US3168139A - Converting drilling muds to slurries suitable for cementing oil and gas wells - Google Patents

Converting drilling muds to slurries suitable for cementing oil and gas wells Download PDF

Info

Publication number
US3168139A
US3168139A US10827961A US3168139A US 3168139 A US3168139 A US 3168139A US 10827961 A US10827961 A US 10827961A US 3168139 A US3168139 A US 3168139A
Authority
US
United States
Prior art keywords
drilling
cement
gallons
mud
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Harvey T Kennedy
Paul B Crawford
Jr James T Hancock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon Corp
Original Assignee
SGL Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon Corp filed Critical SGL Carbon Corp
Priority to US10827961 priority Critical patent/US3168139A/en
Application granted granted Critical
Publication of US3168139A publication Critical patent/US3168139A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • C04B18/049Wastes from oil or other wells, e.g. drilling mud
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/145Clay-containing compositions characterised by the composition of the clay
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • This invention relates to a process of and materials for cementing oil and gas wells, usually and preferably for the purpose of securing pipe in place in the well, and shutting oif undesirable fluids which might otherwise enter the well. More particularly, the invention relates to a process which comprises employing a drilling fluid, preferably that with which the well has been drilled, as a component of the slurry used to cement the well. The invention also relates to novel slurry compositions of which the drilling fluid is an essential component.
  • cementitious material placed in the annular space between a well casing and the well bore.
  • the primary function is to form a permanent seal to prevent fluids in upper strata behind the casing from travelling downward around the bottom of the casing and into the well.
  • Other functions include protecting the casing, where cemented, against collapse due to external pressures, preventing migration of fluids from one stratum to another, and preventing blowouts from high pressure gas behind the casing.
  • Cement is usually also placed in a portion of the open hole below the casing, and this is for the purpose of shutting ofl water coming from the bottom of the well or from some intermediate stratum below the bottom of the casing.
  • Drilling fluids are required for drilling wells by the socalled rotary method. They are circulated down the drill-stem and up the annulus between the drill-stem and the Wall of the hole to carry out the drilling chips, to cool and lubricate the bit and to prevent the escape of water, oil or gas from the formations penetrated by the drill.
  • a drilling fluid must have a viscosity which will allow it to be circulated at high rates without excessive pump pressure and also a density such that the pressure of all deposits of water, oil and gas will be more than counterbalanced by the hydrostatic head of drilling fluid in the hole.
  • Such fluids must also have a colloidal nature that will prevent water loss and thereby prevent any substantial filtering out of their contained solids on the wall of the drilled hole, thus avoiding their accumulation, with subsequent sticking or freezing of the drill stem and bit in the hole.
  • Weighting material such as finely powdered barium sulfate
  • Tannins, or tannin-containing extracts are added along with alkaline compounds, to lower the fluids viscosity.
  • Colloidal substances such as starch, bentonite, gums or carboxy-methyl-cellulose, are employed to reduce the tendency of the fluid to form a thick filter-cake on the wall of the hole.
  • water is added almost constantly in order to compensate partially for the filtrate lost to the formation by filtration and for the solids added by drilling.
  • cementing slurries elTective for the purpose of securing pipe in place in a well, as well as for other purposes, can be made from mixtures of cement and drilling fluids, if one proceeds in accordance with teachings of this invention.
  • the drilling fluid is preferably the fluid with which the well to be cemented was drilled.
  • the advantages of this invention over present practice include the utilization of valuable collodial material contained in the drilling fluid, which is otherwise discarded, as well as the provision of better colloidal properties than is normally obtainable in a cement mixture.
  • Such improved colloidal properties result from the extended period of hydration and deflocculation available while the drilling fluid is circulated, compared with perhaps an hour available when colloidal material is added to a cement slurry in the usual manner.
  • Another advantage of the process of this invention is that wells that require heavy drilling fluids generally also require heavy cement slurries, and that this density requirement may frequently be met by using the fluid as a constituent of the slurry as described herein. In such cases, the cost of extra weighting material, as well as that of colloidal matter, is saved.
  • Still another advantage of this process is that the better dispersed colloidal matter obtainable from the drilling fluid gives less fluid loss from the cementing slurry to the wall of the hole. This also results in less chance of premature setting because of dehydrated cement.
  • a further advantage results from the fact that mud pumps are available and already connected up to take the drilling fluid from the pits containing it. This eflects a considerable saving in time and expense in carrying out the cementing process.
  • the manner in which the invention is best carried out depends on a number of factors such as the type of drilling fluid which is to be converted, the strength of the set cement desired or required, the temperature encountered in the area where the cementing slurry is placed, the time available or required for the slurry to set, etc.
  • the drilling fluids which are employable in the preparation of the slurries of this invention normally comprise mixtures of natural clays, shales and sandstone ground up by the drill, together with residues of tannins, caustic soda and clayey and other colloidal material which have been added and not entirely lost during the process of drilling.
  • the major types of drilling muds including fresh-water muds, salt-water muds, calcium-treated muds, oil-emulsion muds, oil base muds and sodium silicate muds, may all be used.
  • Example 1 A well was drilled to a depth of 9600 feet in Vermillion Parish, Louisiana, with the aid of a drilling fluid or a drilling mud.
  • This drilling fluid or mud also possessed the following characteristics Solids, percent (by Weight) 44.4 Weight, lbs/gallon 11.4 Marsh funnel viscosity (1500 cc. in, 1 qt. out),
  • Example 2 The conversion of the drilling mud of Example 1 was repeated employing 10 pounds of calcium chloride per barrel of mud in the place of the 5 pounds of calcium sulfate. A compressive strength of 400 p.s.i. was obtained.
  • Example 3 The conversion of the drilling mud of Example 1 was repeated employing 5 pounds of sodium metasilicate per barrel of mud in the place of the 5 pounds of calcium sulfate. A compressive strength of 460 p.s.i. was obtained.
  • Example 4 The conversion of the drilling mud of Example 1 was repeated with the substitution of 5 pounds of Al (SO in the place of the 5 pounds of calcium sulfate. A compressive strength of 380 p.s.i. was obtained.
  • Example 1 It was also determined that the drilling fluid of Example 1 could be converted into a satisfactory slurry which would develop a compressive strength of 210 p.s.i. by adding 3 sacks of cement along with 5 gallons of water and 2.5 gallons of Brand D sodium silicate as defined hereinafter per barrel of mud and curing same for 24 hours at 140 F.; or one which would develop a compressive strength of 140 p.s.i. by adding 2 sacks of cement along with 3 gallons of water and 2.5 gallons of Brand D sodium silicate per barrel of mud and curing same for 24 hours at 1-80" F.
  • Example 5 A well was drilled to a depth of 13,477 feet in Cameron Parish, Louisiana, with the aid of a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of barium sulfate, bentonite, clay, caustic soda, carboxy-methyl-cellulose, oil, walnut hulls and mica flakes. It also had been converted into a gyp-base fluid by the addition of an excess of gypsum. This drilling fluid also possessed the following characteristics:
  • the sodium silicate employed was the Philadelphia Quartz Companys Brand D sodium silicate solution having an alkali-silica ratio of approximately 1:2.00, a gravity of 50.5 degrees Baurn (50.5 B.), and a viscosity of 3.5 poises.
  • the use of 3 sacks of cement, 2.5 gallons of the grade D sodium silicate and 27 gallons of water per barrel of mud resulted in a compressive strength of 270 p.s.i. on curing for 24 hours at F.
  • Two sacks of cement, 2.5' gallons of the same sodium silicate and 7 gallons of water per barrel of mud resulted in a compressive strength of 250 p.s.i. on curing for 24 hours at 180 F.
  • Example 6 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 17.5 gallons of water and 5 pounds of sodium metasilicate per barrel of mud. A compressive strength of 390 p.s.i. developed on curing for 24 hours at 100 F. The same slurry, without any sodium metasilicate added, developed a compressive strength of p.s.i.
  • Example 7 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 21 gallons of water, and 10 pounds of sodium metasilicate per barrel of mud- A compressive strength of 980 p.s.i. was obtained.
  • Example 8 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 21 gallons of Water and 3.1 gallons of grade N sodium silicate per barrel of mud. A compressive strength of 740 p.s.i. was obtained.
  • the sodium silicate employed was the Philadelphia Quartz Companys Brand N sodium silicate, ratio 1(Na O'):3.22(SiO used as 41.0 B. solution Sodium dichromate was also found to be effective in enhancing the compressive strength properties of the slurry of Example 5.
  • Example 9 A well was drilled to a depth of 8,705 feet in Hardin County, Texas, with the aid of a drilling fluid. During the drilling process, the fiuid had additions of various amounts of phosphates, quebracho (about 150 lbs.) and carboxy-rnethyl-cellulose (about 50 lbs.). The drilling fiuid contained no oil weighting material, lime or gypsum. This drilling fluid also possessed the following characterrstics:
  • Example 9 The conversion of the drilling mud of Example 9 was repeated employing 5 sacks of cement, 25 gallons of water, 5 pounds of calcium chloride and 5 pounds of sodium metasilicate per barrel of drilling fluid. A compressive strength of 250 p.s.i. developed on curing for 24 hours at 100 F. The employment of 10 pounds of calcium chloride rather than the above additive mixture also gave satisfactory results.
  • Example 11 The conversion of the drilling fluid of Example 9 was repeated using 5 sacks of cement, 25 gallons of water and 5 pounds of sodium metasilicate per barrel of drilling mud. A compressive strength of 210 p.s.i. developed on curing for 24 hours at 100 F.
  • a minimum satisfactory compressive strength for the purposes of this invention is approximately 100 p.s.i. and the strengths, therefore, obtained by the slurries of Examples 6, 9, 10 and 11 etc. are ample.
