US3186954A - Catalyst system for heat curing of fabrics - Google Patents

Catalyst system for heat curing of fabrics Download PDF

Info

Publication number
US3186954A
US3186954A US838823A US83882359A US3186954A US 3186954 A US3186954 A US 3186954A US 838823 A US838823 A US 838823A US 83882359 A US83882359 A US 83882359A US 3186954 A US3186954 A US 3186954A
Authority
US
United States
Prior art keywords
acid
fabric
catalyst
finishing
catalyst system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US838823A
Inventor
Henry R Hushebeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Bancroft and Sons Co
Original Assignee
Joseph Bancroft and Sons Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL243632D priority Critical patent/NL243632A/xx
Priority to NL247426D priority patent/NL247426A/xx
Priority to US804858A priority patent/US3139322A/en
Application filed by Joseph Bancroft and Sons Co filed Critical Joseph Bancroft and Sons Co
Priority to US838823A priority patent/US3186954A/en
Priority to GB32207/59A priority patent/GB936993A/en
Priority to FR805839A priority patent/FR1236421A/en
Priority to CH7860059A priority patent/CH369103A/en
Priority to GB459/60A priority patent/GB945040A/en
Priority to FR817744A priority patent/FR1252256A/en
Priority to US94111A priority patent/US3165374A/en
Priority to US204070A priority patent/US3212928A/en
Application granted granted Critical
Publication of US3186954A publication Critical patent/US3186954A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/127Mono-aldehydes, e.g. formaldehyde; Monoketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/17Glyoxal and polyaldehyde treatment of textiles

