US3154438A - Process for treating metal surfaces - Google Patents

Process for treating metal surfaces Download PDF

Info

Publication number
US3154438A
US3154438A US178247A US17824762A US3154438A US 3154438 A US3154438 A US 3154438A US 178247 A US178247 A US 178247A US 17824762 A US17824762 A US 17824762A US 3154438 A US3154438 A US 3154438A
Authority
US
United States
Prior art keywords
phosphate
water soluble
metal
solution
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US178247A
Inventor
Keller Heinz
Kaysser Friedrich
Rausch Werner
Stenger Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Original Assignee
Hooker Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hooker Chemical Corp filed Critical Hooker Chemical Corp
Application granted granted Critical
Publication of US3154438A publication Critical patent/US3154438A/en
Assigned to HOOKER CHEMICALS & PLASTICS CORP, A CORP OF NY reassignment HOOKER CHEMICALS & PLASTICS CORP, A CORP OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OXY METAL INDUSTRIES CORPORATION
Anticipated expiration legal-status Critical
Assigned to OCCIDENTAL CHEMICAL CORPORATION reassignment OCCIDENTAL CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MARCH 30, 1982. Assignors: HOOKER CHEMICAS & PLASTICS CORP.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/102Pretreatment of metallic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution

Definitions

  • the present invention relates to an improved method for preparing metal surfaces to receive adherent films of water soluble base paint and a process of coating metal with smooth, adherent thermoset resin films, and more particularly relates to a method for rinsing a metal surface preliminarily treated in acidic solution to form thereon a protective integral chemical coating such as a phosphate, chromate, oxalate, or the like, and thereafter coating said surface with a water soluble thermosettable resin.
  • the coating is ordinarily dried prior to the application of the finish coating of lacquer, varnish or paint and at least in those high quantity production lines which fabricate automobile bodies, refrigerator shells, stoves and the like, the final coating is applied by spraying.
  • water soluble paint systems it has become feasible to eliminate the drying step and to apply a water soluble paint on the chemically prepared metallic surface immediately following the final rinse in the chemical treatment. It has been found that in such processes that difficulties are encountered during operation including the formation of irregularities or roughness in the final cured film or the precipitation of conglomerates or sludge within the tank or receptacle which houses the water soluble paint.
  • the final stepI in the chemical treatment of the metal surface preparatory to its contact with the water soluble paint comprises rinsing that surface in an aqueous solution having a pH in the range of about 7 to about ll, and preferably rinsing that surface in an aqueous solution of an amine.
  • Amines which have been found to be suitable for the purposes of this invention include ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol, and
  • Such amine solutions may satisfactorily contain other anions, such as the phosphate anion, or amine phosphate esters of monoand di-phosphoric acids such as, for example, monomethyl amine phosphate, ethyl amine phosphate, isopropyl amine phosphate, monoethanol amine phosphate, diamyl amine phosphate, 2 amino-Z-methyl-l-propanol amine phosphate, cyclohexylamine phosphate, tertiary octyl amine phosphate, and ethylene diamine phosphate.
  • amine anion such as, for example, monomethyl amine phosphate, ethyl amine phosphate, isopropyl amine phosphate, monoethanol amine phosphate, diamyl amine phosphate, 2 amino-Z-methyl-l-propanol amine phosphate, cyclohexylamine phosphate, tertiary octyl amine
  • the rinse may also include small quantities of alcohol or other compatible solvent and a small quantity of a non-ionic, cationic or anionic wetting agent.
  • concentration of the amine which is best for use in any particular case is dependent upon its inherent alkalinity and solubility in water and the optimum quantity for use is an amount which will produce the pH in the range of about 7-10 and preferably in the range of 8-10.
  • aqueous acidic rinses which are of value for the purpose of enhancing corrosion resistance and the quality of the coating as a base for paint, such as for example, a dilute aqueous hexavalent chromium containing solution or a phosphoric acid containing solution or tthe like.
  • the entrapped acidic material which results from such a rinse is particularly damaging to the quality of the Water soluble paint when the freshly rinsed chemically coated surface is thereafter dipped or immersed in the water soluble paint tank and such a procedure results in a precipitation of the components of the water soluble paint in the application tank and an ultimate destruction of the quality of the water based paint film.
  • water soluble paint, lacquer or varnishes sprayed or atomized on such an acidic surface coating produces a rough, non-uniform film which is apparent after heat curing of the resin.
  • aqueous alkaline rinse of this invention it is undesirable to include in the aqueous alkaline rinse of this invention any material, inorganic or organic which after curing of the water soluble paint film remain in the film in a form which is soluble in Water since the leaching of such material from the final film reduces the corrosion resistance of the total film to humid conditions. For this reason it is advantageous to employ distilled water or water which has been deionized for the preparation of the rinse solutions to this invention.
  • All of the known types of water soluble resins have been found to be improved by the preliminary use of the rinse solutions of this invention including, for example, the water soluble phenolic resins, water soluble acrylic resins, water soluble melamine resins, water soluble alkyd phenolic resins, the water soluble alkyd melamine resins, the water soluble melamine modified acrylic resins, the water soluble fatty acid modified alkyd resins, etc.
