr 40 Dioctyl sodium sulfosuccinate gr 1 6 Aromatic solvent with a flash point of 150 degrees 4 Fahrenheit ml Water to make 4.0 liters.
  • This method can, also, be modified to reduce the lateral etching of zinc and other metals by selecting and balancing the concentration of the disclosed components in an per-sulfate compound, whereby a deposit forms from the solution and adheres to the edges of the etched surfaces and protects them from undercutting while etching down into the metal.
  • etching bath also, contains 0.5 to 10 percent of an acid selected [from the group of acids consistingof sulfuric, nitric and hydrochloric acid.
  • etching bath also contains 0.5 to 10 percent of an acid selected from the group of acids 10 consisting of sulfuric, nitric and hydrochloric acid.

Description

United States Patent M 3,193,423 ETCHING PRINTTNG PLATES Daniel Louis Gofirerlo, 104 Main St., Riverton, NJ. No Drawing. Filed Sept. 25, 1962, Ser. No. 226,154 6 Claims. (Cl. 156-14) This invention relates to a new and improved method and bath for etching metal, and more particularly to an improved method of making photoengraved plates.
The conventional photoengraving processes involve the coating of metal plates, such as magnesium or zinc, with a light-sensitive coating. The coated surface is exposed to light through a negative bearing the image to be reproduced. The exposed coated surface is developed and forms the image in an acid resistant coating. The acid resistant image on the surface of the metal plate is heated to further harden it and increase its acid resistance. This image surface is then subjected to the action of a strong mineral acid, such as a twelve percent solution of nitric acid. As the etching into the surface of the metal proceeds, the acid, also, begins to etch laterally and undercuts the acid resistant coating and thus distorts the image. The conventional method of preventing or reducing the undercutting is to manually brush a resin powder against the sides of the image area with a technique that is known as powdering by the photoengraving trade. This is a very time consuming and tedious operation. Also, the nitric acid presents a very serious health hazard to the industry. Its fumes are very toxic and the solution causes painful skin and eye burns.
It is the object of this invention to provide an improved method for etching metal and more particularly printing plates that eliminates or reduces the need for powdering. Another object is to provide an improved and less hazardous etching bath for carrying out this improved etching process.
These and other objects and advantages are provided by the etching process of this invention which comprises impinging a solution of persulfate compounds against the surface of the metal to be etched. It has been discovered that by controlling the direction and impact of the persulfate etchant against the metal the amount of lateral etching can be reduced. It has been found that by the addition of salts of metals lower in the electromotive force series than the metal being etched'that the amount of lateral etching can be further reduced. It has also, been found that the addition of surface active agents has a further beneficial effect on reducing the lateral etching. And it has been found that the addition of a water-immiscible organic liquid can even further reduce the amount of lateral etching. The etching rate can be increased by the addition of acids.
The practice of this invention will be specifically described in the etching of a magnesium photoengraving.
The acid resistant image is placed upon the magnesium metal in the conventional manner. The magnesium plate is placed face down in an etching chamber. A spray nozzle is placed a predetermined distance from the magnesium plate. For optimum results, the distance between spray nozzle and magnesium plate is dependent upon the hydraulic line pressure and the etchants composition. For example, at a distance of six inches between spray nozzle and magnesium plate, and at a hydraulic line pressure of 20 centimeters of mercury; a ten percent solution of ammonium persulfate will etch magnesium metal at the rate of one half thousandths of an inch per minute and cause the amount of lateral etching to be significantly reduced. Etching at higher hydraulic pressures tends to increase the lateral etching. Etching at lower pressures tends to stop the etching. Hence, there is an optimum impact condition for etching magnesium metal 3,193,423 Patented July 6, 1965 with ammonium persulfate solutions for reducing the amount of lateral etch.