Definitions

  • This invention relates to a catalyst system for the cur ing of fabric which has been treated with aldehydic type textile finishing agents and also to an improved method for imparting durable finish effects to fabrics using aldehydic type finishing agents.
  • aldehydic type textile finishing agents contemplates the use of any of the following types of materials as finishing agents:
  • Thcrmosetting or thermoreactive aldehyde resins which either crosslink with hydroxlated polymers under acid conditions to form a water insoluble reaction product or which condense or polymerize, in the presence of acid, to form water insoluble polymers.
  • type (a) and (b) materials will sometimes be referred .to as methylenating agents and type (c) materials will be referred to collectively as aldehyde resins.
  • Aldehyde-s and dialdehydes such as formaldehyde, glyoxal, acetaldehyde, chloral, benzaldehyde, furfural and the like are some of the typical aldehydes which, per se, are useful fabric finishing agents.
  • Some typical compounds which upon heating, either alone or in the presence of acids, will release or liberate aldehydes, and which are useful as finishing agents are: the methylol-ketones, para-formaldehyde, trioxane, and the like.
  • thermosetting aldehyde resins which are useful as fabric finishing agents are the methylol ureas, the methylated methylol ureas, the methylol melamines, the methylated rnethylol melamines, etc.
  • Some typical reactive aldehyde resins which are useful as fabric finishing agents are the lower alkylene methylol ureas (e.g., dimethylol ethylene urea, tetramethylol diacetylene urea, the methylol triazones, and their methylated derivatives) and the related compounds having one or more hydroxy group substituted for hydrogen atoms in the alkylene chain (e.g., dihydroxy dimethylol ethylene urea).
  • the lower alkylene methylol ureas e.g., dimethylol ethylene urea, tetramethylol diacetylene urea, the methylol triazones, and their methylated derivatives
  • the related compounds having one or more hydroxy group substituted for hydrogen atoms in the alkylene chain e.g., dihydroxy dimethylol ethylene urea
  • aldehydic materials and many other related materials, have heretofore been used or proposed for use as fabric finishing agents for imparting many different types of finishing effects to all kinds of textile fabrics and textile products (of animal, vegetable and synthetic origin).
  • All such aldehydic finishing agents are useful in connection with the present invention, provided they are sufficiently stable at room temperature and under acid pH conditions to enable the material to be applied to the fabric co-jointly with the catalyst without precipitating insolubilized resins or the like.
  • the fabric In all processes where aldehydic compounds are employed as finishing agents, the fabric, at some stage after the finishing agent has been applied to it, is cured by heating. The curing is carried out in the presence of a catalyst to accelerate the reaction or polymerization.
  • the curing treatment will either cause the finishing agent itself or aldehyde released from the finishing agent to react with the fabric, or in the case of the thermosetting aldehyde resins, the cure will cause the resin to primarily polymerize to a water insoluble stage although some reaction with the fabric may also occur.
  • the pH of the impregnating bath and that of the cured fabric are approximately the same. This however, will depend somewhat on the buffering action of the finishing agent. With the potentially acid catalysts, the pH of the cured fabric will be lower than that of the impregnating bath.
  • the hand and drapeability of the fabric can also be influenced and affected by the aforesaid factors.
  • the variations in these properties are not of as much significance as strength, resilience, durability, and wash and wear properties, since corrective modifications can be effected by various after treatments, e.g., the addition of softeners,1passing the fabric through button breakers, and the like.
  • the catalyst must be used in very small and critical amounts, e.g., by applying the catalyst in concentrations which will deposit on the fabric less than 0.1;% of the catalyst based on the fabric Weight. In such cases, only a slight increase in the concentration has a very significant effect, and strength losses due to degradation become very noticeable. Because the maximum permissible catalyst concentration is very low, it is almost impossible, in full scale commercial runs, to uniformly distribute the catalyst in the critical concentration needed for efiicient curing and the end results accordingly are quite unpredictable; some portions of the fabric will be highly hydrolyzed and the fabric exceedingly weakened.
  • a relatively strong conventional acid catalyst such as hydrochloric acid
  • Still anotherobject of the invention is to provide a catalyst system and finishing process which can be used in such concentrations so that minor variations thereof,
  • a catalyst system comprising an acid component and an acid salt component, which components, under the heating employed to cure the fabric carrying the finishing agent, are capable of forming in the fabric a residue which imparts to the fabric a lower acidity (higher pH) than that of the acid-acid salt combination prior to heating.
  • the acid component for use in the catalyst system of the present invention may be an organic or inorganic acid or acid anhydride such as maleic, tartaric, hydrochloric, phosphoric, citric, itaconic, succinic, and the like.
  • organic or inorganic acid or acid anhydride such as maleic, tartaric, hydrochloric, phosphoric, citric, itaconic, succinic, and the like.
  • Acids which are weakly acidic such as boric acid are not well suited for purposes of this invention as they do not permit efficient finishing within the time and temperature relationship in equipment used for commercial finishing.
  • Weak acids which are readily volatile under the processing conditions, e.g.', formic acid cannot be eifectively used as they will be driven off before a satisfactory cure can be effected.
  • Other highly desirable characteristics of the acid component are that it should be one which with the acid salt component, will not form a water insoluble residue during the heating to cure the fabric.
  • the useful acids are those which will provide a pH in the impregnating bath of from about 1.5 to 5.5.
  • the preferred acid salts for use in the catalyst system of this invention are the metal salts of either organic or inorganic acids of the Lewis acid type (i.e., an electron acceptor) and especially the polyvalent metal salts of such acids.
  • the Lewis acid salts of monovalent metals'with polybasic acids can also be used effectively. Where White goods are to be finished, I prefer to employ thosesalts of the Lewis acidtype which form substantially colorless aqueous solutions.
  • acid salts which have been found to be especially useful are magnesium nitrate, strontium nitrate, aluminum chloride, zinc chloride, sodium bisulfate, zirconium oxychloride, aluminum acetate, chromium acetate, and the like.
  • the useful acid-acid salt combinations are those which, when applied to a fabric as a pure aqueous solution of the catalyst components and heated to temperatures of about 250 to 300 F., will form in the fabric a residue (preferably water soluble residue) which will impart to the'fabric'a pH that is at least 2, and preferably about 2.3 or more, higher than the pH of the pure aqueous solution of the catalyst components.
  • the catalyst system will permit'eflicient finishing of the fabric so as to impart a highly resilient, durable finish with good wash and wear properties and with a minimized loss in strength.
  • catalyst system to the fabric to be treated from the same impregnating bath, as only a single operation is thereby required. It is also possible to apply the finishing agent and the individual catalyst componentsin separate operations and in any desired sequence-such multistep appli It is preferred to apply the finishing'agent and the MEL.
  • the bath can if desired also contain buffers and other conventional processing aids or finishing materials such as softeners, wetting agents, tinting agents, and the like.
  • the relative ratio of the acid component to the acid salt component can vary over a wide range provided that the combination is one which will develop, under the curing conditions involved, an acidity which the suificient to enable the finish effect to be fixed efficiently, and do this without objectionably degrading the fabric.
  • the combination should be one which alone and under the heating conditions involved, will form a residue in fabric which will impart thereto a pH which is at least 2 points higher than that of the catalyst components in pure aqueous solution.
  • the catalyst system is intended to be used for the finishing of natural cellulose fabric with formaldheyde or with aldehyde liberating materials which do not exert strong buffering action so as to effect a partial methylenation of the cellulose
  • the 2-3-4 catalyst can be effectively used and so too can a catalyst formed by the combination of citric acid (2 pounds) and magnesium nitrate hexahydrate (7 pounds). This is sometimes hereinafter referred to as the 2-7 catalyst.
  • the catalyst system is intended to be used for the finishing of regenerated cellulose fabric with a moth ylenating type aldehydic finishing agent
  • any of the foregoing catalyst systems exhibit rather similar acidity characteristics at temperatures ranging from room temperature up to where the fabric itself is heated to temperatures as high as 400 F. Curing by infra-red heatwhere the fabric is momentarily exposed to very high temperatures, can also be used in conjunction with the process and catalyst system of this invention. In such cases, the fabric itself does not reach the temperature of the heating means.
  • the finishing agent is applied from a pad bath to give 60 to 70% pick-up
  • the catalyst system of this invention in concentrations which constitute from about /2 to 3% of the bath weight, nevertheless, it is possible by varying other factors such as the solution pickup or the curing conditions to employ baths in which the catalyst constitutes higher or lower percentages of the bath weight.
  • the total quantity of catalyst applied to the fabric is appreciably in excess of about 10% of the fabric weight there is a strong possibility of objectionably degrading the fabric.
  • Example 1 A pure cotton x 80, running 4.00 yds/lb.) was padded through an impregnating bath having the following formulation:
  • Example 2 Example 1 was repeated but the strontium nitrate was replaced with 0.38% (additional) magnesium nitrate. The over-all properties of the fabric finished in this way were of a very high order and only slightly inferior to the property balance obtained in Example 1.
  • Example 3 Example 4 Example 3 was repeated using the 2-7 catalyst of Example 2 instead of the 2-34 catalyst. The results were generally comparable to those obtained in Example 3.
  • Example 5 Examples 3 and 4 were repeated except that 10% methylated methylol melamine was substituted for the dimethylol ethylene urea and with very similar results.
  • the wash and wear durability and resilience of the fabrics cured at 240 were of about the same order as those cured at 300; and the fabrics cured at 240 were somewhat stronger.
  • Example 6 Example 6 Example 1 was repeated except that 9.5% Rhonite D-12 (a methylol triazone) was substituted for formaldehyde.
  • the cured fabric had an excellent balance of properties from the standpoint of strength, resilience and wash'and wear durability.
  • Example 7 Example 1 was repeated using the following formulation for the pad bath and curing at 240 F. for minutes:
  • Ketone-aldehyde precondensate 46 Citric acid 1 Strontium nitrate 1.5 Magnesium nitrate hexahydrate 2.0 Water Balance v1.
  • the active ingredients of said system consist essentially of an acid component and an acid salt component
  • the acid salt component is a polyvalent metal salt of a Lewis acid
  • the acid component is a non-volatile polybasic organic acid capable of imparting a pH of from 1.5 to 5.5 to impregnating baths containing from about 0.5 to 3.0% by weight of the catalyst and said system being further characterized in that the catalyst components will, when heated in the presence of a textile, form a residue having a pH of at least 2 higher than that of the acid-acid salt combination prior'to heating.
  • a catalyst system whose active ingredients consist essentially of a mixture of citric acid and magnesium nitrate hexahydrate Where the Weight ratio of the citric acid to the magnesium nitrate is 2 to 7.
  • a catalyst system whose active ingredients consist essentially of a mixture of citric acid, strontium nitrate and magnesium nitrate hexahydrate where the weight ratio of said components are 2-3-4 respectively.
  • a catalyst system whose active ingredients consist essentially of a mixture of citric acid and magnesium nitrate Where the weight ratio of the citric acid to the magnesium nitrate is 5 to 12.