  • fatty acid free phthalate resin available under the trade name Alftalat 420 A, having a melting range of 55-60 C., an acid number of -200 and being water clear in appearance and available from Chemische Werke, Albert, and the fatty acid modified alkyd resin available under the trade name Alftalat liti. 329/4 and having an acid es number of 80-90, viscosity, at 50% concentration in toluol, of (170 centipoises and containing about 50% fatty acid modication, which is available from Chemische Werke, Albert.
  • the water soluble paint systems may include in addition to the resins of the type above specified conventional pigments, flow irnprovers, softening agents and solvents including alcohols, glycols, etc., in addition to water, and such other ingredients may be present in the proportions conventionally used in such paint systems.
  • Example I An acidic zinc phosphate solution of the type conventionally employed to form a phosphate coating for use as a base for paint was compounded by admixing with water, zinc oxide, 75% phosphoric acid and nitric acid in quantities to produce a solution having an analysis of 0.14% Zn, 0.75% P04 and 1.8% NO3. The solution had a total acid of 10.1.
  • coatings were formed by spraying the solution on the surface of conventionally cleaned cold rolled steel panels, 4 x 6, in a contact time of about l minute.
  • the average coating weight produced was about 265 milligrams per square foot.
  • Some of the panels were then rinsed in a dilute aqueous hexavalent chromium-containing solution, formulated at 0.03% CrO3, removed and cold water rinsed.
  • Certain of the phosphate coated panels were rinsed in an aqueous ammonium hydroxide solution having a pH of 8.5, and a plurality of each of these panels were spray-coated with a water soluble paint having the following composition:
  • Example II A water soluble paint was formulated to contain 150 parts by weight melamine resin (Resydrol M-471), 95 parts titanium dioxide, 5 parts zinc sulfide, 15 parts isopropanol and 440 parts water.
  • Example III An acrylic polymer emulsion was prepared using Rhoplex AC-200 acrylic resin. This material as used contains 46% solids, a pH of 9-l0, has a bulking value of 0.110 gallon per pound of emulsion and 0.0985 gallon per pound of solid polymer. A spray formulation containing this resin was prepared containing, in pounds per gallon of water, 7.2 pounds Rhoplex AC-200 (46% solids), .36 pound isophorone, 2 pounds rutile titanium dioxide, .02 pound morpholine, 0.01 pound tributyl phosphate, 0.02 pound dimethyl amino ethanol, and 0.8 pound water. The resultant dispersion had a pH of about 9.5 and was colored slightly blue by adding a trace of phthalocyanine blue.
  • Example II Cold rolled steel panels, conventionally cleaned, were phosphate coated in the zinc phosphate solution specified above in Example I, water rinsed, and then rinsed in a dilute aqueous solution containing a mixture of ethylamine phosphate and ammonium hydroxide and having a pH of 8.0. After removal and drying, the panels were spray coated with the aqueous emulsion formulation above identified, and the baked at 350 for 30 minutes. An inspection of the coatings on the surfaces, after cooling, showed the surfaces to be coated with a smooth white continuous film free of undulations, conglomerates or other roughness.
  • the preliminary chemical treatment to which the metal surface is subjected may include aqueous acidic solutions which function as cleaners or aqueous acidic solutions which function to form an integrally bound chemically induced coating on the metal surface.
  • the rinsing step of this invention is useful following a preliminary contact of the metal surface with an aqueous acidic solution of phosphoric, chromic or oxalic acid or from the preliminary treatment of the surface with an aqueous acidic solution of zinc phosphate, manganese phosphate, one or more alkaline earth metal phosphates, or an alkali metal phosphate, including ammonium phosphate, or Zinc or manganese phosphate modified with an alkaline earth metal phosphate or an alkali metal phosphate including ammonium phosphate.
  • thermosetting or curing temperature for use in curing the water soluble paint, lacquer or varnish materials of this invention will vary with the particular material selected but, in general, a temperature in the range of 200 C. to about 300 C. is satisfactory.
  • a process for preparing a metal surface for receiving a water soluble paint film which comprises the steps of (1) contacting said surface with an aqueous acidic solution of at least one phosphate selected from the group consisting of zinc phosphate, manganese phosphate, alkaline earth metal phosphates and the alkali metal phosphates, (2) thereafter rinsing the surface of the metal from step (l) in an aqueous acidic solution of an acid selected from the group consisting of phosphoric, chromic and oxalic acids, (3) thereafter rinsing the surface of the metal from step (2) in an aqueous rinse solution of an amine selected from the group consisting of ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol and aminoisobutanol, said rinse solution having a pH in the range of 7 to about l1, and (4) while said rinsed surface is wet
  • a process for preparing a metal surface for receiving a Water soluble paint ilm which comprises the steps of (1) contacting said surface with an aqueous -acidic solution of a material selected from the group consisting of phosphoric acid, chromic acid, oxalic acid, zinc phosphate, manganese phosphate, alkaline earth metal phosphates and alkali metal phosphates and mixtures of said phosphates and (2) thereafter rinsing the surface of the metal from step (1) in an aqueous rinse solution of an amine selected from the group consisting of ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol and aminoisobutanol, said rinse solution having a pH in the range of 7 to about 11, and (3) While said rinsed surface is Wet, applying a Water soluble paint to said surface and curing said Water soluble paint to thereby form a continuous l
  • said amine solution includes at least one phosphate ester selectJ ed from the group consisting of monomethyl amine phos phate, ethyl amine phosphate, isopropyl amine phosphate, monoethanol amine phosphate, diamyl amine phosphate, 2 amino-Z-methyl-l-propanol amine phosphate, cyclohexyh amine phosphate, tertiary octyl amine phosphate land ethylene diamine phosphate.