This optimum impact condition is dependent upon the composition of the ammonium persulfate bath. The presence of a trace to a few percent of salts of metals that are lower than magnesium in the electromotive force series will have a considerable effect on the range of optimum etching conditions and in reducing the amount of lateral etching. For example, the addition of one percent copper sulfate to a ten percent ammonium persulfate solution allows a greater latitude in etching conditions to achieve the optimum results. As a result, the hydraulic line pressure can be reduced to 16 centimeter of mercury while the etching rate increases to two thousandths of an inch per minute, but more significantly the amount of lateral etching becomes even further re duced.
The characteristics of this protection from lateral etching shows in the development of shoulders projecting from the image areas down into the metal as it is etched. The characteristics of these shoulders for a set of etching conditions can be changed by the addition of 0.01 to 0.4 percent of a surface active agent such as the anionic type; and the addition of 1 to 10 percent of a waterimmiscible organic liquid such as a petroleum distillate. The rate of etch can be increased by the addition of 0.5 to 10 percent of an acid, such as sulfuric acid.
The following are formulas suitable for etching magnesium.
Example I Gr. Ammonium persulfate 800 Copper sulfate 40 Water to make 4.0 liters.
Example I] Ammonium persulfate 400 Copper sulfate 40 Dioctyl sodium sulfosuccinate 12 Water to make 4.0 liters.
Example III Ammonium persulfate 400 Copper sulfate 30 Dioctyl sodium sulfosuccinate 16 Sulfuric acid 50 Aromatic solvent with a flash point of 150 degrees Fahrenheit 200 Water to make 4.0 liters.
Example IV Ammonium persulfate gr 500 Copper sulfate gr 40 Dioctyl sodium sulfosuccinate gr 1 6 Aromatic solvent with a flash point of 150 degrees 4 Fahrenheit ml Water to make 4.0 liters.
From the foregoing description it will be seen that the aims, objects and advantages of the invention are fully accomplished by the improved process of the invention.
While this invention has been fully described with reference to spray etching magnesium photoengravings, it is apparent that other controlled means of applying the etchant can be used, such as paddles. The etchant described has comprised a solution of ammonium persulfate but it is evident that other persulfate compounds could be used, such as sodium persulfate or potassium persulfate. It is, also, apparent that this method can be used in the making of devices other than photoengraving, e.g. for the chemical milling of parts for the mechanical, electronic, and aircraft industries. This method can, also, be modified to reduce the lateral etching of zinc and other metals by selecting and balancing the concentration of the disclosed components in an per-sulfate compound, whereby a deposit forms from the solution and adheres to the edges of the etched surfaces and protects them from undercutting while etching down into the metal.
2. The method of making etched plates according to claim 1, wherein the etching'bath, also, contains a trace to afew percent of a salt of a' metal lower in the electromotive series than magnesium.
3. The method of making etched plates according to claim 2, wherein the etching bath, also, contains 0.01 to 0.40 percent of a surface active agent. a
4. The method of making etched plates according to 4 claim 3, wherein the etching bath, also, contains 1 to 10 percent of a water-immiscible organic liquid.
5. The method of making etched plates according to claim 4, wherein the etching bath, also, contains 0.5 to 10 percent of an acid selected [from the group of acids consistingof sulfuric, nitric and hydrochloric acid.
.6. The method of making etched. plates according to claim 3,-wherein the etching bath, also contains 0.5 to 10 percent of an acid selected from the group of acids 10 consisting of sulfuric, nitric and hydrochloric acid.
References Cited by the Examiner UNITED STATES PATENTS 2,647,864 8/53 Goffredo 15618 15 2,678,876 5/54 Burnside 252-791 2,684,892 7/54 Saulnier 156-44 2,979,387 4/61 Easley et al. 15614 3,051,603 8/62 Michaels 156-14 2 FOREIGN PATENTS 867,573 5/61! Great Britain.
7 ALEXANDER WYMAN, Primary Examiner JACOB STEINBERG, Examiner.