Description

United States Patent 3,186,954 CATALYST SYSTEM FOR HEAT QURENG 0F FABRICS Henry R. Hushebcclr, Wilmington, Bel, assignor to Joseph Bancroft 3: Sons (Iornpany, Rockford, Wilmington, Del., a corporation of lfi elaware No Drawing. Filed Sept. 16, 1959, Ser. No. 338,823
10 (Ilaims. (Cl. 252-428) This application is a continuation-in-part of my copending applications: Serial No. 762,934, filed September 24, 1958, now forfeited; Serial No. 804,857, filed April 17, 1959, now abandoned; and Serial No. 804,858, filed April 17, 1959, now Patent 3,139,322.
This invention relates to a catalyst system for the cur ing of fabric which has been treated with aldehydic type textile finishing agents and also to an improved method for imparting durable finish effects to fabrics using aldehydic type finishing agents.
As used herein the term aldehydic type textile finishing agents contemplates the use of any of the following types of materials as finishing agents:
(a) Free aldehydes per se,
(b) Materials or compounds, which upon heating, especially in the presence of acid, liberate free aldehydes,
(c) Thcrmosetting or thermoreactive aldehyde resins which either crosslink with hydroxlated polymers under acid conditions to form a water insoluble reaction product or which condense or polymerize, in the presence of acid, to form water insoluble polymers.
Hereinafter, type (a) and (b) materials will sometimes be referred .to as methylenating agents and type (c) materials will be referred to collectively as aldehyde resins.
Aldehyde-s and dialdehydes such as formaldehyde, glyoxal, acetaldehyde, chloral, benzaldehyde, furfural and the like are some of the typical aldehydes which, per se, are useful fabric finishing agents.
Some typical compounds which upon heating, either alone or in the presence of acids, will release or liberate aldehydes, and which are useful as finishing agents are: the methylol-ketones, para-formaldehyde, trioxane, and the like.
Some typical thermosetting aldehyde resins which are useful as fabric finishing agents are the methylol ureas, the methylated methylol ureas, the methylol melamines, the methylated rnethylol melamines, etc.
Some typical reactive aldehyde resins which are useful as fabric finishing agents are the lower alkylene methylol ureas (e.g., dimethylol ethylene urea, tetramethylol diacetylene urea, the methylol triazones, and their methylated derivatives) and the related compounds having one or more hydroxy group substituted for hydrogen atoms in the alkylene chain (e.g., dihydroxy dimethylol ethylene urea).
All such aldehydic materials, and many other related materials, have heretofore been used or proposed for use as fabric finishing agents for imparting many different types of finishing effects to all kinds of textile fabrics and textile products (of animal, vegetable and synthetic origin). All such aldehydic finishing agents are useful in connection with the present invention, provided they are sufficiently stable at room temperature and under acid pH conditions to enable the material to be applied to the fabric co-jointly with the catalyst without precipitating insolubilized resins or the like.
In all processes where aldehydic compounds are employed as finishing agents, the fabric, at some stage after the finishing agent has been applied to it, is cured by heating. The curing is carried out in the presence of a catalyst to accelerate the reaction or polymerization.
'ice
Depending on the type of aldehydic finishing agent employed, the curing treatment will either cause the finishing agent itself or aldehyde released from the finishing agent to react with the fabric, or in the case of the thermosetting aldehyde resins, the cure will cause the resin to primarily polymerize to a water insoluble stage although some reaction with the fabric may also occur.
Heretofore many different acidic substances have been employed as curing catalysts. However, all such substances can be generally characterized as falling into two distinct categories, (1) acids per se, and (2) potentially acid substances; the latter being materials which are almost neutral or in some cases even alkaline in aqueous solution and which, upon heating to temperature above about (3., form an acid curing environment by releasing a strongly acidic material. Hereinafter, when I employ the term conventional catalysts, it is intended to cover both the aforementioned types of acidic catalytic materials.
With the straight acid catalysts, the pH of the impregnating bath and that of the cured fabric are approximately the same. This however, will depend somewhat on the buffering action of the finishing agent. With the potentially acid catalysts, the pH of the cured fabric will be lower than that of the impregnating bath.
The use of conventional catalysts give rise to certain objectionable features, not only in the processing operations but also in the properties of the finished fabric.
Productwise, one of the most significant objections attributed to the use of conventional catalysts is the loss of strength due to hydrolysis or acid degradation'of the fabric. Strength losses due to hydrolysis to be diifercn' tiated from an apparent strength losses due to embrittlement or the loading of the fabric with hardened resins. Hydrolysis involves changing the chemical nature of the fabric and can be caused by the action of the catalyst. The extent of hydrolysis is governed by several factors including the type of catalyst, its concentration, and the curing conditions (time and temperature) employed.
Even with the milder acids such as tartaric acid, the catalyst concentration is an important factor and must be regulated precisely; however, strength losses due to hydrolysis can be controlled by carefully curing the fabric under relatively mild curing conditions and by employing relatively low concentrations of the catalyst (0.25% to 1% However, with the milder acids, it is usually necessary to employ higher temperature cures in order to obtain a satisfactory degree of resilience and durability in the finish effect. It is, therefore, difficult, if not impossible, to obtain a desired degree of resilience and durability without altering the curing conditions or catalyst concentration to an extent where objectionable strength losses will occur through fabric degradation.
For a given finishing agent, the same factors (catalyst type, catalyst concentration, and curing conditions) will also influence and affect other properties of the finished fabric, especially hand, drapeability, resilience, durability of the finish effect, wash and wear properties, etc. There is no absolute correlation as to how the various properties will be influenced. Generally speaking, however, factors which would tend to increase the resilience or durability and wash and wear properties also tend to adversely affect the strengthboth tear and tensile. It is exceedingly difiicu -lt to achieve a desirable balance of properties, i.e., a highly durable and resilient fabric with good wash and Wear properties, without unduly weakening of the fabric. Conversely, in order to strengthen the fabric by minimizing strength losses, the various factors must be adjusted in such a way that inevitably the resiliency and the wash and wear durability of the finish are reduced.
As previously noted, the hand and drapeability of the fabric can also be influenced and affected by the aforesaid factors. However, the variations in these properties are not of as much significance as strength, resilience, durability, and wash and wear properties, since corrective modifications can be effected by various after treatments, e.g., the addition of softeners,1passing the fabric through button breakers, and the like.