Description

Oct. 27, 1964 Filed March 8, 1962 Cafe United States Patent O 3,154,438 PROCESS FR TREATENG METAL SURFACES Heinz Keller, Friedrich Kaysser, Werner Rausch, and
Walter Stenger, Frankfurt am Main, Germmy, assignors, by mesne assignments, to Hooker Chemical Corporation, New `York, NKY., a corporation of New York Filed Mar. 8, 1962, Ser. No. i78,247 Claims priority, application Germany, Mar. 15, 1961, M 48,464 4 Claims. (Cl. 14S-6.15)
The present invention relates to an improved method for preparing metal surfaces to receive adherent films of water soluble base paint and a process of coating metal with smooth, adherent thermoset resin films, and more particularly relates to a method for rinsing a metal surface preliminarily treated in acidic solution to form thereon a protective integral chemical coating such as a phosphate, chromate, oxalate, or the like, and thereafter coating said surface with a water soluble thermosettable resin.
In the preparation of metal surfaces, particularly of ferrous surfaces for receiving finish coatings such as paint, enamel, varnish or the like, it is now conventional to subject that metal surface to preliminary cleaning, acid etching or to treatment with aqueous acidic solutions which form on the surface an integral chemically bound coating which serves to bond the finish coating securely to the metal surface. In this preliminary chemical treatment it has been conventional heretofore to complete the aqueous acidic solution treatment with a rinse which, in most cases, is an aqueous acidic solution containing the hexavalent chromium ion, phosphoric acid or mixtures thereof. In some processes, only a final water rinse is employed, but in either case the coating contains entrapped acid in variable quantity. Following the final rinse, the coating is ordinarily dried prior to the application of the finish coating of lacquer, varnish or paint and at least in those high quantity production lines which fabricate automobile bodies, refrigerator shells, stoves and the like, the final coating is applied by spraying. With the recent availability of water soluble paint systems it has become feasible to eliminate the drying step and to apply a water soluble paint on the chemically prepared metallic surface immediately following the final rinse in the chemical treatment. It has been found that in such processes that difficulties are encountered during operation including the formation of irregularities or roughness in the final cured film or the precipitation of conglomerates or sludge within the tank or receptacle which houses the water soluble paint.
It is the primary object of this invention to provide an improved process which enables the application of water soluble resins, paints, varnishes or the like to metal surfaces previously treated in acidic solutions without encountering the above types of difficulty.
ln accordance with this invention it has been found that this difficulty is overcome when the final stepI in the chemical treatment of the metal surface preparatory to its contact with the water soluble paint comprises rinsing that surface in an aqueous solution having a pH in the range of about 7 to about ll, and preferably rinsing that surface in an aqueous solution of an amine.
The process of this invention is set forth in iiowsheet form in the drawing. ln the drawing, the process consisting of the steps connected by solid lines is the simplest form of this invention, whereas, the steps connected by dotted lines represent alternative forms for use when desired.
Amines which have been found to be suitable for the purposes of this invention include ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol, and
BMABS Patented ct. 27, 1964 ice aminoisobutanol. Such amine solutions may satisfactorily contain other anions, such as the phosphate anion, or amine phosphate esters of monoand di-phosphoric acids such as, for example, monomethyl amine phosphate, ethyl amine phosphate, isopropyl amine phosphate, monoethanol amine phosphate, diamyl amine phosphate, 2 amino-Z-methyl-l-propanol amine phosphate, cyclohexylamine phosphate, tertiary octyl amine phosphate, and ethylene diamine phosphate. The rinse may also include small quantities of alcohol or other compatible solvent and a small quantity of a non-ionic, cationic or anionic wetting agent. The concentration of the amine which is best for use in any particular case is dependent upon its inherent alkalinity and solubility in water and the optimum quantity for use is an amount which will produce the pH in the range of about 7-10 and preferably in the range of 8-10.
In the formation of chemically produced integrally bound coatings such as phosphate or oxalates which have substantial weight per unit of surface area and which are particulate in nature with space between the particles which serve to adsorb or trap liquid applied to such a coating, it is undesirable to employ the now conventional aqueous acidic rinses which are of value for the purpose of enhancing corrosion resistance and the quality of the coating as a base for paint, such as for example, a dilute aqueous hexavalent chromium containing solution or a phosphoric acid containing solution or tthe like. The entrapped acidic material which results from such a rinse, is particularly damaging to the quality of the Water soluble paint when the freshly rinsed chemically coated surface is thereafter dipped or immersed in the water soluble paint tank and such a procedure results in a precipitation of the components of the water soluble paint in the application tank and an ultimate destruction of the quality of the water based paint film. Moreover, water soluble paint, lacquer or varnishes sprayed or atomized on such an acidic surface coating produces a rough, non-uniform film which is apparent after heat curing of the resin.