  • Example 12 A well was drilled to a depth of 9200 feet in Jefferson County, Texas, with the aid of a drilling mud. During the drilling process the fluid had additions of 250 pounds of tennis, 300 pounds of caustic soda, 300 pounds of quebracho, 15 barrels of diesel oil, 5 sacks of fillers, 5 sacks of Tut-Plug and some lime. This drilling fluid also possessed the following characteristics:
  • Example 13 The conversion of the drilling mud of Example 12 was repeated employing 5 sacks of cement, 17 gallons of Water and 5 pounds of aluminum sulfate per barrel of drilling mud. No sodium bicarbonate was employed. A compressive strength or 385 p.s.i. developed on curing for 24 hours at 100 F. The substitution of 5 pounds of anhydrous calcium sulfate for the aluminum sulfate resulted in a compressive strength of 340 p.s.i. and the substitution of 10 pounds of calcium chloride gave a compressive strength of 350 p.s.i.
  • Example 14 The drilling mud of Example 12 was converted in a manner identical to that example, except that no sodium silicate was employed A compressive strength of 345 p.s.i. was obtained. The conversion may also be effectively carried out by employing sodium silicate alone without the sodium bicarbonate.
  • lydrochloric acid and monosodium phosphate are examples of other materials which may also be used to lower the pH of the drilling mud or of the slurries.
  • Example 15 A well was drilled to a depth of 12,870 feet in Osson, Louisiana, with the aid of a drilling fiuid. During the drilling process, the fluid had additions of 250 pounds of lime (2.3 lbs/barrel of mud), 9% by volume of diesel oil, 300 pounds of caustic, 3 sacks of fine mica and some carboxy-methyl-cellulose. This drilling fluid also possessed the following characteristics:
  • Example 16 The conversion of the drilling mud of Example 15 was repeated by employing sodium bicarbonate in the place of the hydrochloric acid and by bringing the pH of the mixture to 10. Five pounds of sodium metasilicate per barrel of mixture was employed in the place of the D grade sodium silicate and a slurry was formed which obtained a compressive strength of 370 p.s.i. after curing for 24 hours at a temperature of 100 F. Without the sodium metasilicate, a compressive strength of 180 p.s.i. Was obtained.
  • Example 16 It was also determined that the drilling fluid of Example 16 could be converted into a satisfactory slurry which would develop a compressive strength of about 150 p.s.i. by adding 2 sacks of cement along with 8 gallons of water and 2.5 gallons of Brand D sodium silicate per barrel of mud and curing same for 24 hours at 180 F.; or one which would develop a compressive strength of 390 p.s.i. by adding 3 sacks of cement along with 10 gallons ofwater and 2.5 gallons of Brand D sodium silicate and curing same for 24 hours at 180 F.; or one which would develop a compressive strength of 350 p.s.i. by adding 5 sacks of cement along with 105 gallons of water and 6.3 gallons of Brand D sodium silicate and curing same for 24 hours at 140 F.
  • Example 17 Solids, percent by vol. 28 Solids, percent by weight 56.48
  • Example 18 The conversion of the drilling mud of Example 17 was repeated employing 5 sacks of cement, 18 gallons of water and 3.1 gallons of D Brand sodium silicate per barrel of mud. A compressive strength of 555 p.s.i. was obtained after curing for 24 hours at 100 F. A compressive strength of 650 p.s.i. was obtained under the same conditions when the water was increased to 34.5 gallons and the D sodium silicate was reduced to 2.5 gallons.
  • Satisfactory slurries were also prepared from the foregoing drilling mud when using only 3 sacks of cement and curing for 24 hours at 140 F. or 180 F.
  • Example 19 A well in Liberty County, Texas, was drilled to a depth of 8,920 feet with the aid of a drilling fluid. During the drilling process, the fluid had additions of gypsum,
  • This drilling fluid also possessed the following characteristics:
  • Example 20 The conversion of the drilling mud of Example 19 was repeated employing 5 sacks of cement, 28 gallons of water and 5 pounds of sodium metasilicate per barrel of drilling fluid. A compressive strength of 550 p.s.i. was obtained under the same conditions. The use of grades D and N sodium silicate solutions was also effective in converting the drilling fluid of Example 19 to a cementing composition having a high compressive strength when set.
  • a satisfactory slurry was also prepared from the foregoing drilling mud when using only 2 sacks of cement, no additional water and 2.5 gallons of D sodium silicate per barrel of mud and curing for 24 hours at F. or F.
  • Example 21 A well was drilled to a depth of 9,518 feet in Jeff Davis Count Louisiana, using a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of 15 gallons of caustic soda, 1500 pounds of lime, 750 pounds of quebracho, 8 sacks of fine mica and some carboxy-methyl-cellulose. This drilling fluid also possessed the following characteristics:
  • Example 22 The conversion of the drilling mud of Example 21 was repeated employing 5 sacks of cement, 46 gallons of water and 6.3 gallons of Brand D sodium silicate per barrel of drilling fluid. A compressive strength of 365 p.s.i. developed on curing for 24 hours at 180 F.
  • Example 23 A well was drilled to a depth of 16,434 feet in Cameron County, Louisiana, using a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of barium sulfate, bentonite, clay, caustic soda, gypsum (3.3 lbs/barrel), carboxy-methyl-cellulose, oil (10% by volume), and fine mica, fine walnut hulls and fine plastic totalling approximately 2 pounds per barrel.
  • Satisfactory slurries were also prepared from the foregoing drilling mud when using only 3 sacks of cement, 20 gallons of water and 2.5 gallons of D grade sodium silicate per barrel of mud and curing for 24 hours at 140 F. or 180 F.
  • Example 24 A Well was drilled to a depth of 9,415 feet using a chemical emulsion type drilling fluid. During the drilling process the fluid had additions of bentonite, soda ash, caustic soda, tannin, lignite and, as needed, rice hull and cedar in a 3:1 ratio. This drilling fluid also posssessed the following characteristics:
  • Example 25 A well in Cleveland County, Texas, was drilled to a depth of 7,307 feet using a drilling mud. During the drilling process, the fiuid had additions of bentonite, 150 lbs. of tannins, 52 lbs. of caustic, 50 lbs. of soda ash and barrels of oil. The drilling fluid also possessed the following characteristics:
  • Solids content percent by weight 13.1 Solids content, percent by volume 3
  • Example 27 A well was drilled in Andrews County, Texas, to a depth of 12,424 feet using a drilling mud. During the drilling process the fluid had additions of fresh water, starch, soda ash, bentonite and carboxymethyl-cellulose in an 8 to 1 ratio, and oil. The drilling fluid also possessed the following characteristics:
  • Example 28 A well was drilled in Ector County, Texas, to a depth of 6,130 feet using a drilling mud. During the drilling process the fluid had additions of brine water, strata fiber, crude oil (4 percent by volume), mica, soap and starch. The drilling fluid also possessed the following characteristics:
  • additives or formulations which are employed or techniques which are adopted in order to form a suitable slurry for cementing purposes will vary depending upon the composition of the starting drilling fluid material, the strength desired or sought for the final set product, etc. Sometimes additives will be employed and sometimes not. Water will generally, but not always, have to be added to make a pumpable slurry. When its use is necessary or advantageous, the amount of it employed may generally be widely varied. The type and amount of additive used, if employed, will also vary widely depending upon the above factors, but those employed in the various examples have been found particularly suitable.
  • the types of cement employed in the present invention and their amounts may also be varied depending upon the final product strength desired. About 5 sacks of cement each weighing about 94 pounds per barrel of mud is generally preferred but this amount may frequently be varied from about 2 to about 10 sacks. Hydraulic cements are generally preferred.
  • hydraulic cement this invention intends to include all mixtures of lime, silica, and alumina, or of lime and magnesia, silica and alumina and iron oxide (magnesia for example may replace part of the lime, and iron oxide a part of the alumina), as are commonly known as hydraulic cements.
  • Hydraulic cements include hydraulic limes, grappier cements, pozzolan cements, naural cements, calcium sulfate or gypsum cements (such as plaster of Paris) and Poi'tland cements.
  • Pozzolan cements include slag cements made from slaked lime and granulated blast furnace slag.
  • Portland cement is preferred among the hydraulic cements, but as the art of cements recognizes hydraulic cements as a definite class, and as results of value may be obtained with any member of that class, it is desired to claim all hydraulic cements.
  • modified hydraulic cements and Portland cements designated as high-early-strength cement, heat-resistant cement, and slow-setting cement may be used in the present invention.
  • compositions of the slurries of this invention are also formulated with consideration given to the depth of the well or borehole to be cemented and the consequent pressure and temperature conditions therein to be encountered.
  • the elevated temperatures and pressures encountered in deep wells will generally cause an increase in the compressive strengths of the se slurry compositions of this invention as is evident from the examples and generally also accelerate the setting time of these compositions. It may therefore sometimes be necessary to select suitable retarders or accelerators for employment with the slurry compositions of this invention, in,
  • An important feature of this invention is that slurries obtained by adding cement, water and other agents to drilling fluids are more compatible with the unaltered drilling fluid which must precede and follow the slurry as it is pumped down the hole. Less deterioration of the slurry results, along with less stiffening of the drilling fluid, and less channeling through the set cement than occurs when conventional cementing slurries are employed.
  • Facilities are generally available at a drilling rig or on cementing trucks to mix together the components described in this disclosure. They may involve screw conveyors for solid materials, hoppers and jet pumps, as are well known in the art. It is frequently desirable, to avoid very viscous mixtures, to first mix the mud with the required quantity of water before the addition of cement.
  • the process of securing in place a string of pipe in a borehole which comprises making a mixture slurry of aqueous drilling mud, hydraulic cement, water and an additive selected from the group consisting of calcium sulfate, calcium chloride, sodium metasilicate, aluminum sulfate, sodium silicate, ferrous sulfate, sodium dichromate and calcium hypochlorite and mixtures of same, pumping the mixture slurry down the string of pipe and up the annular space between the string of pipe and the walls of the drilled borehole, and allowing said slurry to set.
  • an additive selected from the group consisting of calcium sulfate, calcium chloride, sodium metasilicate, aluminum sulfate, sodium silicate, ferrous sulfate, sodium dichromate and calcium hypochlorite and mixtures of same
  • drilling mud comprises materials ground up by the Well drill as well as materials which have been added to the Well during the process of drilling.
  • drilling mud comprises materials ground up by the well drill as well as materials which have been added to the well during the process of drilling.