If a relatively strong conventional acid catalyst such as hydrochloric acid is used as the curing agent, the catalyst must be used in very small and critical amounts, e.g., by applying the catalyst in concentrations which will deposit on the fabric less than 0.1;% of the catalyst based on the fabric Weight. In such cases, only a slight increase in the concentration has a very significant effect, and strength losses due to degradation become very noticeable. Because the maximum permissible catalyst concentration is very low, it is almost impossible, in full scale commercial runs, to uniformly distribute the catalyst in the critical concentration needed for efiicient curing and the end results accordingly are quite unpredictable; some portions of the fabric will be highly hydrolyzed and the fabric exceedingly weakened.
With the weaker acids such as succinic acid, in order .to fully harden or set the resin or cause the aldehyde to react with the fabric so as to enhance the durability, resilience, wash and wear, etc., it is necessary to employ either very high temperature cures or prolonged heating at somewhat lower temperatures. However, in either case hydrolysis will occur to an objectionable degree when the harder cures are employed.
Similanly, with some types of aldehydic finishing agents, especially with methylenating agents such as formaldehyde and ketone-aldehyde precondensates the conventional catalysts were totally unsatisfactory eventhough extreme efforts were made to regulate the curing conditions. It was practically impossible to obtain uniform properties throughout the fabric; some portions would be objectionab'ly tendered and in other portions the degradation would be less perceptible; the resilience, durability and other properties will also be found to vary quite :unpredictably. Hence, despite the known desirability using formaldehyde and other methylenating agents as finishing agents, the difiiculty of effectively controlling the process are so great and unpredictable that until the advent of my special catalyst system methylenating agents, per se, were not used in commercial fabric finishing operations.
In order to overcome the foregoing objections, it is one of the objects of this invention to provide a catalyst system and finishing process which is useful in the curing of finishes imparted by all types of aldehydic finishing agents, and which will impart a highly desirable balance of properties by minimizing strength losses in fabrics having high resiliency and high durability.
It is another object of this invention to provide a catalyst system and finishing process which will enable certain aldehydic materials to be used as finishing agents particularly methylenating agents-which heretofore could not be so used effectively.
7 Still anotherobject of the invention is to provide a catalyst system and finishing process which can be used in such concentrations so that minor variations thereof,
as inevitably occur in making up the pad bath and in are achieved by a catalyst system comprising an acid component and an acid salt component, which components, under the heating employed to cure the fabric carrying the finishing agent, are capable of forming in the fabric a residue which imparts to the fabric a lower acidity (higher pH) than that of the acid-acid salt combination prior to heating.
With respect to the acid component for use in the catalyst system of the present invention, it may be an organic or inorganic acid or acid anhydride such as maleic, tartaric, hydrochloric, phosphoric, citric, itaconic, succinic, and the like. I prefer, however, to employ polybasic acids, and especially non-volatile organic acids having an acidity at least equal to 0.1% citric acid'solution since catalyst systems prepared therefrom in ac- COI-ClHHCC'Wlih the present invention will develop the desired degree of acidity for efficient finishing and will not, under the finishing conditions for treating the fabric, develop acidity to a degree which will seriously degrade the fabric being treated. Acids which are weakly acidic such as boric acid, are not well suited for purposes of this invention as they do not permit efficient finishing within the time and temperature relationship in equipment used for commercial finishing. Weak acids which are readily volatile under the processing conditions, e.g.', formic acid, cannot be eifectively used as they will be driven off before a satisfactory cure can be effected. Other highly desirable characteristics of the acid component are that it should be one which with the acid salt component, will not form a water insoluble residue during the heating to cure the fabric. .In general, the useful acids are those which will provide a pH in the impregnating bath of from about 1.5 to 5.5.
The preferred acid salts for use in the catalyst system of this invention are the metal salts of either organic or inorganic acids of the Lewis acid type (i.e., an electron acceptor) and especially the polyvalent metal salts of such acids. The Lewis acid salts of monovalent metals'with polybasic acids can also be used effectively. Where White goods are to be finished, I prefer to employ thosesalts of the Lewis acidtype which form substantially colorless aqueous solutions. Examples of acid salts which have been found to be especially useful are magnesium nitrate, strontium nitrate, aluminum chloride, zinc chloride, sodium bisulfate, zirconium oxychloride, aluminum acetate, chromium acetate, and the like.
In general, the useful acid-acid salt combinations are those which, when applied to a fabric as a pure aqueous solution of the catalyst components and heated to temperatures of about 250 to 300 F., will form in the fabric a residue (preferably water soluble residue) which will impart to the'fabric'a pH that is at least 2, and preferably about 2.3 or more, higher than the pH of the pure aqueous solution of the catalyst components.
Where one or more of these preferred acid salts are used in combination with the preferred acids, the catalyst system will permit'eflicient finishing of the fabric so as to impart a highly resilient, durable finish with good wash and wear properties and with a minimized loss in strength.
catalyst system to the fabric to be treated from the same impregnating bath, as only a single operation is thereby required. It is also possible to apply the finishing agent and the individual catalyst componentsin separate operations and in any desired sequence-such multistep appli It is preferred to apply the finishing'agent and the MEL.
oneness the bath weight, and where it is desired to increase or decrease the amount of the finishing agent or where the finishing agent is known to exert a strong buffering action (e.g., the kctone-aldehyde precondensates), the total catalyst weight should be adjusted accordingly. The bath can if desired also contain buffers and other conventional processing aids or finishing materials such as softeners, wetting agents, tinting agents, and the like.
The relative ratio of the acid component to the acid salt component can vary over a wide range provided that the combination is one which will develop, under the curing conditions involved, an acidity which the suificient to enable the finish effect to be fixed efficiently, and do this without objectionably degrading the fabric. To prevent objectionable fabric degradation, the combination should be one which alone and under the heating conditions involved, will form a residue in fabric which will impart thereto a pH which is at least 2 points higher than that of the catalyst components in pure aqueous solution. Combinations of many different acids with many different types of Lewis acid salts in many widely varying ratios Will be found to give this inverse pH relationship and the following illustrations will serve to show particularly useful combinations which have been found to give an optimum balance of properties when used for curing cellulosic with different aldehydic finishing agents and fabrics.