It is undesirable to include in the aqueous alkaline rinse of this invention any material, inorganic or organic which after curing of the water soluble paint film remain in the film in a form which is soluble in Water since the leaching of such material from the final film reduces the corrosion resistance of the total film to humid conditions. For this reason it is advantageous to employ distilled water or water which has been deionized for the preparation of the rinse solutions to this invention.
All of the known types of water soluble resins have been found to be improved by the preliminary use of the rinse solutions of this invention including, for example, the water soluble phenolic resins, water soluble acrylic resins, water soluble melamine resins, water soluble alkyd phenolic resins, the water soluble alkyd melamine resins, the water soluble melamine modified acrylic resins, the water soluble fatty acid modified alkyd resins, etc. More specific examples of these types which have been found to be improved in use in a process involving phosphate coating, rinsing and water soluble paint coating include the melamine modified acrylic resins available under the trade name Melaqua 600 from American Cyanamid Company, the phenolic resin available under the trade name Resydrol P-41l, and the melamine resins available commercially under the trade name Resydroles M-470 and M-47l, which are available from Reichhold, Chemie A. G. Other specific resins of this type include the fatty acid free phthalate resin available under the trade name Alftalat 420 A, having a melting range of 55-60 C., an acid number of -200 and being water clear in appearance and available from Chemische Werke, Albert, and the fatty acid modified alkyd resin available under the trade name Alftalat liti. 329/4 and having an acid es number of 80-90, viscosity, at 50% concentration in toluol, of (170 centipoises and containing about 50% fatty acid modication, which is available from Chemische Werke, Albert.
The water soluble paint systems may include in addition to the resins of the type above specified conventional pigments, flow irnprovers, softening agents and solvents including alcohols, glycols, etc., in addition to water, and such other ingredients may be present in the proportions conventionally used in such paint systems.
The following examples are intended to illustrate in somewhat greater detail the process of this invention, although it is to be understood that the examples are for purposes of illustration only and do not set forth the definitive limits of the materials, proportions or operating conditions of this invention which have been hereinabove specified.
Example I An acidic zinc phosphate solution of the type conventionally employed to form a phosphate coating for use as a base for paint was compounded by admixing with water, zinc oxide, 75% phosphoric acid and nitric acid in quantities to produce a solution having an analysis of 0.14% Zn, 0.75% P04 and 1.8% NO3. The solution had a total acid of 10.1.
With the solution at 135 F., coatings were formed by spraying the solution on the surface of conventionally cleaned cold rolled steel panels, 4 x 6, in a contact time of about l minute. The average coating weight produced was about 265 milligrams per square foot. Some of the panels were then rinsed in a dilute aqueous hexavalent chromium-containing solution, formulated at 0.03% CrO3, removed and cold water rinsed. Certain of the phosphate coated panels were rinsed in an aqueous ammonium hydroxide solution having a pH of 8.5, and a plurality of each of these panels were spray-coated with a water soluble paint having the following composition:
150 parts by weight water soluble phenolic resin (Resydrol P-4l 1 610 parts water;
195 parts lithopone;
5 parts ferric oxide, and
parts butanol.
The panels, after spraying, were air dried and then subjected to a S-minute heat cure in an oven at 150 C. and removed. After cooling, the panels were inspected and each were found to be coated with a gray continuous film but it was apparent that the panels which were given the chromic acid rinse were rougher and contained interspersed globular areas whereas the panels which were rinsed in the ammonium hydroxide rinse prior to spraying were coated with a smooth continuous gray film.
Continuous processing of a plurality of panels, rinsed in the above identified chromic acid solution, by dipping those panels, immediately after the water rinse following the chromic acid rinse treatment, into the above specified water base paint composition resulted in a short time in the formation of precipitate in the water-based paint in its container, which could be visibly seen and which slowly settled toward the bottom of the container. A similar quantity of panels rinsed in the aqueous ammonium hydroxide solution processed through another similar size tank containing the identical water soluble paint showed no precipitation.
Other suitable paint systems which were found to work satisfactorily with the aqueous amine rinse treatment of this composition, following phosphate coatings, are given in the examples which follow:
Example II A water soluble paint was formulated to contain 150 parts by weight melamine resin (Resydrol M-471), 95 parts titanium dioxide, 5 parts zinc sulfide, 15 parts isopropanol and 440 parts water.
After this water soluble paint was admixed and allowed to stand for about 2 hours, application by spraying of it to zinc phosphate coated panels of the type specified in Ex ample I, subjected to the aqueous ammonium hydroxide rinse having a pH of 8.5, after curing for 5 minutes at C., were found to form smooth uniform white continuous paint films over the entire surfaces of the panels.
Example III An acrylic polymer emulsion was prepared using Rhoplex AC-200 acrylic resin. This material as used contains 46% solids, a pH of 9-l0, has a bulking value of 0.110 gallon per pound of emulsion and 0.0985 gallon per pound of solid polymer. A spray formulation containing this resin was prepared containing, in pounds per gallon of water, 7.2 pounds Rhoplex AC-200 (46% solids), .36 pound isophorone, 2 pounds rutile titanium dioxide, .02 pound morpholine, 0.01 pound tributyl phosphate, 0.02 pound dimethyl amino ethanol, and 0.8 pound water. The resultant dispersion had a pH of about 9.5 and was colored slightly blue by adding a trace of phthalocyanine blue.
Cold rolled steel panels, conventionally cleaned, were phosphate coated in the zinc phosphate solution specified above in Example I, water rinsed, and then rinsed in a dilute aqueous solution containing a mixture of ethylamine phosphate and ammonium hydroxide and having a pH of 8.0. After removal and drying, the panels were spray coated with the aqueous emulsion formulation above identified, and the baked at 350 for 30 minutes. An inspection of the coatings on the surfaces, after cooling, showed the surfaces to be coated with a smooth white continuous film free of undulations, conglomerates or other roughness.
As generally indicated above, the preliminary chemical treatment to which the metal surface is subjected may include aqueous acidic solutions which function as cleaners or aqueous acidic solutions which function to form an integrally bound chemically induced coating on the metal surface. The rinsing step of this invention is useful following a preliminary contact of the metal surface with an aqueous acidic solution of phosphoric, chromic or oxalic acid or from the preliminary treatment of the surface with an aqueous acidic solution of zinc phosphate, manganese phosphate, one or more alkaline earth metal phosphates, or an alkali metal phosphate, including ammonium phosphate, or Zinc or manganese phosphate modified with an alkaline earth metal phosphate or an alkali metal phosphate including ammonium phosphate.
The best thermosetting or curing temperature for use in curing the water soluble paint, lacquer or varnish materials of this invention will vary with the particular material selected but, in general, a temperature in the range of 200 C. to about 300 C. is satisfactory.
What is claimed is:
1. A process for preparing a metal surface for receiving a water soluble paint film which comprises the steps of (1) contacting said surface with an aqueous acidic solution of at least one phosphate selected from the group consisting of zinc phosphate, manganese phosphate, alkaline earth metal phosphates and the alkali metal phosphates, (2) thereafter rinsing the surface of the metal from step (l) in an aqueous acidic solution of an acid selected from the group consisting of phosphoric, chromic and oxalic acids, (3) thereafter rinsing the surface of the metal from step (2) in an aqueous rinse solution of an amine selected from the group consisting of ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol and aminoisobutanol, said rinse solution having a pH in the range of 7 to about l1, and (4) while said rinsed surface is wet, applying `a water soluble paint to the surface of the metal from step (3) and curing said water soluble paint to thereby form a continuous film on said surface.
2. A process for preparing a metal surface for receiving a Water soluble paint ilm which comprises the steps of (1) contacting said surface with an aqueous -acidic solution of a material selected from the group consisting of phosphoric acid, chromic acid, oxalic acid, zinc phosphate, manganese phosphate, alkaline earth metal phosphates and alkali metal phosphates and mixtures of said phosphates and (2) thereafter rinsing the surface of the metal from step (1) in an aqueous rinse solution of an amine selected from the group consisting of ammonia, diethylamine, triethylamine, triethanolamine, morpholine, cyclohexylamine, dicyclohexylamine, aminopropanol and aminoisobutanol, said rinse solution having a pH in the range of 7 to about 11, and (3) While said rinsed surface is Wet, applying a Water soluble paint to said surface and curing said Water soluble paint to thereby form a continuous lm 15 on said surface.
3. A process in accordance with claim 2 wherein said amine solution includes at least one phosphate ester selectJ ed from the group consisting of monomethyl amine phos phate, ethyl amine phosphate, isopropyl amine phosphate, monoethanol amine phosphate, diamyl amine phosphate, 2 amino-Z-methyl-l-propanol amine phosphate, cyclohexyh amine phosphate, tertiary octyl amine phosphate land ethylene diamine phosphate.
4. A process in accordance with claim 2 wherein said aqueous acidic solution is zinc phosphate.
References Cited in the file of this patent UNITED STATES PATENTS 2,418,608 Thompson et al Apr. 8, 1947 2,768,103 Schuster et al Oct. 23, 1956 2,768,104 Schuster et al Oct. 23, 1956