Description

United States Patent Oflice 3,168,139 Patented Feb. 2, 1965 QQNVERTHWG DRELLLNG MUDS T SLURREES SUITABLE FOR CEMENTENG OIL AND GAS WELLS Harvey T. Kennedy and Paul B. Crawford, Bryan, and James T. Hancock, In, Houston, Tex., assignors to Great Lakes Carbon Corporation, New York, N.Y., a corporation of Delaware No Drawing. Filed May 8, 1961, Ser. No. 108,279
19 Claims. (Cl. 166-49) This invention relates to a process of and materials for cementing oil and gas wells, usually and preferably for the purpose of securing pipe in place in the well, and shutting oif undesirable fluids which might otherwise enter the well. More particularly, the invention relates to a process which comprises employing a drilling fluid, preferably that with which the well has been drilled, as a component of the slurry used to cement the well. The invention also relates to novel slurry compositions of which the drilling fluid is an essential component.
Several functions are accomplished by the cementitious material placed in the annular space between a well casing and the well bore. Perhaps the primary function is to form a permanent seal to prevent fluids in upper strata behind the casing from travelling downward around the bottom of the casing and into the well. Other functions include protecting the casing, where cemented, against collapse due to external pressures, preventing migration of fluids from one stratum to another, and preventing blowouts from high pressure gas behind the casing. Cement is usually also placed in a portion of the open hole below the casing, and this is for the purpose of shutting ofl water coming from the bottom of the well or from some intermediate stratum below the bottom of the casing.
Drilling fluids are required for drilling wells by the socalled rotary method. They are circulated down the drill-stem and up the annulus between the drill-stem and the Wall of the hole to carry out the drilling chips, to cool and lubricate the bit and to prevent the escape of water, oil or gas from the formations penetrated by the drill. In order that these functions may be carried out, a drilling fluid must have a viscosity which will allow it to be circulated at high rates without excessive pump pressure and also a density such that the pressure of all deposits of water, oil and gas will be more than counterbalanced by the hydrostatic head of drilling fluid in the hole. Such fluids must also have a colloidal nature that will prevent water loss and thereby prevent any substantial filtering out of their contained solids on the wall of the drilled hole, thus avoiding their accumulation, with subsequent sticking or freezing of the drill stem and bit in the hole.
The properties required in a drilling fluid for proper performance are obtained by constant additions of various materials as the drilling of a well progresses. Weighting material, such as finely powdered barium sulfate, is added to provide increased weight over that obtained from the distintegrated clays and shales which are naturally added during the drilling process. Tannins, or tannin-containing extracts are added along with alkaline compounds, to lower the fluids viscosity. Colloidal substances such as starch, bentonite, gums or carboxy-methyl-cellulose, are employed to reduce the tendency of the fluid to form a thick filter-cake on the wall of the hole. In addition, water is added almost constantly in order to compensate partially for the filtrate lost to the formation by filtration and for the solids added by drilling.
In cementing a well after it is drilled to the desired depth, it is present practice to mix water with Portland cement, frequently with the further addition of a retarder or an accelerator to obtain the desired setting time, and to pump the slurry down the string of pipe and up the annular space between the string of pipe and the walls of the drilled borehole. Numerous additions of a colloidal nature, whose function is to prevent excessive filtration or water loss and cake formation on the wall of the hole, have been proposed. Further, bentonite is frequently added for its colloidal properties and for its extending and suspending action where, as is usually the case, the greater strength of neat cement slurries is not required.
It is a finding of this invention that cementing slurries elTective for the purpose of securing pipe in place in a well, as well as for other purposes, can be made from mixtures of cement and drilling fluids, if one proceeds in accordance with teachings of this invention. The drilling fluid is preferably the fluid with which the well to be cemented was drilled.
The advantages of this invention over present practice include the utilization of valuable collodial material contained in the drilling fluid, which is otherwise discarded, as well as the provision of better colloidal properties than is normally obtainable in a cement mixture. Such improved colloidal properties result from the extended period of hydration and deflocculation available while the drilling fluid is circulated, compared with perhaps an hour available when colloidal material is added to a cement slurry in the usual manner.
Another advantage of the process of this invention is that wells that require heavy drilling fluids generally also require heavy cement slurries, and that this density requirement may frequently be met by using the fluid as a constituent of the slurry as described herein. In such cases, the cost of extra weighting material, as well as that of colloidal matter, is saved.
Still another advantage of this process is that the better dispersed colloidal matter obtainable from the drilling fluid gives less fluid loss from the cementing slurry to the wall of the hole. This also results in less chance of premature setting because of dehydrated cement.
A further advantage results from the fact that mud pumps are available and already connected up to take the drilling fluid from the pits containing it. This eflects a considerable saving in time and expense in carrying out the cementing process.
In some off shore and desert locations, there is a still further need for the process of this invention, since Water of the quality needed for cementing may not be available.
In all cases, a troublesome problem of the disposal of the drilling fluid is solved.
The manner in which the invention is best carried out depends on a number of factors such as the type of drilling fluid which is to be converted, the strength of the set cement desired or required, the temperature encountered in the area where the cementing slurry is placed, the time available or required for the slurry to set, etc.
The drilling fluids which are employable in the preparation of the slurries of this invention normally comprise mixtures of natural clays, shales and sandstone ground up by the drill, together with residues of tannins, caustic soda and clayey and other colloidal material which have been added and not entirely lost during the process of drilling. The major types of drilling muds, including fresh-water muds, salt-water muds, calcium-treated muds, oil-emulsion muds, oil base muds and sodium silicate muds, may all be used.
Unless information, such as is based on the examples of this application, or experience in cementing nearby wells using the same type of drilling fluid is available, it is generally necessary to take a sample of fluid from the mud stream, after thorough mixing by means of the mud pumps, and to mix the mud with cement, water and perhaps other additives as described later in this disclosure, and determine the pumpable time and the properties of the set cement. This can best be done by employing a viscometer such as described in US. Patent 2,957,338, and removing a portion of the fluid just before the mixture sets. Upon aging the portion at the proper temperature, the strength at any time may be determined.
The following examples which give additional details on various compositions and properties of drilling muds and showing the preparation of suitable cementing slurries from various drilling fluids and the setting or curing of same will further illustrate the teachings of this invention. The test data cited in these examples were obtained by methods customarily used in the oil industry, which are described in reports of the American Petroleum Institute and the American Society for Testing Materials.
Example 1 A well was drilled to a depth of 9600 feet in Vermillion Parish, Louisiana, with the aid of a drilling fluid or a drilling mud. Carboxy-methyl-cellulose, lignite, diesel oil, barium sulfate, bentonite, caustic soda and gypsum were materials used as parts of the drilling mud during the drilling process. These materials were employed in such amounts or ratios as 2 sacks of the carboxy-methyl cellulose, 4 sacks of the lignite, 6 barrels of the diesel oil and in excess of 5 sacks of gypsum etc., the weight of the sacks of materials varying but generally being between about =60 and about 100 pounds. Employment of gypsum in this drilling fluid made it a gyp-type mud, which type mud is particularly susceptible to conversion into a slurry suitable for cementing oil and gas wells in accordance with the teachings of this invention. This drilling fluid or mud also possessed the following characteristics Solids, percent (by Weight) 44.4 Weight, lbs/gallon 11.4 Marsh funnel viscosity (1500 cc. in, 1 qt. out),
sec. Gel strength When sacks (470 lbs.) of cement were added to and mixed with the above drilling mud along with 19 gallons of water and 5 pounds of calcium sulfate (anhydrous) per barrel of mud, a compressive strength of 580 p.s.i. developed on curing for '24 hours at 100 F.
Example 2 The conversion of the drilling mud of Example 1 was repeated employing 10 pounds of calcium chloride per barrel of mud in the place of the 5 pounds of calcium sulfate. A compressive strength of 400 p.s.i. was obtained.
Example 3 The conversion of the drilling mud of Example 1 was repeated employing 5 pounds of sodium metasilicate per barrel of mud in the place of the 5 pounds of calcium sulfate. A compressive strength of 460 p.s.i. was obtained.
Example 4 The conversion of the drilling mud of Example 1 was repeated with the substitution of 5 pounds of Al (SO in the place of the 5 pounds of calcium sulfate. A compressive strength of 380 p.s.i. was obtained.
When no additive was employed, a compressive strength vof 210 p.s.i. was developed under the same conditions as set forth in the foregoing examples, and of 290 p.s.i.
at 140 E, which strengths are more than sufficient for most of the purposes of this invention such as securing a string of pipe in place in a borehole. The employment of oxidizers such as sodium dichromate or calcium hypochlorite in the place of the additives previously discussed has also been found to be effective in enhancing the.
compressive strength properties of the slurry of Example 1.
It was also determined that the drilling fluid of Example 1 could be converted into a satisfactory slurry which would develop a compressive strength of 210 p.s.i. by adding 3 sacks of cement along with 5 gallons of water and 2.5 gallons of Brand D sodium silicate as defined hereinafter per barrel of mud and curing same for 24 hours at 140 F.; or one which would develop a compressive strength of 140 p.s.i. by adding 2 sacks of cement along with 3 gallons of water and 2.5 gallons of Brand D sodium silicate per barrel of mud and curing same for 24 hours at 1-80" F.
Example 5 A well was drilled to a depth of 13,477 feet in Cameron Parish, Louisiana, with the aid of a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of barium sulfate, bentonite, clay, caustic soda, carboxy-methyl-cellulose, oil, walnut hulls and mica flakes. It also had been converted into a gyp-base fluid by the addition of an excess of gypsum. This drilling fluid also possessed the following characteristics:
Solids, percent by weight 65.1 Solids, percent by volume 28 Weight, lbs./ gallon 14.5 Marshfunnel viscosity (1500 cc. in, 1 qt. out),
see 54 Viscosity, centipoises 52 Gel strength, 10 minutes 3 pH 10.0 API filtrate, cc. 3.3 Cake thickness, inches 2& Gypsum, lbs/barrel 6.4 Ca, p.p.m. 104 Oil, percent by volume 10 When 5 sacks of cement were added to and mixed with the above drilling mud, along with 30 gallons of water and 1.25 gallons of grade D sodium silicate per barrel of mud, a compressive strength of 720 p.s.i. developed on curing for 24 hours at F. The sodium silicate employed was the Philadelphia Quartz Companys Brand D sodium silicate solution having an alkali-silica ratio of approximately 1:2.00, a gravity of 50.5 degrees Baurn (50.5 B.), and a viscosity of 3.5 poises. The use of 3 sacks of cement, 2.5 gallons of the grade D sodium silicate and 27 gallons of water per barrel of mud resulted in a compressive strength of 270 p.s.i. on curing for 24 hours at F. Two sacks of cement, 2.5' gallons of the same sodium silicate and 7 gallons of water per barrel of mud resulted in a compressive strength of 250 p.s.i. on curing for 24 hours at 180 F.
Example 6 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 17.5 gallons of water and 5 pounds of sodium metasilicate per barrel of mud. A compressive strength of 390 p.s.i. developed on curing for 24 hours at 100 F. The same slurry, without any sodium metasilicate added, developed a compressive strength of p.s.i.
Example 7 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 21 gallons of water, and 10 pounds of sodium metasilicate per barrel of mud- A compressive strength of 980 p.s.i. was obtained.