Claims (1)

1. THE METHOD OF MAKING ETCHED PLATES COMPRISING AN ETCH RESISTANT IMAGE ON A METAL SELECTED FROM THE GROUP CONSISTING OF MAGNESIUM, MAGNESIUM BASE ALLOYS, ZINC AND ZINC BASE ALLOYS AND THEREBY IMPINGING AN ETCHING SOLUTION AGAINST THE PRINTING PLATE WITH CONTROLLED VELOCITY AT A PREDETERMINED ANGLE WHEREIN THE ETCHING SOLUTION AND ADHERES TO THE EDGES OF THE ETCHED SURFACES AND PROTECTS THEM FROM UNDERCUTTING WHILE ETCHING DOWN INTO THE METAL.
US226154A 1962-09-25 1962-09-25 Etching printing plates Expired - Lifetime US3193423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US226154A US3193423A (en) 1962-09-25 1962-09-25 Etching printing plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US226154A US3193423A (en) 1962-09-25 1962-09-25 Etching printing plates

Publications (1)

Publication Number Publication Date
US3193423A true US3193423A (en) 1965-07-06

Family

ID=22847785

Family Applications (1)

Application Number Title Priority Date Filing Date
US226154A Expired - Lifetime US3193423A (en) 1962-09-25 1962-09-25 Etching printing plates

Country Status (1)

Country Link
US (1) US3193423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330765A (en) * 1965-10-01 1967-07-11 Dow Chemical Co Powderless etching bath and method of etching

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647864A (en) * 1952-05-29 1953-08-04 Daniel L Goffredo Etching process
US2678876A (en) * 1950-12-26 1954-05-18 Rca Corp Conditioning of metal surfaces
US2684892A (en) * 1953-01-14 1954-07-27 Rca Corp Ferric chloride etching solutions
US2979387A (en) * 1956-08-27 1961-04-11 Dow Chemical Co Etching
GB867573A (en) * 1957-01-11 1961-05-10 Fmc Corp Dissolution of copper
US3051603A (en) * 1959-07-14 1962-08-28 Michaels James Descumming preparation and process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678876A (en) * 1950-12-26 1954-05-18 Rca Corp Conditioning of metal surfaces
US2647864A (en) * 1952-05-29 1953-08-04 Daniel L Goffredo Etching process
US2684892A (en) * 1953-01-14 1954-07-27 Rca Corp Ferric chloride etching solutions
US2979387A (en) * 1956-08-27 1961-04-11 Dow Chemical Co Etching
GB867573A (en) * 1957-01-11 1961-05-10 Fmc Corp Dissolution of copper
US3051603A (en) * 1959-07-14 1962-08-28 Michaels James Descumming preparation and process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330765A (en) * 1965-10-01 1967-07-11 Dow Chemical Co Powderless etching bath and method of etching

Similar Documents

Publication Publication Date Title
US3597290A (en) Method for chemically dissolving metal
CA1215301A (en) Nickel etching process and solution
CH624995A5 (en)
US2640765A (en) Etching
EP0011799A1 (en) Process and apparatus for regenerating an etching solution containing cupric and/or ferric chloride in an electrolytic cell
US2647864A (en) Etching process
US2678876A (en) Conditioning of metal surfaces
US3193423A (en) Etching printing plates
DE1160271B (en) Process for dissolving copper
US2441300A (en) Ink for etching metal
DE1253008B (en) Process for etching copper foils for the production of printed circuits
JPH0450390B2 (en)
US2763536A (en) Etching
DE1232984B (en) Etchants and processes for etching copper gravure forms
US2872302A (en) Etchant
US3340195A (en) Process of etching
US3887405A (en) Method and composition for cleaning copper surfaces
US1994499A (en) Engraver's etching acid of increased efficiency
US2640767A (en) Etching
US2640764A (en) Etching
US2640766A (en) Etching
Raj et al. Chemical machining process-an overview
US3514409A (en) Composition and method for etching photoengraving copper printing plates
US2701186A (en) Method of making photo engraving plate
SU566866A1 (en) Etching solution for aluminum