Claims (1)

1. A PROCESS FOR PREPARING A METAL SURFACE FOR RECEIVING A WATER SOLUBLE PAINT FILM WHICH COMPRISES THE STEPS OF (1) CONTACTING SAID SURFACE WITH AN AQUEOUS ACIDIC SOLUTION OF AT LEAST ONE PHOSPHATE SELECTED FROM THE GROUP CONSISTING OF ZINC PHOSPHATE, MANGANESE PHOSPHATE, ALKALINE EARTH METAL PHOSPHATES AND THE ALKALI METAL PHOSPHATES, (2) THEREAFTER RINSING THE SURFACE OF THE METAL FROM STEP (1) IN AN AQUEOUS ACIDIC SOLUTION OF AN ACID SELECTED FROM THE GROUP CONSISTING OF PHOSPHORIC, CHROMIC AND OXALIC ACIDS, (3) THEREAFTER RINSING THE SURFACE OF THE METAL FROM STEP (2) IN AN AQUEOUS RINSE SOLUTION OF AN AMINE SELECTED FROM THE GROUP CONSISTING OF AMMONIA, DIETHYLAMINE, TRIETHYLAMINE, TRIETHANOLAMINE, MORPHOLINE, CYCLOHEXYLAMINE, DICYCLOHEXYLAMINE, AMINOPROPANOL AND AMINOISOBUTANOL, SAID RINSE SOLUTION HAVING A PH IN THE RANGE OF 7 TO ABOUT 11, AND (4) WHILE SAID RINSED SURFACE IS WET, APPLYING A WATER SOLUBLE PAINT TO THE SURFACE OF THE METAL
US178247A 1961-03-15 1962-03-08 Process for treating metal surfaces Expired - Lifetime US3154438A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEM48404A DE1184593B (en) 1961-03-15 1961-03-15 Process for rinsing chemically pretreated metals before painting with paints dissolved or dispersed in water