Example 8 The conversion of the drilling mud of Example 5 was repeated employing 5 sacks of cement, 21 gallons of Water and 3.1 gallons of grade N sodium silicate per barrel of mud. A compressive strength of 740 p.s.i. was obtained. The sodium silicate employed was the Philadelphia Quartz Companys Brand N sodium silicate, ratio 1(Na O'):3.22(SiO used as 41.0 B. solution Sodium dichromate was also found to be effective in enhancing the compressive strength properties of the slurry of Example 5.
Example 9 A well was drilled to a depth of 8,705 feet in Hardin County, Texas, with the aid of a drilling fluid. During the drilling process, the fiuid had additions of various amounts of phosphates, quebracho (about 150 lbs.) and carboxy-rnethyl-cellulose (about 50 lbs.). The drilling fiuid contained no oil weighting material, lime or gypsum. This drilling fluid also possessed the following characterrstics:
Solids, percent by weight 18.3 Weight, lbs./ gallon 10.4 Marsh funnel viscosity 52 Viscosity, ccntipoises 38 Gel strength, 10 minutes 2 pH 9.0 API filtrate, 30 min. at 100 p.s.i., cc 5.0 Cake thickness, inches 1 C1 ion, p.p.m 1700 Ca ion, ppm
When 5 sacks of Portland cement were added to and m xed with the above drilling mud, along with 25 gallons of Water and 5 pounds of aluminum sulfate per barrel of mud, a compressive strength of 290 p.s.i. developed on curing for 24 hours at 100 F. Results were fairly similar when anhydrous calcium sulfate was used in the place of the aluminum sulfate. Sodium dichromate and calcium hypochlorite were also found to be effective additives to slurries of this mud. A compressive strength of about 135 p.s.i. was obtained under the same conditions with the employment of no additive.
Example The conversion of the drilling mud of Example 9 was repeated employing 5 sacks of cement, 25 gallons of water, 5 pounds of calcium chloride and 5 pounds of sodium metasilicate per barrel of drilling fluid. A compressive strength of 250 p.s.i. developed on curing for 24 hours at 100 F. The employment of 10 pounds of calcium chloride rather than the above additive mixture also gave satisfactory results.
Example 11 The conversion of the drilling fluid of Example 9 was repeated using 5 sacks of cement, 25 gallons of water and 5 pounds of sodium metasilicate per barrel of drilling mud. A compressive strength of 210 p.s.i. developed on curing for 24 hours at 100 F.
A minimum satisfactory compressive strength for the purposes of this invention is approximately 100 p.s.i. and the strengths, therefore, obtained by the slurries of Examples 6, 9, 10 and 11 etc. are ample.
Example 12 A well was drilled to a depth of 9200 feet in Jefferson County, Texas, with the aid of a drilling mud. During the drilling process the fluid had additions of 250 pounds of tennis, 300 pounds of caustic soda, 300 pounds of quebracho, 15 barrels of diesel oil, 5 sacks of fillers, 5 sacks of Tut-Plug and some lime. This drilling fluid also possessed the following characteristics:
Solids, percent by weight 48.6 Solids, content by volume, percent 21 6 Weight, lbs/gallon 13.0 Marsh funnel viscosity 72 Viscosity, centipoises 43.5 Gel strength, 10 minutes 14 pH 12.5 API filtrate, 30 minutes at p.s.i., cc 4.4 Cake thickness, inches Cl ion, ppm 1400 Oil content by volume 10 It was found that the above drilling fiuid could be converted into a desirable cementing slurry by adding and mixing 5 sacks of Portland cement, 23.5 gallons of water and 5 pounds of sodium silicate with each barrel of the drilling mud, along with sufiicient sodium bicarbonate to give the slurry a pH of 10. The slurry after curing for 24 hours at a temperature of 100 F. had a compressive strength of 545 p.s.i. A satisfactory slurry is also obtained under these conditions without employing the sodium silicate and the sodium bicarbonate additives.
Example 13 The conversion of the drilling mud of Example 12 was repeated employing 5 sacks of cement, 17 gallons of Water and 5 pounds of aluminum sulfate per barrel of drilling mud. No sodium bicarbonate was employed. A compressive strength or 385 p.s.i. developed on curing for 24 hours at 100 F. The substitution of 5 pounds of anhydrous calcium sulfate for the aluminum sulfate resulted in a compressive strength of 340 p.s.i. and the substitution of 10 pounds of calcium chloride gave a compressive strength of 350 p.s.i.
Example 14 The drilling mud of Example 12 was converted in a manner identical to that example, except that no sodium silicate was employed A compressive strength of 345 p.s.i. was obtained. The conversion may also be effectively carried out by employing sodium silicate alone without the sodium bicarbonate.
lydrochloric acid and monosodium phosphate are examples of other materials which may also be used to lower the pH of the drilling mud or of the slurries.
Example 15 A well was drilled to a depth of 12,870 feet in Osson, Louisiana, with the aid of a drilling fiuid. During the drilling process, the fluid had additions of 250 pounds of lime (2.3 lbs/barrel of mud), 9% by volume of diesel oil, 300 pounds of caustic, 3 sacks of fine mica and some carboxy-methyl-cellulose. This drilling fluid also possessed the following characteristics:
Solids, percent by volume 70.3 Weight, lbs/gallon 16.3
Marsh funnel viscosity 64 Viscosity, centipoises 55 API filtrate, cc. 3 Cake thickness inches pH (Beckman) 13.0 C1 ion, p.p.rn 2200 Hydrochloric acid was added to a mixture of 5 sacks of cement and 40 gallons of water per barrel of the above drilling fluid until the mixture attained a pH of 12.0 and then 6.3 pounds of a solution of D grade sodium silicate per barrel of mixture was added to and mixed with same. This slurry attained a compressive strength of 545 p.s.i. after curing for 24 hours at 100 F. A strength or" 320 p.s.i. was obtained under the same conditions when 5 pounds of sodium metasilicate replaced the hydrochloric acid and the D grade sodium silicate. The employment of 5 pounds of FeSO and 3.1 gallons of the D grade sodium silicate under the same conditions resulted in a compressive strength of 405 p.s.i.
Example 16 The conversion of the drilling mud of Example 15 was repeated by employing sodium bicarbonate in the place of the hydrochloric acid and by bringing the pH of the mixture to 10. Five pounds of sodium metasilicate per barrel of mixture was employed in the place of the D grade sodium silicate and a slurry was formed which obtained a compressive strength of 370 p.s.i. after curing for 24 hours at a temperature of 100 F. Without the sodium metasilicate, a compressive strength of 180 p.s.i. Was obtained.
It was also determined that the drilling fluid of Example 16 could be converted into a satisfactory slurry which would develop a compressive strength of about 150 p.s.i. by adding 2 sacks of cement along with 8 gallons of water and 2.5 gallons of Brand D sodium silicate per barrel of mud and curing same for 24 hours at 180 F.; or one which would develop a compressive strength of 390 p.s.i. by adding 3 sacks of cement along with 10 gallons ofwater and 2.5 gallons of Brand D sodium silicate and curing same for 24 hours at 180 F.; or one which would develop a compressive strength of 350 p.s.i. by adding 5 sacks of cement along with 105 gallons of water and 6.3 gallons of Brand D sodium silicate and curing same for 24 hours at 140 F.
Example 17 Solids, percent by vol. 28 Solids, percent by weight 56.48
Weight, lbs/gallon 14.6 Marsh funnel viscosity, sec. 59 Viscosity, centipoises 52 API filtrate, cc. 2.1
Gel strength, minutes 8 Cake thickness, inches Sand, percent by volume 0.5 pH 10.0 C1 ion, p.pm. 2500 Ca ion, p.pm. 960
When five sacks of cement were added along with 19 gallons of water and 3.1 gallons of N Brand sodium silicate per barrel of drilling fluid, a compressive strength of 780 p.s.i. developed on curingv for 24 hours at 100 F. The same amount of cement along with 31.5 gallons of Water and 1.25 gallons of N Brand sodium silicate resulted in a compressive strength of 535 p.s.i.
Example 18 The conversion of the drilling mud of Example 17 was repeated employing 5 sacks of cement, 18 gallons of water and 3.1 gallons of D Brand sodium silicate per barrel of mud. A compressive strength of 555 p.s.i. was obtained after curing for 24 hours at 100 F. A compressive strength of 650 p.s.i. was obtained under the same conditions when the water was increased to 34.5 gallons and the D sodium silicate was reduced to 2.5 gallons.
Satisfactory slurries were also prepared from the foregoing drilling mud when using only 3 sacks of cement and curing for 24 hours at 140 F. or 180 F.
Example 19 A well in Liberty County, Texas, was drilled to a depth of 8,920 feet with the aid of a drilling fluid. During the drilling process, the fluid had additions of gypsum,
lignite, lime, diesel oil (9.0+ percent), fine mica, Tuf- 8 Plug, and caustic. This drilling fluid also possessed the following characteristics:
When five sacks of cement were added, along with 25 gallons of water, and no additive, per barrel of drilling mud, a compressive strength of 435 p.s.i. developed on curing for 24 hours at F.
Example 20 The conversion of the drilling mud of Example 19 was repeated employing 5 sacks of cement, 28 gallons of water and 5 pounds of sodium metasilicate per barrel of drilling fluid. A compressive strength of 550 p.s.i. was obtained under the same conditions. The use of grades D and N sodium silicate solutions was also effective in converting the drilling fluid of Example 19 to a cementing composition having a high compressive strength when set.
A satisfactory slurry was also prepared from the foregoing drilling mud when using only 2 sacks of cement, no additional water and 2.5 gallons of D sodium silicate per barrel of mud and curing for 24 hours at F. or F.
Example 21 A well was drilled to a depth of 9,518 feet in Jeff Davis Count Louisiana, using a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of 15 gallons of caustic soda, 1500 pounds of lime, 750 pounds of quebracho, 8 sacks of fine mica and some carboxy-methyl-cellulose. This drilling fluid also possessed the following characteristics:
When five sacks of cement were added, along with 37 gallons of water, 5 pounds of FeSO, and 3.1 gallons of D sodium silicate per barrel of drilling mud, a compressive strength of 470 p.s.i. developed on curing 24 hours at 100 F.
Example 22 The conversion of the drilling mud of Example 21 was repeated employing 5 sacks of cement, 46 gallons of water and 6.3 gallons of Brand D sodium silicate per barrel of drilling fluid. A compressive strength of 365 p.s.i. developed on curing for 24 hours at 180 F.
Example 23 A well was drilled to a depth of 16,434 feet in Cameron County, Louisiana, using a drilling fluid or a drilling mud. During the drilling process, the fluid had additions of barium sulfate, bentonite, clay, caustic soda, gypsum (3.3 lbs/barrel), carboxy-methyl-cellulose, oil (10% by volume), and fine mica, fine walnut hulls and fine plastic totalling approximately 2 pounds per barrel.
This drilling fluid also possessed the following characteristics:
Solids, percent by vol. 38
Solids, percent by weight 71 Weight, lbs./ gal. 18.0
Marsh funnel viscosity 64 Viscosity, centipoises 73 Gel strength, 10 min. 1 API filtrate, cc. 4.2 pH 10.4 Cake thickness NcCl, ppm. 9900 Ca ion, p.p.m. 1280 When five sacks of cement were added, along with 22.5 gallons of water, and 1.25 gallons of Brand N liquid sodium silicate per barrel of drilling fluid, a compressive strength of 710 p.s.i. developed on curing for 24 hours at 100 F. Similar results were obtained using grade D liquid sodium silicate or sodium metasilicate as the additive. Satisfactory slurries were also prepared from the foregoing drilling mud when using only 3 sacks of cement, 20 gallons of water and 2.5 gallons of D grade sodium silicate per barrel of mud and curing for 24 hours at 140 F. or 180 F.
Example 24 A Well was drilled to a depth of 9,415 feet using a chemical emulsion type drilling fluid. During the drilling process the fluid had additions of bentonite, soda ash, caustic soda, tannin, lignite and, as needed, rice hull and cedar in a 3:1 ratio. This drilling fluid also posssessed the following characteristics:
Solids, percent by vol. 58 Solids, percent by weight 28.9 Weight, lbs/gal. 9.4; Marsh funnel viscosity, sec. 77 Viscosity, centipoises 34 Gel strength, initial 3 Gel strength, minutes 16 pH 8.5 API filtrate, cc. 10 Cake thickness & Cl ion, ppm. 1800 Ca ion Slight Lime, lbs./bbl. 1 8
1 Calculated.
When five sacks of cement were added along with 38.4 gallons of water and 5 pounds of Al (SO per barrel of drilling fluid, a compressive strength of 135 p.s.i. de veloped on curing for 24 hours at 100 F. The use of 6.3 gallons of D grade sodium silicate and 69 gallons of water in place of the above resulted in a compressive strength of 110 p.s.i. under the same conditions. The use of larger amounts of sodium silicate and of oxidizers such as sodium dichromate and calcium hypochlorite were also found to be effective in converting the above drilling fluid into a slurry which would set to a satisfactory compressive strength.
Example 25 A well in Cleveland County, Texas, was drilled to a depth of 7,307 feet using a drilling mud. During the drilling process, the fiuid had additions of bentonite, 150 lbs. of tannins, 52 lbs. of caustic, 50 lbs. of soda ash and barrels of oil. The drilling fluid also possessed the following characteristics:
Solids content, percent by weight 26.5 weight, lbs/gal. 9.75 Marsh funnel viscosity, sec. 130 Viscosity, centipoises 70 Gel strength, initial 0 Gel strength, 10 minutes 8 pH 10 API filtrate 3.8 Cake thickness W Cl ion, ppm. 3630 Ca ion, ppm 40 When 5 sacks of cement were added along with 38.2 gallons of Water per barrel of drilling fluid, a compressive strength of 115 p.s.i. developed on curing for 24 hours at F. The addition of 5 pounds of the following additives to the above mixtures gave the following respective results when cured under the same foregoing conditions:
P.s.i. Sodium meta-silicate 160 Calcium sulfate 195 Aluminum sulfate 195 Sodium dichromate 137 Calcium hypochlorite 147 Example 26 A well was drilled in Andrews County, Texas, to a depth of 9,975 feet using a drilling mud. During the drilling process the fluid had additions of fresh water, soda ash, bentonite and carboxy-methyl-cellulose in a 10:1 ratio, and oil. The drilling fluid also possessed the following characteristics:
Solids content, percent by weight 13.1 Solids content, percent by volume 3 When five sacks of cement were added along with 43 gallons of water and 5 pounds of calcium sulfate per barrel of drilling fluid, a compressive strength of 130 p.s.i. developed on curing for 24 hours at 100 F.
The following respective results were also obtained under the same conditions when using the listed additives in the amounts indicated:
Lbs. Rs 1 Sodium meta-silicate 5 Aluminum sulfate 5 Calcium chloride 5 and 115 Sodium meta-silicate 5 Calcium hypochloi'ite 10 117 A compressive strength of 380 p.s.i. was obtained when using 2.5 gallons of D Brand sodium silicate with 5 sacks of cement and 22 gallons of water and upon curing for 24 hours at 180 F. The same amount of cement and water without any additive per barrel of mud resulted in a compressive strength of 350 p.s.i. after 24 hours at F.
Example 27 A well was drilled in Andrews County, Texas, to a depth of 12,424 feet using a drilling mud. During the drilling process the fluid had additions of fresh water, starch, soda ash, bentonite and carboxymethyl-cellulose in an 8 to 1 ratio, and oil. The drilling fluid also possessed the following characteristics:
Solids content, percent by weight 28.1 Solids content, percent by volume 5.0 Weight, lbs/gal. 9.1 Marsh funnel viscosity, sec. 48 Viscosity, centipoises 22.5 Gel strength, initial 2 API filtrate V 8 Cake thickness pH 8.1 Oil content, percent by volume 4.5 Ca ion, ppm. 320
NaCl, p.p.m. 2600 When 5 sacks of cement were added, along with 33.8 gallons of water and 5 pounds of sodium metasilicate per barrel of drilling fluid, a compressive strength of 195 p.s.i. developed on curing for 24 hours at 100 F.
The following respective results were also obtained under the same conditions when using the listed additives in the amounts indicated:
Lbs. P.s.1
Calcium sulfate 5 170 Aluminum sulfate 5 170 Sodium dichromate 5 153 Calcium hypochlorite 5 142 Example 28 A well was drilled in Ector County, Texas, to a depth of 6,130 feet using a drilling mud. During the drilling process the fluid had additions of brine water, strata fiber, crude oil (4 percent by volume), mica, soap and starch. The drilling fluid also possessed the following characteristics:
Weight, lbs/gal 10.8 Marsh funnel viscosity, sec. 46 Sand content, percent 0.8 API filtrate, ml. 32 Cake thickness Cl ion, p.p.m. 195,500 Ca ion, p.p.m light Sulfate ion, ppm. heavy When the following amounts of cement and water were added per barrel of above drilling mud, the following indicated compressive strengths were obtained after curing at 100 F. and at 1500 p.s.i.
Sacks Cement; Gallons One Day Three Day Water Strength Strength Example 29 A well was drilled in Ector County, Texas, to a depth of 880 feet using a surface native mud to which was added 20 sacks of bentonite and fresh water.
When the following amounts of cement and water were added per barrel of above drilling mud, the compressive strengths listed below were obtained after curing at 100 F. and at 1500 p.s.i.
Sacks Cement Gallons One Day Three Day Water Strength Strength rials as part of their composition. Muds having at least 25% solid materials by weight are preferred. The muds are all also further characterized by having densities or specific gravities greater and preferably substantially greater than that of water, and by being fairly viscous in nature. The muds also generally have a pH which is strongly basic. Other characteristics of the muds employed or which may be employed in preparing the slurries of this invention will be apparent from an analysis of the examples, wherein the properties are set forth and were determined by procedures recognized in the art.
As previously stated, the particular additives or formulations which are employed or techniques which are adopted in order to form a suitable slurry for cementing purposes will vary depending upon the composition of the starting drilling fluid material, the strength desired or sought for the final set product, etc. Sometimes additives will be employed and sometimes not. Water will generally, but not always, have to be added to make a pumpable slurry. When its use is necessary or advantageous, the amount of it employed may generally be widely varied. The type and amount of additive used, if employed, will also vary widely depending upon the above factors, but those employed in the various examples have been found particularly suitable.
The types of cement employed in the present invention and their amounts may also be varied depending upon the final product strength desired. About 5 sacks of cement each weighing about 94 pounds per barrel of mud is generally preferred but this amount may frequently be varied from about 2 to about 10 sacks. Hydraulic cements are generally preferred.
By hydraulic cement this invention intends to include all mixtures of lime, silica, and alumina, or of lime and magnesia, silica and alumina and iron oxide (magnesia for example may replace part of the lime, and iron oxide a part of the alumina), as are commonly known as hydraulic cements. Hydraulic cements include hydraulic limes, grappier cements, pozzolan cements, naural cements, calcium sulfate or gypsum cements (such as plaster of Paris) and Poi'tland cements. Pozzolan cements include slag cements made from slaked lime and granulated blast furnace slag. Because of its superior strength Portland cement is preferred among the hydraulic cements, but as the art of cements recognizes hydraulic cements as a definite class, and as results of value may be obtained with any member of that class, it is desired to claim all hydraulic cements. In addition to the ordinary construction grades of Portland cement or other hydraulic cements, modified hydraulic cements and Portland cements designated as high-early-strength cement, heat-resistant cement, and slow-setting cement may be used in the present invention.
The compositions of the slurries of this invention are also formulated with consideration given to the depth of the well or borehole to be cemented and the consequent pressure and temperature conditions therein to be encountered. The elevated temperatures and pressures encountered in deep wells will generally cause an increase in the compressive strengths of the se slurry compositions of this invention as is evident from the examples and generally also accelerate the setting time of these compositions. It may therefore sometimes be necessary to select suitable retarders or accelerators for employment with the slurry compositions of this invention, in,
order to adapt the compositions to the particular conditions to be encountered.
It is believed that the techniques of this invention make possible the conversion of any type of drilling fluid or drilling mud, having characteristics such as previously described, into slurry mixtures suitable for cementing oil well casings, as well as for other purposes. However, the conversion of drilling muds which have substantial percentages of gypsum as part of their compositions is particularly eifective. As indicated in the examples, this type of fiuid has been found to be convertible into suitable slurries which possess outstandingly high compressive strengths when set. They are also con vertible by a large number of processing variations in order to accomplish same. In other words their successful conversion is very flexible with respect to the particular additives or setting agents which may be employed in their conversion. They may sometimes be converted Without employing any setting agents, or if setting agents are required, many different types of same may be employed, and in varying amounts, in order to successfully convert the drilling mud. The amount of cement necessary for satisfactory conversion of gyp-type drilling muds is also generally less stringent than for the conversion of other types of muds of this invention.
As previously indicated, several materials or additives are useful in assisting the conversion of the drilling muds into suitable slurries for cementing purposes. The examples show most of the preferred additives but some additives which may be employed are not shown in the examples. Thus salts of copper, iron and zinc frequently may be used and are effective in precipitating out excess quantities of tannins. Or, oxidizing agents, such as sodium dichromate are frequently effective in destroying this type of material, especially at high temperatures, or at least rendering them harmless.
An important feature of this invention is that slurries obtained by adding cement, water and other agents to drilling fluids are more compatible with the unaltered drilling fluid which must precede and follow the slurry as it is pumped down the hole. Less deterioration of the slurry results, along with less stiffening of the drilling fluid, and less channeling through the set cement than occurs when conventional cementing slurries are employed.
Facilities are generally available at a drilling rig or on cementing trucks to mix together the components described in this disclosure. They may involve screw conveyors for solid materials, hoppers and jet pumps, as are well known in the art. It is frequently desirable, to avoid very viscous mixtures, to first mix the mud with the required quantity of water before the addition of cement.
We claim as our invention:
1. The process of securing in place a string of pipe in a borehole, which comprises mixing aqueous drilling mud with sufficient hydraulic cement to provide the desired strength after the mixture slurry has set, pumping the mixture slurry down the string of pipe and up the annular space between the string of pipe and the walls of the drilled borehole, and allowing the mixture slurry to set.
2. The process of securing in place a string of pipe in a borehole, which comprises mixing aqueous drilling mud with sufficient hydraulic cement to provide the desired strength after the mixture slurry has set, pumping the mixture slurry down the string of pipe and up the annular space between the string of pipe and the Walls of the drilled borehole, and allowing the mixture slurry to set; said aqueous drilling mud being fairly viscous and possessing at least percent solid materials l t by weight and a specific gravity substantially greater than that of water.
3. The process of securing in place a string of pipe in a borehole, which comprises mixing aqueous drilling mud with sufficient hydraulic cement to provide the desired strength after the mixture slurry has set and with sufficient water to render the mixture slurry pumpable, pumping the slurrry mixture down the string of pipe and up the annular space between the string of pipe and the walls of the drilled borehole, and allowing said slurry mixture to set.
4. The process of securing in place a string of pipe in a borehole, which comprises making a mixture slurry of aqueous drilling mud, hydraulic cement, water and an additive selected from the group consisting of calcium sulfate, calcium chloride, sodium metasilicate, aluminum sulfate, sodium silicate, ferrous sulfate, sodium dichromate and calcium hypochlorite and mixtures of same, pumping the mixture slurry down the string of pipe and up the annular space between the string of pipe and the walls of the drilled borehole, and allowing said slurry to set.
5. The process of claim 1 wherein between about 2 and about 10 sacks of hydraulic cement each weighing about 94 pounds are employed with each barrel of drill ing mud.
6. The process of claim 3 wherein between about 2 and about 10 sacks of hydraulic cement each weighing about 94 pounds are employed with each barrel of drilling mud.
7. The process of claim 4 wherein between about 2 and about 10 sacks of hydraulic cement each weighing about 94 pounds are employed with each barrel of drilling mud.
8. The process of claim 1 wherein said drilling mud is basic and contains substantial amounts of gypsum.
9. The process of claim 1 wherein said drilling mud comprises materials ground up by the Well drill as well as materials which have been added to the Well during the process of drilling.
10. The process of claim 4 wherein said drilling mud comprises materials ground up by the well drill as well as materials which have been added to the well during the process of drilling.
References Cited by the Examiner UNITED STATES PATENTS 2,213,039 8/40 Davis 16629 2,279,262 4/42 Edwards 16629 2,526,674 10/50 Larsen 106-97 2,705,050 3/55 Davis et al. 166-31 2,776,112 1/57 Ilfrey et al -64 2,801,077 7/57 Howard et al. 166--29 2,868,295 l/59 Brooks et al. 166-29 OTHER REFERENCES Gatlin, C.: Petroleum Engineering, Drilling and Well Completions. N.J., Prentice-Hall, 1960, pages 81, 273 and 275.
CHARLES E. OCONNELL, Primary Examiner.
BENJAMIN BENDETT, Examiner.