Where the catalyst system is intended to be used for the finishing of natural cellulose fabric with formaldheyde or with aldehyde liberating materials which do not exert strong buffering action so as to effect a partial methylenation of the cellulose, I prefer to employ those systems which have the acidity characteristics below 200 P. which will not appreciably catalyze the methylenation reaction and which develop an acid methylenating environment at temperature between 200 and 400 F. Catalysts having acidity characteristics approximating those formed by the combination citric acid (2 pounds), strontium nitrate (3 pounds) and magnesium nitrate hexahydrate (4 pounds) in impregnating baths containing about 3 to of the finishing agent made up to 100 gal. with water (i.e., the total catalyst system is approximately 1% of the weight of the bath and is sometimes hereinafter referred to as the 2-3-4 catalyst), have been found especially useful.
Where the catalyst system is intended to be used for the finishing of natural cellulose fabric or regenerated cellulose fabric with aldehyde resins in bath concentrations about 3 to 12%, the 2-3-4 catalyst can be effectively used and so too can a catalyst formed by the combination of citric acid (2 pounds) and magnesium nitrate hexahydrate (7 pounds). This is sometimes hereinafter referred to as the 2-7 catalyst.
Where the catalyst system is intended to be used for the finishing of regenerated cellulose fabric with a moth ylenating type aldehydic finishing agent, I prefer to employ those systems which have the acidity characteristics approximating those formed by the combination citric acid (5 pounds) and magnesium nitrate hexayhdrate (12 pounds) in an impregnating bath made up to 100 gal. with water (i.e., the total catalyst system is approximately 2% of the weight of the bath and is sometimes hereinafter referred to as the 542 catalyst), have been found especially useful.
Any of the foregoing catalyst systems (i.e., the 2-3-4, the 2-7, and the 5-12 catalysts) exhibit rather similar acidity characteristics at temperatures ranging from room temperature up to where the fabric itself is heated to temperatures as high as 400 F. Curing by infra-red heatwhere the fabric is momentarily exposed to very high temperatures, can also be used in conjunction with the process and catalyst system of this invention. In such cases, the fabric itself does not reach the temperature of the heating means.
When the finishing agent is applied from a pad bath to give 60 to 70% pick-up, I prefer to employ the catalyst system of this invention in concentrations which constitute from about /2 to 3% of the bath weight, nevertheless, it is possible by varying other factors such as the solution pickup or the curing conditions to employ baths in which the catalyst constitutes higher or lower percentages of the bath weight. However, where the total quantity of catalyst applied to the fabric is appreciably in excess of about 10% of the fabric weight there is a strong possibility of objectionably degrading the fabric.
The following examples will serve to illustrate in greater detail some of the various features of the invention. While the following examples are primarily concerned with treating cellulosics to impart an all-over non-mechanical finish effect to the fabric, the process and catalyst system should not be deemed to be limited thereby. Both the method and the catalyst system can be effectively utilized in any other type of fabric finishing process where it is necessary to cure one or more aldehydic finishing agents which have been applied to the fabric. Such other processes may involve localized or all-over application of the finishing agent, and if desired, the process may also involve mechanically treating the fabric to alter the shape and relative disposition of the yarnsas for example by calendering, pleating, rufiiing, and the like.
Example 1 A pure cotton x 80, running 4.00 yds/lb.) was padded through an impregnating bath having the following formulation:
Percent bath Weight 37% formaldehyde 12.5 Citric acid .25 Strontium nitrate .38 Magnesium nitrate hexahydrate 50 Water Balance The solution pick-up was adjusted to 60% based on the fabric weight. The fabric was dried and thereafter cured by heating for 3 minutes at 300 F. The resulting wash and Wear finish was highly durable and resilient; and the strength losses were considerably lower than losses previously encountered using formaldehyde as a finishing agent, particularly in view of the high durability of the Wash and Wear properties.
Example 2 Example 1 was repeated but the strontium nitrate was replaced with 0.38% (additional) magnesium nitrate. The over-all properties of the fabric finished in this way were of a very high order and only slightly inferior to the property balance obtained in Example 1.
Example 3 Example 4 Example 3 was repeated using the 2-7 catalyst of Example 2 instead of the 2-34 catalyst. The results were generally comparable to those obtained in Example 3.
Example 5 Examples 3 and 4 were repeated except that 10% methylated methylol melamine was substituted for the dimethylol ethylene urea and with very similar results. The wash and wear durability and resilience of the fabrics cured at 240 were of about the same order as those cured at 300; and the fabrics cured at 240 were somewhat stronger.
7 Example 6 Example 1 was repeated except that 9.5% Rhonite D-12 (a methylol triazone) was substituted for formaldehyde. The cured fabric had an excellent balance of properties from the standpoint of strength, resilience and wash'and wear durability.
Example 7 Example 1 was repeated using the following formulation for the pad bath and curing at 240 F. for minutes:
Percent of bath weight Ketone-aldehyde precondensate 46 Citric acid 1 Strontium nitrate 1.5 Magnesium nitrate hexahydrate 2.0 Water Balance v1. In a catalyst system for the heat curing of fabric' which has been treated with aldehydic textile finishing agents wherein the active ingredients of said system consist essentially of an acid component and an acid salt component, the improvement characterized in that the acid salt component is a polyvalent metal salt of a Lewis acid, the acid component is a non-volatile polybasic organic acid capable of imparting a pH of from 1.5 to 5.5 to impregnating baths containing from about 0.5 to 3.0% by weight of the catalyst and said system being further characterized in that the catalyst components will, when heated in the presence of a textile, form a residue having a pH of at least 2 higher than that of the acid-acid salt combination prior'to heating.
2. The system according to claim 1 wherein the residue formed by the acid-acid salt combination is water soluble.
3. The system according to claim 1 characterized in that aqueous solution of said salt are substantially colorless. a
. 4. The system according to claim 1 wherein the acid component is citric acid.
5. The'system according to claim 1 wherein the acid salt component is magnesium nitrate.
6. A composition according to claim 1 wherein the acid component is citric acid and the acid salt component is magnesium nitrate.
7. A composition according to claim 1 wherein the acid component is citric acid and the acid salt component is a mixture of magnesium nitrate and strontium nitrate.
8. A catalyst system whose active ingredients consist essentially of a mixture of citric acid and magnesium nitrate hexahydrate Where the Weight ratio of the citric acid to the magnesium nitrate is 2 to 7.
9. A catalyst system whose active ingredients consist essentially of a mixture of citric acid, strontium nitrate and magnesium nitrate hexahydrate where the weight ratio of said components are 2-3-4 respectively.
10. A catalyst system whose active ingredients consist essentially of a mixture of citric acid and magnesium nitrate Where the weight ratio of the citric acid to the magnesium nitrate is 5 to 12.
References Cited by the Examiner UNITED STATES PATENTS 4 1,223,123 4/17 Sulzberger 252428 2,181,640 11/39 Deanesly et'al 252-428 2,205,120 6/40 Heberlein 8116.4 2,233,402 3/41 Cresswell 1 8 -1164 2,512,195 6/50 Bener 8-115.6 2,525,144 10/50 Mavity 252-428 2,530,175 11/50 Pfeffer et al 8116.4 2,774,691 12/56 Schroeder et al 8116.4 X 2,816,887 12/57 Lamborn 252-428 2,957,746 10/60 Buck et a1 8116.3 X 3,018,262 1/ 62 Schroeder 117-139.4
FOREIGN PATENTS 526,098 9/40 Great Britain.
TOBIAS E. LEVOW, Primary Examiner.