Publications (1)

Publication Number Publication Date
US3154438A true US3154438A (en) 1964-10-27

Family

ID=7306215

Family Applications (1)

Application Number Title Priority Date Filing Date
US178247A Expired - Lifetime US3154438A (en) 1961-03-15 1962-03-08 Process for treating metal surfaces

Country Status (6)

Country Link
US (1) US3154438A (en)
BE (1) BE612027A (en)
CH (1) CH419775A (en)
DE (1) DE1184593B (en)
GB (1) GB929644A (en)
NL (2) NL275534A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197344A (en) * 1962-04-23 1965-07-27 Hooker Chemical Corp Compositions and methods for forming coatings on metal surfaces
US3290235A (en) * 1965-12-02 1966-12-06 Glidden Co Electrodeposition of acidic resin with subsequent anodic electrolysis in dispersioncontaining metal treating oxyanions
US3364080A (en) * 1964-10-22 1968-01-16 Amchem Prod Method of improving the corrosion resistance of chromate conversion coated aluminum surface
US3368913A (en) * 1963-01-29 1968-02-13 Henkel & Cie Gmbh Process for the treatment of metal surfaces prior to enameling
US3391032A (en) * 1963-06-27 1968-07-02 Hooker Chemical Corp Alkaline rinse for chromatized aluminum
US3395053A (en) * 1964-11-17 1968-07-30 Nasa Usa Thermal control coating
US3484343A (en) * 1964-07-13 1969-12-16 Toyo Kohan Co Ltd Amine solution treatment of cathodically chromated metal surfaces
US3519458A (en) * 1966-03-01 1970-07-07 Hooker Chemical Corp Method for reducing the corrosion susceptibility of ferrous metal having fluxing agent residue
US3787246A (en) * 1970-07-07 1974-01-22 H Tagai Process for producing a protective color film on an aluminum substrate
US3973998A (en) * 1975-05-05 1976-08-10 Celanese Coatings & Specialties Company Rinsing solutions for acid cleaned iron and steel surfaces
US4048374A (en) * 1973-09-01 1977-09-13 Dynamit Nobel Aktiengesellschaft Functional organophosphonic acid esters as preservative adhesion promoting agents and coating for metals
US4590100A (en) * 1983-10-28 1986-05-20 The United States Of America As Represented By The Secretary Of The Navy Passivation of steel with aqueous amine solutions preparatory to application of non-aqueous protective coatings
WO1996009994A1 (en) * 1994-09-26 1996-04-04 E.R. Squibb & Sons, Inc. Stainless steel alkali treatment
US5766684A (en) * 1994-09-26 1998-06-16 Calgon Vestal, Inc. Stainless steel acid treatment
US10575520B2 (en) 2016-03-16 2020-03-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Cyclohexylamine-based compounds and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418608A (en) * 1939-05-22 1947-04-08 Parker Rust Proof Co Corrosion-resistant metallic article and method of making the same
US2768104A (en) * 1952-03-25 1956-10-23 Heintz Mfg Co Method for coating iron
US2768103A (en) * 1952-03-18 1956-10-23 Heintz Mfg Co Method for coating metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418608A (en) * 1939-05-22 1947-04-08 Parker Rust Proof Co Corrosion-resistant metallic article and method of making the same
US2768103A (en) * 1952-03-18 1956-10-23 Heintz Mfg Co Method for coating metals
US2768104A (en) * 1952-03-25 1956-10-23 Heintz Mfg Co Method for coating iron