Claims (1)

1. THE PROCESS OF SECURING IN PLACE A STRING OF PIPE IN A BOREHOLE, WHICH COMPRISES MIXING AQUEOUS DRILLING MUD WITH SUFFICIENT HYDRAULIC CEMENT TO PROVIDE THE DESIRED STRENGTH AFTER THE MIXTURE SLURRY HAS SET, PUMPING THE MIXTURE SLURRY DOWN THE STRING OF PIPE AND UP THE ANNULAR SPACE BETWEEN THE STRING OF PIPE AND THE WALLS OF THE DRILLED BOREHOLE, AND ALLOWING THE MIXTURE SLURRY TO SET.
US10827961 1961-05-08 1961-05-08 Converting drilling muds to slurries suitable for cementing oil and gas wells Expired - Lifetime US3168139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10827961 US3168139A (en) 1961-05-08 1961-05-08 Converting drilling muds to slurries suitable for cementing oil and gas wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10827961 US3168139A (en) 1961-05-08 1961-05-08 Converting drilling muds to slurries suitable for cementing oil and gas wells

Publications (1)

Publication Number Publication Date
US3168139A true US3168139A (en) 1965-02-02

Family

ID=22321273

Family Applications (1)

Application Number Title Priority Date Filing Date
US10827961 Expired - Lifetime US3168139A (en) 1961-05-08 1961-05-08 Converting drilling muds to slurries suitable for cementing oil and gas wells

Country Status (1)

Country Link
US (1) US3168139A (en)

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499491A (en) * 1968-06-28 1970-03-10 Dresser Ind Method and composition for cementing oil well casing
US3557876A (en) * 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3640343A (en) * 1970-05-20 1972-02-08 Shell Oil Co Stabilization of hard shaly formations with alkali metal silicate
US3887009A (en) * 1974-04-25 1975-06-03 Oil Base Drilling mud-cement compositions for well cementing operations
JPS5149507A (en) * 1974-10-28 1976-04-28 Kumagai Gumi Co Ltd
US4202413A (en) * 1978-11-15 1980-05-13 Mobil Oil Corporation Well cementing process using presheared water swellable clays
US4460292A (en) * 1982-07-15 1984-07-17 Agritec, Inc. Process for containment of liquids as solids or semisolids
US4519452A (en) * 1984-05-31 1985-05-28 Exxon Production Research Co. Method of drilling and cementing a well using a drilling fluid convertible in place into a settable cement slurry
US4760882A (en) * 1983-02-02 1988-08-02 Exxon Production Research Company Method for primary cementing a well with a drilling mud which may be converted to cement using chemical initiators with or without additional irradiation
US4768593A (en) * 1983-02-02 1988-09-06 Exxon Production Research Company Method for primary cementing a well using a drilling mud composition which may be converted to cement upon irradiation
EP0320288A1 (en) * 1987-12-11 1989-06-14 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
US5016711A (en) * 1989-02-24 1991-05-21 Shell Oil Company Cement sealing
US5038863A (en) * 1990-07-20 1991-08-13 Altantic Richfield Company Cementing oil and gas wells
US5058679A (en) * 1991-01-16 1991-10-22 Shell Oil Company Solidification of water based muds
US5076852A (en) * 1990-07-20 1991-12-31 Atlantic Richfield Company Cementing oil and gas wells
WO1992019568A1 (en) * 1991-04-26 1992-11-12 Shell Internationale Research Maatschappij B.V. Method of cementing a well
US5207831A (en) * 1989-06-08 1993-05-04 Shell Oil Company Cement fluid loss reduction
US5213160A (en) * 1991-04-26 1993-05-25 Shell Oil Company Method for conversion of oil-base mud to oil mud-cement
US5226961A (en) * 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5260269A (en) * 1989-10-12 1993-11-09 Shell Oil Company Method of drilling with shale stabilizing mud system comprising polycyclicpolyetherpolyol
US5269632A (en) * 1992-10-22 1993-12-14 Shell Oil Company Method for strengthening the structural base of offshore structures
US5275511A (en) * 1992-10-22 1994-01-04 Shell Oil Company Method for installation of piles in offshore locations
US5277519A (en) * 1992-10-22 1994-01-11 Shell Oil Company Well drilling cuttings disposal
US5284513A (en) * 1992-10-22 1994-02-08 Shell Oil Co Cement slurry and cement compositions
US5285679A (en) * 1992-10-22 1994-02-15 Shell Oil Company Quantification of blast furnace slag in a slurry
US5301754A (en) * 1992-10-22 1994-04-12 Shell Oil Company Wellbore cementing with ionomer-blast furnace slag system
US5301752A (en) * 1992-10-22 1994-04-12 Shell Oil Company Drilling and cementing with phosphate-blast furnace slag
US5307877A (en) * 1992-10-22 1994-05-03 Shell Oil Company Wellbore sealing with two-component ionomeric system
US5307876A (en) * 1992-10-22 1994-05-03 Shell Oil Company Method to cement a wellbore in the presence of carbon dioxide
US5309999A (en) * 1992-10-22 1994-05-10 Shell Oil Company Cement slurry composition and method to cement wellbore casings in salt formations
US5309997A (en) * 1992-10-22 1994-05-10 Shell Oil Company Well fluid for in-situ borehole repair
US5311944A (en) * 1992-10-22 1994-05-17 Shell Oil Company Blast furnace slag blend in cement
US5311945A (en) * 1992-10-22 1994-05-17 Shell Oil Company Drilling and cementing with phosphate
US5314031A (en) * 1992-10-22 1994-05-24 Shell Oil Company Directional drilling plug
US5314022A (en) * 1992-10-22 1994-05-24 Shell Oil Company Dilution of drilling fluid in forming cement slurries
US5322124A (en) * 1992-10-22 1994-06-21 Shell Oil Company Squeeze cementing
US5325922A (en) * 1992-10-22 1994-07-05 Shell Oil Company Restoring lost circulation
EP0605075A1 (en) * 1992-12-29 1994-07-06 Halliburton Company Soil-cement compositions and their use
US5327968A (en) * 1992-12-30 1994-07-12 Halliburton Company Utilizing drilling fluid in well cementing operations
US5332040A (en) * 1992-10-22 1994-07-26 Shell Oil Company Process to cement a casing in a wellbore
US5341882A (en) * 1993-02-10 1994-08-30 Shell Oil Company Well drilling cuttings disposal
US5343951A (en) * 1992-10-22 1994-09-06 Shell Oil Company Drilling and cementing slim hole wells
US5343952A (en) * 1992-10-22 1994-09-06 Shell Oil Company Cement plug for well abandonment
US5343950A (en) * 1992-10-22 1994-09-06 Shell Oil Company Drilling and cementing extended reach boreholes
US5343947A (en) * 1992-10-22 1994-09-06 Shell Oil Company Anchor plug for open hole test tools
US5351759A (en) * 1992-10-22 1994-10-04 Shell Oil Company Slag-cement displacement by direct fluid contact
US5355954A (en) * 1993-11-02 1994-10-18 Halliburton Company Utilizing drilling fluid in well cementing operations
US5358049A (en) * 1992-10-22 1994-10-25 Shell Oil Company Conversion of emulsion mud to cement
US5379843A (en) * 1992-10-22 1995-01-10 Shell Oil Company Side-tracking cement plug
US5382290A (en) * 1991-04-26 1995-01-17 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5398758A (en) * 1993-11-02 1995-03-21 Halliburton Company Utilizing drilling fluid in well cementing operations
US5409064A (en) * 1993-12-30 1995-04-25 Shell Oil Company Optimizing blast furnace slag cements
US5409063A (en) * 1993-12-30 1995-04-25 Shell Oil Company Optimizing blast furnace slag cements
US5411092A (en) * 1993-12-30 1995-05-02 Shell Oil Company Optimizing blast furnace slag cements
US5423379A (en) * 1989-12-27 1995-06-13 Shell Oil Company Solidification of water based muds
US5464060A (en) * 1989-12-27 1995-11-07 Shell Oil Company Universal fluids for drilling and cementing wells
US5476144A (en) * 1992-10-15 1995-12-19 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5515921A (en) * 1989-12-27 1996-05-14 Shell Oil Company Water-base mud conversion for high tempratice cementing
US5657822A (en) * 1995-05-03 1997-08-19 James; Melvyn C. Drill hole plugging method utilizing layered sodium bentonite and liquid retaining particles
US5673753A (en) * 1989-12-27 1997-10-07 Shell Oil Company Solidification of water based muds
WO1999048831A1 (en) * 1998-03-26 1999-09-30 Cementos Apasco S.A. De C.V. Process for converting well drill cuttings into raw materials for the production of cement and cement compositions obtained therefrom
US20070056476A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US20070056475A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US20070056474A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Foamed settable compositions comprising cement kiln dust
US20070056734A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US7204310B1 (en) 2006-04-11 2007-04-17 Halliburton Energy Services, Inc. Methods of use settable drilling fluids comprising cement kiln dust
US20070089880A1 (en) * 2005-10-24 2007-04-26 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US20070089643A1 (en) * 2005-10-24 2007-04-26 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US20070102157A1 (en) * 2005-11-10 2007-05-10 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
US20070238621A1 (en) * 2006-04-11 2007-10-11 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US20080156491A1 (en) * 2005-09-09 2008-07-03 Roddy Craig W Extended Settable Compositions Comprising Cement Kiln Dust and Associated Methods
US20090071650A1 (en) * 2005-09-09 2009-03-19 Roddy Craig W Foamed cement compositions comprising oil-swellable particles and methods of use
US20090088348A1 (en) * 2005-09-09 2009-04-02 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US20090120644A1 (en) * 2005-09-09 2009-05-14 Roddy Craig W Reduced Carbon Footprint Settable Compositions for Use in Subterranean Formations
US20090200029A1 (en) * 2005-09-09 2009-08-13 Halliburton Energy Services, Inc. Settable Compositions Comprising a Natural Pozzolan and Associated Methods
US20100025039A1 (en) * 2007-05-10 2010-02-04 Halliburton Energy Services, Inc. Cement Compositions and Methods Utilizing Nano-Clay
US20100041792A1 (en) * 2005-09-09 2010-02-18 Halliburton Energy Services, Inc. Latex Compositions Comprising Pozzolan and/or Cement Kiln Dust and Methods of Use
US20100044043A1 (en) * 2005-09-09 2010-02-25 Halliburton Energy Services, Inc. Methods of Cementing in Subterranean Formations Using Cement Kiln Dust in Compositions Having Reduced Portland Cement Content
US20100065273A1 (en) * 2005-06-30 2010-03-18 Schlumberger Technology Corporation Methods and materials for zonal isolation
US20100095871A1 (en) * 2007-05-10 2010-04-22 Halliburton Energy Services, Inc. Cement Compositions Comprising Sub-Micron Alumina and Associated Methods
US20100258312A1 (en) * 2005-09-09 2010-10-14 Halliburton Energy Services, Inc. Methods of Plugging and Abandoning a Well Using Compositions Comprising Cement Kiln Dust and Pumicite
US20110017452A1 (en) * 2005-09-09 2011-01-27 Halliburton Energy Services, Inc. Spacer Fluids Containing Cement Kiln Dust and Methods of Use
US20110100626A1 (en) * 2005-09-09 2011-05-05 Halliburton Energy Services, Inc. Settable Compositions Comprising Unexpanded Perlite and Methods of Cementing in Subterranean Formations
US20110162845A1 (en) * 2007-05-10 2011-07-07 Halliburton Energy Services, Inc. Lost Circulation Compositions and Associated Methods
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9022147B2 (en) 2011-06-01 2015-05-05 Halliburton Energy Services, Inc. Drilling fluid that when mixed with a cement composition enhances physical properties of the cement composition
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US9512352B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US10472280B1 (en) 2014-05-21 2019-11-12 D-Trace Investments, Llc Drill cuttings with a drying agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213039A (en) * 1938-11-14 1940-08-27 Vern W David Water shut-off method and composition for wells
US2279262A (en) * 1937-02-15 1942-04-07 Continental Oil Co Weighted cement
US2526674A (en) * 1943-07-05 1950-10-24 Nat Lead Co Well cementing composition
US2705050A (en) * 1953-05-25 1955-03-29 Stanolind Oil & Gas Co Settable drilling fluid
US2776112A (en) * 1954-09-30 1957-01-01 Exxon Research Engineering Co Method of drilling wells
US2801077A (en) * 1953-12-30 1957-07-30 Pan American Petroleum Corp Recovery of lost circulation in a drilling well
US2868295A (en) * 1956-12-07 1959-01-13 Jersey Prod Res Co Method for cementing wells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279262A (en) * 1937-02-15 1942-04-07 Continental Oil Co Weighted cement
US2213039A (en) * 1938-11-14 1940-08-27 Vern W David Water shut-off method and composition for wells
US2526674A (en) * 1943-07-05 1950-10-24 Nat Lead Co Well cementing composition
US2705050A (en) * 1953-05-25 1955-03-29 Stanolind Oil & Gas Co Settable drilling fluid
US2801077A (en) * 1953-12-30 1957-07-30 Pan American Petroleum Corp Recovery of lost circulation in a drilling well
US2776112A (en) * 1954-09-30 1957-01-01 Exxon Research Engineering Co Method of drilling wells
US2868295A (en) * 1956-12-07 1959-01-13 Jersey Prod Res Co Method for cementing wells