Claims (1)

1. IN A CATALYST SYSTEM FOR THE HEAT CURING OF FABRIC WHICH HAS BEEN TREATED WITH ALDEHYDRIC TEXTILE FINISHING AGENTS WHEREIN THE ACTIVE INGREDIENTS OF SAID SYSTEM CONSIST ESSENTIALLY OF AN ACID COMPONENT AND AN ACID SALT COMPONENT, THE IMPROVEMENT CHARACTERIZED IN THAT THE ACID SALT COMPONENT IS A POLYVALENT METAL SALT OF A LEWIS ACID, THE ACID COMPONENT IS A NON-VOLATILE POLYBASIC ORGANIC ACID CAPABLE OF IMPARTING A PH OF FROM 1.5 TO 5.5 TO IMPREGNATING BATHS CONTAINING FROM ABOUT 0.5 TO 3.3% BY WEIGHT OF THE CATALYST AND SAID SYSTEM BEING FURTHER CHARACTERIZED IN THAT THE CATALYST COMPONENTS WILL, WHEN HEATED IN THE PRESENCE OF A TEXTILE, FORM A RESIDUE HAIVNG A PH OF AT LEAST 2 HIGHER THAN THAT OF THE ACID-ACID SALT COMBINATION PRIOR TO HEATING.
US838823A 1958-09-24 1959-09-16 Catalyst system for heat curing of fabrics Expired - Lifetime US3186954A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
NL243632D NL243632A (en) 1958-09-24
NL247426D NL247426A (en) 1958-09-24
US804858A US3139322A (en) 1958-09-24 1959-04-17 Fabric resination
US838823A US3186954A (en) 1958-09-24 1959-09-16 Catalyst system for heat curing of fabrics
GB32207/59A GB936993A (en) 1958-09-24 1959-09-22 Catalyst and process for the heat curing of fabric
FR805839A FR1236421A (en) 1958-09-24 1959-09-23 Catalyst and method for heat treatment of tissue
CH7860059A CH369103A (en) 1958-09-24 1959-09-24 Stable catalyst capable of accelerating thermal curing of the primer obtained by applying aldehyde agents to cellulosic textiles
GB459/60A GB945040A (en) 1958-09-24 1960-01-06 Improvements in the treatment of natural cellulose fabrics
FR817744A FR1252256A (en) 1958-09-24 1960-02-05 Process for treating textiles and products conforming to those obtained
US94111A US3165374A (en) 1958-09-24 1961-02-17 Process of partially methylenating cellulose textiles
US204070A US3212928A (en) 1958-09-24 1962-06-21 Catalyst system for fabric finishing process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76293458A 1958-09-24 1958-09-24
US80485759A 1959-04-17 1959-04-17
US804858A US3139322A (en) 1958-09-24 1959-04-17 Fabric resination
US838823A US3186954A (en) 1958-09-24 1959-09-16 Catalyst system for heat curing of fabrics