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197344A (en) * 1962-04-23 1965-07-27 Hooker Chemical Corp Compositions and methods for forming coatings on metal surfaces
US3368913A (en) * 1963-01-29 1968-02-13 Henkel & Cie Gmbh Process for the treatment of metal surfaces prior to enameling
US3391032A (en) * 1963-06-27 1968-07-02 Hooker Chemical Corp Alkaline rinse for chromatized aluminum
US3484343A (en) * 1964-07-13 1969-12-16 Toyo Kohan Co Ltd Amine solution treatment of cathodically chromated metal surfaces
US3364080A (en) * 1964-10-22 1968-01-16 Amchem Prod Method of improving the corrosion resistance of chromate conversion coated aluminum surface
US3395053A (en) * 1964-11-17 1968-07-30 Nasa Usa Thermal control coating
US3290235A (en) * 1965-12-02 1966-12-06 Glidden Co Electrodeposition of acidic resin with subsequent anodic electrolysis in dispersioncontaining metal treating oxyanions
US3519458A (en) * 1966-03-01 1970-07-07 Hooker Chemical Corp Method for reducing the corrosion susceptibility of ferrous metal having fluxing agent residue
US3787246A (en) * 1970-07-07 1974-01-22 H Tagai Process for producing a protective color film on an aluminum substrate
US4048374A (en) * 1973-09-01 1977-09-13 Dynamit Nobel Aktiengesellschaft Functional organophosphonic acid esters as preservative adhesion promoting agents and coating for metals
US3973998A (en) * 1975-05-05 1976-08-10 Celanese Coatings & Specialties Company Rinsing solutions for acid cleaned iron and steel surfaces
US4590100A (en) * 1983-10-28 1986-05-20 The United States Of America As Represented By The Secretary Of The Navy Passivation of steel with aqueous amine solutions preparatory to application of non-aqueous protective coatings
WO1996009994A1 (en) * 1994-09-26 1996-04-04 E.R. Squibb & Sons, Inc. Stainless steel alkali treatment
US5766684A (en) * 1994-09-26 1998-06-16 Calgon Vestal, Inc. Stainless steel acid treatment
US5858118A (en) * 1994-09-26 1999-01-12 Calgon Vestal, Inc. Stainless steel alkali treatment
US10575520B2 (en) 2016-03-16 2020-03-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Cyclohexylamine-based compounds and uses thereof

Also Published As

Publication number Publication date
NL131372C (en)
GB929644A (en) 1963-06-26
BE612027A (en) 1962-04-16
DE1184593B (en) 1964-12-31
NL275534A (en)
CH419775A (en) 1966-08-31

Similar Documents

Publication Publication Date Title
US3154438A (en) Process for treating metal surfaces
EP1404894B1 (en) Corrosion resistant coatings for aluminum and aluminum alloys
US2902390A (en) Method of coating metal surface with hexavalent chromium compound and polyacrylic acid
CA1105879A (en) Treatment of metal parts to provide rust-inhibiting coatings
KR20010024643A (en) Chromium-free corrosion protection agent and method for providing corrosion protection
US5053081A (en) Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US5868872A (en) Chromium-free process for the no-rinse treatment of aluminum and its alloys and aqueous bath solutions suitable for this process
US3717509A (en) Coated metal and method
DE2428065C2 (en) Process for sealing zinc phosphate coatings on steel substrates
US3687739A (en) Coated metal and method
EP0091166A1 (en) Process for treating metal surfaces
RU2698031C1 (en) Pre-treatment compositions and methods for substrate processing
US4656097A (en) Post treatment of phosphated metal surfaces by organic titanates
US2206064A (en) Metal treating process
DE1942156B2 (en) Process for the surface treatment of metals with the formation of a phosphate layer
US3438799A (en) Method for the surface treatment of metal articles
US2927046A (en) Coated metals and solutions and process for making the same
US2296070A (en) Treatment of metal primers
US3708350A (en) Coated metal and method
US3720547A (en) Permanganate final rinse for metal coatings
US2725310A (en) Rust inhibitive finishes for ferrous metals
US3664887A (en) Process for increasing corrosion resistance of conversion coated metal
US3718509A (en) Coated metal and method
US4123290A (en) Chromium-containing coating of enhanced corrosion resistance
US3723162A (en) Pretreatment of metal surfaces

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOOKER CHEMICALS & PLASTICS CORP 32100 STEPHENSON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:003942/0016

Effective date: 19810317

AS Assignment

Owner name: OCCIDENTAL CHEMICAL CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054

Effective date: 19820330