Cited By (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499491A (en) * 1968-06-28 1970-03-10 Dresser Ind Method and composition for cementing oil well casing
US3557876A (en) * 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3640343A (en) * 1970-05-20 1972-02-08 Shell Oil Co Stabilization of hard shaly formations with alkali metal silicate
US3887009A (en) * 1974-04-25 1975-06-03 Oil Base Drilling mud-cement compositions for well cementing operations
JPS5149507A (en) * 1974-10-28 1976-04-28 Kumagai Gumi Co Ltd
JPS5235448B2 (en) * 1974-10-28 1977-09-09
US4202413A (en) * 1978-11-15 1980-05-13 Mobil Oil Corporation Well cementing process using presheared water swellable clays
US4460292A (en) * 1982-07-15 1984-07-17 Agritec, Inc. Process for containment of liquids as solids or semisolids
US4760882A (en) * 1983-02-02 1988-08-02 Exxon Production Research Company Method for primary cementing a well with a drilling mud which may be converted to cement using chemical initiators with or without additional irradiation
US4768593A (en) * 1983-02-02 1988-09-06 Exxon Production Research Company Method for primary cementing a well using a drilling mud composition which may be converted to cement upon irradiation
US4519452A (en) * 1984-05-31 1985-05-28 Exxon Production Research Co. Method of drilling and cementing a well using a drilling fluid convertible in place into a settable cement slurry
EP0320288A1 (en) * 1987-12-11 1989-06-14 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
US4883125A (en) * 1987-12-11 1989-11-28 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
AU602433B2 (en) * 1987-12-11 1990-10-11 Phillips Petroleum Company Cementing oil and gas wells using converted drilling fluid
US5016711A (en) * 1989-02-24 1991-05-21 Shell Oil Company Cement sealing
US5207831A (en) * 1989-06-08 1993-05-04 Shell Oil Company Cement fluid loss reduction
US5260269A (en) * 1989-10-12 1993-11-09 Shell Oil Company Method of drilling with shale stabilizing mud system comprising polycyclicpolyetherpolyol
US5515921A (en) * 1989-12-27 1996-05-14 Shell Oil Company Water-base mud conversion for high tempratice cementing
US5423379A (en) * 1989-12-27 1995-06-13 Shell Oil Company Solidification of water based muds
US5464060A (en) * 1989-12-27 1995-11-07 Shell Oil Company Universal fluids for drilling and cementing wells
US5673753A (en) * 1989-12-27 1997-10-07 Shell Oil Company Solidification of water based muds
US5076852A (en) * 1990-07-20 1991-12-31 Atlantic Richfield Company Cementing oil and gas wells
US5038863A (en) * 1990-07-20 1991-08-13 Altantic Richfield Company Cementing oil and gas wells
US5058679A (en) * 1991-01-16 1991-10-22 Shell Oil Company Solidification of water based muds
WO1992019568A1 (en) * 1991-04-26 1992-11-12 Shell Internationale Research Maatschappij B.V. Method of cementing a well
US5213160A (en) * 1991-04-26 1993-05-25 Shell Oil Company Method for conversion of oil-base mud to oil mud-cement
US5382290A (en) * 1991-04-26 1995-01-17 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5226961A (en) * 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5476144A (en) * 1992-10-15 1995-12-19 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5311944A (en) * 1992-10-22 1994-05-17 Shell Oil Company Blast furnace slag blend in cement
US5351759A (en) * 1992-10-22 1994-10-04 Shell Oil Company Slag-cement displacement by direct fluid contact
US5307876A (en) * 1992-10-22 1994-05-03 Shell Oil Company Method to cement a wellbore in the presence of carbon dioxide
US5309999A (en) * 1992-10-22 1994-05-10 Shell Oil Company Cement slurry composition and method to cement wellbore casings in salt formations
US5309997A (en) * 1992-10-22 1994-05-10 Shell Oil Company Well fluid for in-situ borehole repair
US5301752A (en) * 1992-10-22 1994-04-12 Shell Oil Company Drilling and cementing with phosphate-blast furnace slag
US5311945A (en) * 1992-10-22 1994-05-17 Shell Oil Company Drilling and cementing with phosphate
US5314031A (en) * 1992-10-22 1994-05-24 Shell Oil Company Directional drilling plug
US5314022A (en) * 1992-10-22 1994-05-24 Shell Oil Company Dilution of drilling fluid in forming cement slurries
US5322124A (en) * 1992-10-22 1994-06-21 Shell Oil Company Squeeze cementing
US5325922A (en) * 1992-10-22 1994-07-05 Shell Oil Company Restoring lost circulation
US5269632A (en) * 1992-10-22 1993-12-14 Shell Oil Company Method for strengthening the structural base of offshore structures
US5275511A (en) * 1992-10-22 1994-01-04 Shell Oil Company Method for installation of piles in offshore locations
US5332040A (en) * 1992-10-22 1994-07-26 Shell Oil Company Process to cement a casing in a wellbore
US5277519A (en) * 1992-10-22 1994-01-11 Shell Oil Company Well drilling cuttings disposal
US5343951A (en) * 1992-10-22 1994-09-06 Shell Oil Company Drilling and cementing slim hole wells
US5343952A (en) * 1992-10-22 1994-09-06 Shell Oil Company Cement plug for well abandonment
US5343950A (en) * 1992-10-22 1994-09-06 Shell Oil Company Drilling and cementing extended reach boreholes
US5343947A (en) * 1992-10-22 1994-09-06 Shell Oil Company Anchor plug for open hole test tools
US5307877A (en) * 1992-10-22 1994-05-03 Shell Oil Company Wellbore sealing with two-component ionomeric system
US5284513A (en) * 1992-10-22 1994-02-08 Shell Oil Co Cement slurry and cement compositions
US5358049A (en) * 1992-10-22 1994-10-25 Shell Oil Company Conversion of emulsion mud to cement
US5379843A (en) * 1992-10-22 1995-01-10 Shell Oil Company Side-tracking cement plug
US5301754A (en) * 1992-10-22 1994-04-12 Shell Oil Company Wellbore cementing with ionomer-blast furnace slag system
US5285679A (en) * 1992-10-22 1994-02-15 Shell Oil Company Quantification of blast furnace slag in a slurry
EP0605075A1 (en) * 1992-12-29 1994-07-06 Halliburton Company Soil-cement compositions and their use
US5327968A (en) * 1992-12-30 1994-07-12 Halliburton Company Utilizing drilling fluid in well cementing operations
US5341882A (en) * 1993-02-10 1994-08-30 Shell Oil Company Well drilling cuttings disposal
US5398758A (en) * 1993-11-02 1995-03-21 Halliburton Company Utilizing drilling fluid in well cementing operations
US5355954A (en) * 1993-11-02 1994-10-18 Halliburton Company Utilizing drilling fluid in well cementing operations
US5409064A (en) * 1993-12-30 1995-04-25 Shell Oil Company Optimizing blast furnace slag cements
US5411092A (en) * 1993-12-30 1995-05-02 Shell Oil Company Optimizing blast furnace slag cements
US5409063A (en) * 1993-12-30 1995-04-25 Shell Oil Company Optimizing blast furnace slag cements
US5657822A (en) * 1995-05-03 1997-08-19 James; Melvyn C. Drill hole plugging method utilizing layered sodium bentonite and liquid retaining particles
WO1999048831A1 (en) * 1998-03-26 1999-09-30 Cementos Apasco S.A. De C.V. Process for converting well drill cuttings into raw materials for the production of cement and cement compositions obtained therefrom
US6361596B1 (en) 1998-03-26 2002-03-26 Cementos Apasco S.A. De C.V. Process for converting well drill cuttings into raw materials for the production of cement, and cement compositions obtained therefrom
US10005949B2 (en) 2004-02-10 2018-06-26 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US8122959B2 (en) * 2005-06-30 2012-02-28 Schlumberger Technology Corporation Methods and materials for zonal isolation
US20100065273A1 (en) * 2005-06-30 2010-03-18 Schlumberger Technology Corporation Methods and materials for zonal isolation
US7395860B2 (en) 2005-09-09 2008-07-08 Halliburton Energy Services, Inc. Methods of using foamed settable compositions comprising cement kiln dust
US8324137B2 (en) 2005-09-09 2012-12-04 Roddy Craig W Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US20070056476A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US9903184B2 (en) 2005-09-09 2018-02-27 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9644132B2 (en) 2005-09-09 2017-05-09 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US20070056475A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US9157020B2 (en) 2005-09-09 2015-10-13 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US7353870B2 (en) 2005-09-09 2008-04-08 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US7387675B2 (en) 2005-09-09 2008-06-17 Halliburton Energy Services, Inc. Foamed settable compositions comprising cement kiln dust
US20080156491A1 (en) * 2005-09-09 2008-07-03 Roddy Craig W Extended Settable Compositions Comprising Cement Kiln Dust and Associated Methods
US20070056734A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US7445669B2 (en) 2005-09-09 2008-11-04 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US7478675B2 (en) 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US20090071650A1 (en) * 2005-09-09 2009-03-19 Roddy Craig W Foamed cement compositions comprising oil-swellable particles and methods of use
US20090088348A1 (en) * 2005-09-09 2009-04-02 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US20090114126A1 (en) * 2005-09-09 2009-05-07 Roddy Craig W Extended Settable Compositions Comprising Cement Kiln Dust and Associated Methods
US20090120644A1 (en) * 2005-09-09 2009-05-14 Roddy Craig W Reduced Carbon Footprint Settable Compositions for Use in Subterranean Formations
US20090200029A1 (en) * 2005-09-09 2009-08-13 Halliburton Energy Services, Inc. Settable Compositions Comprising a Natural Pozzolan and Associated Methods
US7607482B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US7607484B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US7631692B2 (en) 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US20090312445A1 (en) * 2005-09-09 2009-12-17 Halliburton Energy Services, Inc. Foamed Cement Compositions Comprising Oil-Swellable Particles
US20090320720A1 (en) * 2005-09-09 2009-12-31 Halliburton Energy Services, Inc. Settable Compositions Comprising Cement Kiln Dust and Swellable Particles
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US20100041792A1 (en) * 2005-09-09 2010-02-18 Halliburton Energy Services, Inc. Latex Compositions Comprising Pozzolan and/or Cement Kiln Dust and Methods of Use
US20100044043A1 (en) * 2005-09-09 2010-02-25 Halliburton Energy Services, Inc. Methods of Cementing in Subterranean Formations Using Cement Kiln Dust in Compositions Having Reduced Portland Cement Content
US7674332B2 (en) 2005-09-09 2010-03-09 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US20070056733A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Methods of using foamed settable compositions comprising cement kiln dust
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US20100258312A1 (en) * 2005-09-09 2010-10-14 Halliburton Energy Services, Inc. Methods of Plugging and Abandoning a Well Using Compositions Comprising Cement Kiln Dust and Pumicite
US20100292365A1 (en) * 2005-09-09 2010-11-18 Halliburton Energy Services, Inc. Latex Compositions Comprising Pozzolan and/or Cement Kiln Dust and Methods of Use
US20110017452A1 (en) * 2005-09-09 2011-01-27 Halliburton Energy Services, Inc. Spacer Fluids Containing Cement Kiln Dust and Methods of Use
US7927419B2 (en) 2005-09-09 2011-04-19 Halliburton Energy Services Inc. Settable compositions comprising cement kiln dust and swellable particles
US20110100626A1 (en) * 2005-09-09 2011-05-05 Halliburton Energy Services, Inc. Settable Compositions Comprising Unexpanded Perlite and Methods of Cementing in Subterranean Formations
US9006154B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US8030253B2 (en) 2005-09-09 2011-10-04 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles
US20070056474A1 (en) * 2005-09-09 2007-03-15 Halliburton Energy Services, Inc. Foamed settable compositions comprising cement kiln dust
US8261827B2 (en) 2005-09-09 2012-09-11 Halliburton Energy Services Inc. Methods and compositions comprising kiln dust and metakaolin
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8318642B2 (en) 2005-09-09 2012-11-27 Halliburton Energy Services, Inc. Methods and compositions comprising kiln dust and metakaolin
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8399387B2 (en) 2005-09-09 2013-03-19 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8434553B2 (en) 2005-09-09 2013-05-07 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8440596B2 (en) 2005-09-09 2013-05-14 Halliburton, Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US8486868B2 (en) 2005-09-09 2013-07-16 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8486869B2 (en) 2005-09-09 2013-07-16 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8544543B2 (en) 2005-09-09 2013-10-01 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8551923B1 (en) 2005-09-09 2013-10-08 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8921284B2 (en) 2005-09-09 2014-12-30 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8895485B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8691737B2 (en) 2005-09-09 2014-04-08 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US7381263B2 (en) 2005-10-24 2008-06-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US20070089880A1 (en) * 2005-10-24 2007-04-26 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US20070089643A1 (en) * 2005-10-24 2007-04-26 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US7337842B2 (en) 2005-10-24 2008-03-04 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US20070102157A1 (en) * 2005-11-10 2007-05-10 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
US7284609B2 (en) 2005-11-10 2007-10-23 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
US20070238621A1 (en) * 2006-04-11 2007-10-11 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US7204310B1 (en) 2006-04-11 2007-04-17 Halliburton Energy Services, Inc. Methods of use settable drilling fluids comprising cement kiln dust
US7338923B2 (en) 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9512352B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US20100025039A1 (en) * 2007-05-10 2010-02-04 Halliburton Energy Services, Inc. Cement Compositions and Methods Utilizing Nano-Clay
US20100095871A1 (en) * 2007-05-10 2010-04-22 Halliburton Energy Services, Inc. Cement Compositions Comprising Sub-Micron Alumina and Associated Methods
US8940670B2 (en) 2007-05-10 2015-01-27 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US8741818B2 (en) 2007-05-10 2014-06-03 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US20110162845A1 (en) * 2007-05-10 2011-07-07 Halliburton Energy Services, Inc. Lost Circulation Compositions and Associated Methods
US8603952B2 (en) 2007-05-10 2013-12-10 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US9765252B2 (en) 2007-05-10 2017-09-19 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US9376609B2 (en) 2010-12-21 2016-06-28 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US9022147B2 (en) 2011-06-01 2015-05-05 Halliburton Energy Services, Inc. Drilling fluid that when mixed with a cement composition enhances physical properties of the cement composition
US10472280B1 (en) 2014-05-21 2019-11-12 D-Trace Investments, Llc Drill cuttings with a drying agent
US11667568B1 (en) 2014-05-21 2023-06-06 D-Trace Investments, Llc Drill cuttings with a drying agent