Publications (1)

Publication Number Publication Date
US3186954A true US3186954A (en) 1965-06-01

Family

ID=27505693

Family Applications (2)

Application Number Title Priority Date Filing Date
US804858A Expired - Lifetime US3139322A (en) 1958-09-24 1959-04-17 Fabric resination
US838823A Expired - Lifetime US3186954A (en) 1958-09-24 1959-09-16 Catalyst system for heat curing of fabrics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US804858A Expired - Lifetime US3139322A (en) 1958-09-24 1959-04-17 Fabric resination

Country Status (5)

Country Link
US (2) US3139322A (en)
CH (1) CH369103A (en)
FR (1) FR1236421A (en)
GB (2) GB936993A (en)
NL (2) NL243632A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374107A (en) * 1963-08-14 1968-03-19 West Point Pepperell Inc Process for the treatment of textiles with aminoplasts
US3527658A (en) * 1968-08-23 1970-09-08 Us Agriculture Low temperature catalysts for cellulose etherifications
US3549419A (en) * 1965-10-19 1970-12-22 Du Pont Catalytic method for cleaning soiled oven surfaces
US3634019A (en) * 1967-09-14 1972-01-11 Proctor Chemical Co Inc Metal acetate-acidic catalyst system for cellulosic fabric treatment
US3731411A (en) * 1971-06-11 1973-05-08 Burlington Industries Inc Process for producing durable press textiles
US3765836A (en) * 1970-03-04 1973-10-16 Union Carbide Corp Process for creaseproofing cellulose-containing fabric with glyoxal-urea-formaldehyde reaction product and a boron compound
US3890095A (en) * 1967-04-05 1975-06-17 American Cyanamid Co Cellulosic textile finish with 1,3-dimethylol-4,5-dihydroxy-2-imidazolidinone, zinc nitrate and a sequestering agent
US3960483A (en) * 1974-07-05 1976-06-01 The Strike Corporation Durable press process employing alkyl sulfonic or sulfuric acid
US4067688A (en) * 1974-07-05 1978-01-10 The Strike Corporation Durable press process for cellulosic fiber-containing fabrics utilizing formaldehyde and an aryl sulfonic liquid or acid catalyst
US4224030A (en) * 1979-01-05 1980-09-23 The United States Of America As Represented By The Secretary Of Agriculture Durable press finishing treatment for cellulose textiles employing an aluminum acetate catalyst solution

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287083A (en) * 1961-06-30 1966-11-22 Bancroft & Sons Co J Formaldehyde modification of cellulose catalyzed by a lewis acid salt and formic acid generated in situ by a peroxide
CH235169D (en) * 1968-03-16
EP1094133A1 (en) * 1999-10-19 2001-04-25 Stefan Graichen Corrosion inhibitor comprising methylol melamine
JP2011514187A (en) * 2008-02-15 2011-05-06 プレイテックス プロダクツ エルエルシー Tampons with cross-linked cellulose fibers and improved synthetic methods for their production

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1223123A (en) * 1916-09-05 1917-04-17 Nathan Sulzberger Method of packing catalytically-useful substances.
US2181640A (en) * 1935-08-26 1939-11-28 Shell Dev Process and products relating to production of valuable hydrocarbons
US2205120A (en) * 1936-12-29 1940-06-18 Heberlein Patent Corp Process for rendering cellulosecontaining material crease-resistant and products obtained thereby
GB526098A (en) * 1938-12-07 1940-09-11 Calico Printer S Ass Ltd Improved process for the finishing of cellulosic textile materials
US2233402A (en) * 1939-01-20 1941-03-04 North American Rayon Corp Process of stiffening regenerated cellulose
US2512195A (en) * 1939-03-04 1950-06-20 Bener Christian Method of waterproofing cellulose textiles
US2525144A (en) * 1948-08-26 1950-10-10 Universal Oil Prod Co Manufacture of improved solid phosphoric acid catalyst
US2530175A (en) * 1946-09-27 1950-11-14 Cluett Peabody & Co Inc Stabilization of regenerated cellulose
US2774691A (en) * 1954-09-21 1956-12-18 Shell Dev Treatment of textile materials and product
US2816887A (en) * 1953-04-03 1957-12-17 Hereules Powder Company Lower fatty acid acylation of cellulose and catalyst therefor
US2957746A (en) * 1957-01-11 1960-10-25 Nat Cotton Council Of America Process of inducing a crease into creaseproofed cellulose fabrics by treating with an acid catalyst and hot pressing a crease in the treated area
US3018262A (en) * 1957-05-01 1962-01-23 Shell Oil Co Curing polyepoxides with certain metal salts of inorganic acids

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE407488A (en) * 1934-01-25
US2412832A (en) * 1943-10-30 1946-12-17 Cluett Peabody & Co Inc Textile material and method of preparing it
US2436076A (en) * 1946-09-27 1948-02-17 Cluett Peabody & Co Inc Method of stabilizing against shrinkage textile materials of regenerated cellulose
BE500666A (en) * 1950-01-17