Similar Documents

Publication Publication Date Title
US3168139A (en) Converting drilling muds to slurries suitable for cementing oil and gas wells
EP0664848B1 (en) Method for drilling and cementing a well
US3499491A (en) Method and composition for cementing oil well casing
US4883125A (en) Cementing oil and gas wells using converted drilling fluid
US5343950A (en) Drilling and cementing extended reach boreholes
US5343951A (en) Drilling and cementing slim hole wells
US5305831A (en) Blast furnace slag transition fluid
US5382290A (en) Conversion of oil-base mud to oil mud-cement
US5005646A (en) Accelerating set of retarded cement
US3557876A (en) Method and composition for drilling and cementing of wells
US5370185A (en) Mud solidification with slurry of portland cement in oil
US5213160A (en) Method for conversion of oil-base mud to oil mud-cement
US5351759A (en) Slag-cement displacement by direct fluid contact
US5464060A (en) Universal fluids for drilling and cementing wells
US4110225A (en) Sealing wells
US5363918A (en) Wellbore sealing with unsaturated monomer system
US3053673A (en) Oil well cement compositions
US3866683A (en) Method for placing cement in a well
US3219112A (en) Cement compositions and methods of utilizing same
US3558335A (en) Well cementing compositions
US11926788B2 (en) Foamed treatment fluids for lost circulation control
US3409093A (en) Method of drilling wells
AU2016422870B2 (en) Well cementing with water-based liquid anti-shrinkage additives
US10450494B2 (en) Cement slurries for well bores
US5333690A (en) Cementing with blast furnace slag using spacer