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1223123A (en) * 1916-09-05 1917-04-17 Nathan Sulzberger Method of packing catalytically-useful substances.
US2181640A (en) * 1935-08-26 1939-11-28 Shell Dev Process and products relating to production of valuable hydrocarbons
US2205120A (en) * 1936-12-29 1940-06-18 Heberlein Patent Corp Process for rendering cellulosecontaining material crease-resistant and products obtained thereby
GB526098A (en) * 1938-12-07 1940-09-11 Calico Printer S Ass Ltd Improved process for the finishing of cellulosic textile materials
US2233402A (en) * 1939-01-20 1941-03-04 North American Rayon Corp Process of stiffening regenerated cellulose
US2512195A (en) * 1939-03-04 1950-06-20 Bener Christian Method of waterproofing cellulose textiles
US2530175A (en) * 1946-09-27 1950-11-14 Cluett Peabody & Co Inc Stabilization of regenerated cellulose
US2525144A (en) * 1948-08-26 1950-10-10 Universal Oil Prod Co Manufacture of improved solid phosphoric acid catalyst
US2816887A (en) * 1953-04-03 1957-12-17 Hereules Powder Company Lower fatty acid acylation of cellulose and catalyst therefor
US2774691A (en) * 1954-09-21 1956-12-18 Shell Dev Treatment of textile materials and product
US2957746A (en) * 1957-01-11 1960-10-25 Nat Cotton Council Of America Process of inducing a crease into creaseproofed cellulose fabrics by treating with an acid catalyst and hot pressing a crease in the treated area
US3018262A (en) * 1957-05-01 1962-01-23 Shell Oil Co Curing polyepoxides with certain metal salts of inorganic acids

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374107A (en) * 1963-08-14 1968-03-19 West Point Pepperell Inc Process for the treatment of textiles with aminoplasts
US3549419A (en) * 1965-10-19 1970-12-22 Du Pont Catalytic method for cleaning soiled oven surfaces
US3890095A (en) * 1967-04-05 1975-06-17 American Cyanamid Co Cellulosic textile finish with 1,3-dimethylol-4,5-dihydroxy-2-imidazolidinone, zinc nitrate and a sequestering agent
US3634019A (en) * 1967-09-14 1972-01-11 Proctor Chemical Co Inc Metal acetate-acidic catalyst system for cellulosic fabric treatment
US3527658A (en) * 1968-08-23 1970-09-08 Us Agriculture Low temperature catalysts for cellulose etherifications
US3765836A (en) * 1970-03-04 1973-10-16 Union Carbide Corp Process for creaseproofing cellulose-containing fabric with glyoxal-urea-formaldehyde reaction product and a boron compound
US3731411A (en) * 1971-06-11 1973-05-08 Burlington Industries Inc Process for producing durable press textiles
US3960483A (en) * 1974-07-05 1976-06-01 The Strike Corporation Durable press process employing alkyl sulfonic or sulfuric acid
US4067688A (en) * 1974-07-05 1978-01-10 The Strike Corporation Durable press process for cellulosic fiber-containing fabrics utilizing formaldehyde and an aryl sulfonic liquid or acid catalyst
US4224030A (en) * 1979-01-05 1980-09-23 The United States Of America As Represented By The Secretary Of Agriculture Durable press finishing treatment for cellulose textiles employing an aluminum acetate catalyst solution

Also Published As

Publication number Publication date
GB945040A (en) 1963-12-18
US3139322A (en) 1964-06-30
NL247426A (en)
CH369103A (en) 1963-05-15
NL243632A (en)
GB936993A (en) 1963-09-18
FR1236421A (en) 1960-07-15

Similar Documents

Publication Publication Date Title
US3186954A (en) Catalyst system for heat curing of fabrics
US2242218A (en) Sizing textiles
US3138802A (en) Process for imparting durable creases, wrinkle resistance and shape retention to cellulosic textile articles
GB547846A (en) Improvements in or relating to the aldehyde treatment of cellulosic textile materials
GB890515A (en) Preventing odours in filamentary or sheet material treated with thermosetting aldehyde resins
US3165374A (en) Process of partially methylenating cellulose textiles
US2901463A (en) Compositions, textiles treated therewith and processes for the treatment thereof
US2898238A (en) Process for treating textiles with ethylene urea-formaldehyde reaction products
US2846337A (en) Magnesium chloride catalyst for modified urea resins
US2661312A (en) Textile finishing composition and method of treating textile materials therewith
US4331438A (en) Process for eliminating free formaldehyde in textile materials treated with dimethylolated carbamates
US2219375A (en) Process of treating textiles and product
US3380850A (en) Treatment of synthetic polyamide textile material to improve its moisture absorbency and to reduce its electrification and soiling tendencies
US2504857A (en) Art of imparting crease resistance to cotton fabrics
US3546006A (en) Wet-fixation process for cellulosic fabrics using low add-ons of resins
US2785145A (en) Siliconate-aminoplast compositions and textiles coated therewith
US2602018A (en) Monomethylol dimethyl hydantoin and dimethylol urea to shrinkproof and creaseproof cellulose fabrics
US3015584A (en) Wrinkle resistance treatment for cellulosic textile fabrics
US2491454A (en) Nonslip fabrics and method of preparation thereof
US3317345A (en) Rot-resistant finish for textile materials
US3039167A (en) Method for improving the properties of fabrics containing cross-linked regenerated cellulose material
US2967787A (en) Fabric finishing with heat hardenable resin
US3183195A (en) Methylenation catalyst
US3084071A (en) Aluminum salts as curing accelerators for aminoplast resins
US3212928A (en) Catalyst system for fabric finishing process